ib_recv.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-mapping.h>
  37. #include <rdma/rdma_cm.h>
  38. #include "rds.h"
  39. #include "ib.h"
  40. static struct kmem_cache *rds_ib_incoming_slab;
  41. static struct kmem_cache *rds_ib_frag_slab;
  42. static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  43. static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
  44. {
  45. rdsdebug("frag %p page %p\n", frag, frag->f_page);
  46. __free_page(frag->f_page);
  47. frag->f_page = NULL;
  48. }
  49. static void rds_ib_frag_free(struct rds_page_frag *frag)
  50. {
  51. rdsdebug("frag %p page %p\n", frag, frag->f_page);
  52. BUG_ON(frag->f_page != NULL);
  53. kmem_cache_free(rds_ib_frag_slab, frag);
  54. }
  55. /*
  56. * We map a page at a time. Its fragments are posted in order. This
  57. * is called in fragment order as the fragments get send completion events.
  58. * Only the last frag in the page performs the unmapping.
  59. *
  60. * It's OK for ring cleanup to call this in whatever order it likes because
  61. * DMA is not in flight and so we can unmap while other ring entries still
  62. * hold page references in their frags.
  63. */
  64. static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
  65. struct rds_ib_recv_work *recv)
  66. {
  67. struct rds_page_frag *frag = recv->r_frag;
  68. rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
  69. if (frag->f_mapped)
  70. ib_dma_unmap_page(ic->i_cm_id->device,
  71. frag->f_mapped,
  72. RDS_FRAG_SIZE, DMA_FROM_DEVICE);
  73. frag->f_mapped = 0;
  74. }
  75. void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  76. {
  77. struct rds_ib_recv_work *recv;
  78. u32 i;
  79. for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  80. struct ib_sge *sge;
  81. recv->r_ibinc = NULL;
  82. recv->r_frag = NULL;
  83. recv->r_wr.next = NULL;
  84. recv->r_wr.wr_id = i;
  85. recv->r_wr.sg_list = recv->r_sge;
  86. recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  87. sge = rds_ib_data_sge(ic, recv->r_sge);
  88. sge->addr = 0;
  89. sge->length = RDS_FRAG_SIZE;
  90. sge->lkey = ic->i_mr->lkey;
  91. sge = rds_ib_header_sge(ic, recv->r_sge);
  92. sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  93. sge->length = sizeof(struct rds_header);
  94. sge->lkey = ic->i_mr->lkey;
  95. }
  96. }
  97. static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
  98. struct rds_ib_recv_work *recv)
  99. {
  100. if (recv->r_ibinc) {
  101. rds_inc_put(&recv->r_ibinc->ii_inc);
  102. recv->r_ibinc = NULL;
  103. }
  104. if (recv->r_frag) {
  105. rds_ib_recv_unmap_page(ic, recv);
  106. if (recv->r_frag->f_page)
  107. rds_ib_frag_drop_page(recv->r_frag);
  108. rds_ib_frag_free(recv->r_frag);
  109. recv->r_frag = NULL;
  110. }
  111. }
  112. void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
  113. {
  114. u32 i;
  115. for (i = 0; i < ic->i_recv_ring.w_nr; i++)
  116. rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
  117. if (ic->i_frag.f_page)
  118. rds_ib_frag_drop_page(&ic->i_frag);
  119. }
  120. static int rds_ib_recv_refill_one(struct rds_connection *conn,
  121. struct rds_ib_recv_work *recv,
  122. gfp_t kptr_gfp, gfp_t page_gfp)
  123. {
  124. struct rds_ib_connection *ic = conn->c_transport_data;
  125. dma_addr_t dma_addr;
  126. struct ib_sge *sge;
  127. int ret = -ENOMEM;
  128. if (recv->r_ibinc == NULL) {
  129. if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
  130. rds_ib_stats_inc(s_ib_rx_alloc_limit);
  131. goto out;
  132. }
  133. recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
  134. kptr_gfp);
  135. if (recv->r_ibinc == NULL) {
  136. atomic_dec(&rds_ib_allocation);
  137. goto out;
  138. }
  139. INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
  140. rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
  141. }
  142. if (recv->r_frag == NULL) {
  143. recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
  144. if (recv->r_frag == NULL)
  145. goto out;
  146. INIT_LIST_HEAD(&recv->r_frag->f_item);
  147. recv->r_frag->f_page = NULL;
  148. }
  149. if (ic->i_frag.f_page == NULL) {
  150. ic->i_frag.f_page = alloc_page(page_gfp);
  151. if (ic->i_frag.f_page == NULL)
  152. goto out;
  153. ic->i_frag.f_offset = 0;
  154. }
  155. dma_addr = ib_dma_map_page(ic->i_cm_id->device,
  156. ic->i_frag.f_page,
  157. ic->i_frag.f_offset,
  158. RDS_FRAG_SIZE,
  159. DMA_FROM_DEVICE);
  160. if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
  161. goto out;
  162. /*
  163. * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
  164. * must be called on this recv. This happens as completions hit
  165. * in order or on connection shutdown.
  166. */
  167. recv->r_frag->f_page = ic->i_frag.f_page;
  168. recv->r_frag->f_offset = ic->i_frag.f_offset;
  169. recv->r_frag->f_mapped = dma_addr;
  170. sge = rds_ib_data_sge(ic, recv->r_sge);
  171. sge->addr = dma_addr;
  172. sge->length = RDS_FRAG_SIZE;
  173. sge = rds_ib_header_sge(ic, recv->r_sge);
  174. sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
  175. sge->length = sizeof(struct rds_header);
  176. get_page(recv->r_frag->f_page);
  177. if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
  178. ic->i_frag.f_offset += RDS_FRAG_SIZE;
  179. } else {
  180. put_page(ic->i_frag.f_page);
  181. ic->i_frag.f_page = NULL;
  182. ic->i_frag.f_offset = 0;
  183. }
  184. ret = 0;
  185. out:
  186. return ret;
  187. }
  188. /*
  189. * This tries to allocate and post unused work requests after making sure that
  190. * they have all the allocations they need to queue received fragments into
  191. * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
  192. * pairs don't go unmatched.
  193. *
  194. * -1 is returned if posting fails due to temporary resource exhaustion.
  195. */
  196. int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
  197. gfp_t page_gfp, int prefill)
  198. {
  199. struct rds_ib_connection *ic = conn->c_transport_data;
  200. struct rds_ib_recv_work *recv;
  201. struct ib_recv_wr *failed_wr;
  202. unsigned int posted = 0;
  203. int ret = 0;
  204. u32 pos;
  205. while ((prefill || rds_conn_up(conn)) &&
  206. rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
  207. if (pos >= ic->i_recv_ring.w_nr) {
  208. printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
  209. pos);
  210. ret = -EINVAL;
  211. break;
  212. }
  213. recv = &ic->i_recvs[pos];
  214. ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
  215. if (ret) {
  216. ret = -1;
  217. break;
  218. }
  219. /* XXX when can this fail? */
  220. ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
  221. rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
  222. recv->r_ibinc, recv->r_frag->f_page,
  223. (long) recv->r_frag->f_mapped, ret);
  224. if (ret) {
  225. rds_ib_conn_error(conn, "recv post on "
  226. "%pI4 returned %d, disconnecting and "
  227. "reconnecting\n", &conn->c_faddr,
  228. ret);
  229. ret = -1;
  230. break;
  231. }
  232. posted++;
  233. }
  234. /* We're doing flow control - update the window. */
  235. if (ic->i_flowctl && posted)
  236. rds_ib_advertise_credits(conn, posted);
  237. if (ret)
  238. rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
  239. return ret;
  240. }
  241. void rds_ib_inc_purge(struct rds_incoming *inc)
  242. {
  243. struct rds_ib_incoming *ibinc;
  244. struct rds_page_frag *frag;
  245. struct rds_page_frag *pos;
  246. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  247. rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
  248. list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
  249. list_del_init(&frag->f_item);
  250. rds_ib_frag_drop_page(frag);
  251. rds_ib_frag_free(frag);
  252. }
  253. }
  254. void rds_ib_inc_free(struct rds_incoming *inc)
  255. {
  256. struct rds_ib_incoming *ibinc;
  257. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  258. rds_ib_inc_purge(inc);
  259. rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
  260. BUG_ON(!list_empty(&ibinc->ii_frags));
  261. kmem_cache_free(rds_ib_incoming_slab, ibinc);
  262. atomic_dec(&rds_ib_allocation);
  263. BUG_ON(atomic_read(&rds_ib_allocation) < 0);
  264. }
  265. int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
  266. size_t size)
  267. {
  268. struct rds_ib_incoming *ibinc;
  269. struct rds_page_frag *frag;
  270. struct iovec *iov = first_iov;
  271. unsigned long to_copy;
  272. unsigned long frag_off = 0;
  273. unsigned long iov_off = 0;
  274. int copied = 0;
  275. int ret;
  276. u32 len;
  277. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  278. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  279. len = be32_to_cpu(inc->i_hdr.h_len);
  280. while (copied < size && copied < len) {
  281. if (frag_off == RDS_FRAG_SIZE) {
  282. frag = list_entry(frag->f_item.next,
  283. struct rds_page_frag, f_item);
  284. frag_off = 0;
  285. }
  286. while (iov_off == iov->iov_len) {
  287. iov_off = 0;
  288. iov++;
  289. }
  290. to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
  291. to_copy = min_t(size_t, to_copy, size - copied);
  292. to_copy = min_t(unsigned long, to_copy, len - copied);
  293. rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
  294. "[%p, %lu] + %lu\n",
  295. to_copy, iov->iov_base, iov->iov_len, iov_off,
  296. frag->f_page, frag->f_offset, frag_off);
  297. /* XXX needs + offset for multiple recvs per page */
  298. ret = rds_page_copy_to_user(frag->f_page,
  299. frag->f_offset + frag_off,
  300. iov->iov_base + iov_off,
  301. to_copy);
  302. if (ret) {
  303. copied = ret;
  304. break;
  305. }
  306. iov_off += to_copy;
  307. frag_off += to_copy;
  308. copied += to_copy;
  309. }
  310. return copied;
  311. }
  312. /* ic starts out kzalloc()ed */
  313. void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
  314. {
  315. struct ib_send_wr *wr = &ic->i_ack_wr;
  316. struct ib_sge *sge = &ic->i_ack_sge;
  317. sge->addr = ic->i_ack_dma;
  318. sge->length = sizeof(struct rds_header);
  319. sge->lkey = ic->i_mr->lkey;
  320. wr->sg_list = sge;
  321. wr->num_sge = 1;
  322. wr->opcode = IB_WR_SEND;
  323. wr->wr_id = RDS_IB_ACK_WR_ID;
  324. wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  325. }
  326. /*
  327. * You'd think that with reliable IB connections you wouldn't need to ack
  328. * messages that have been received. The problem is that IB hardware generates
  329. * an ack message before it has DMAed the message into memory. This creates a
  330. * potential message loss if the HCA is disabled for any reason between when it
  331. * sends the ack and before the message is DMAed and processed. This is only a
  332. * potential issue if another HCA is available for fail-over.
  333. *
  334. * When the remote host receives our ack they'll free the sent message from
  335. * their send queue. To decrease the latency of this we always send an ack
  336. * immediately after we've received messages.
  337. *
  338. * For simplicity, we only have one ack in flight at a time. This puts
  339. * pressure on senders to have deep enough send queues to absorb the latency of
  340. * a single ack frame being in flight. This might not be good enough.
  341. *
  342. * This is implemented by have a long-lived send_wr and sge which point to a
  343. * statically allocated ack frame. This ack wr does not fall under the ring
  344. * accounting that the tx and rx wrs do. The QP attribute specifically makes
  345. * room for it beyond the ring size. Send completion notices its special
  346. * wr_id and avoids working with the ring in that case.
  347. */
  348. #ifndef KERNEL_HAS_ATOMIC64
  349. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  350. int ack_required)
  351. {
  352. unsigned long flags;
  353. spin_lock_irqsave(&ic->i_ack_lock, flags);
  354. ic->i_ack_next = seq;
  355. if (ack_required)
  356. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  357. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  358. }
  359. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  360. {
  361. unsigned long flags;
  362. u64 seq;
  363. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  364. spin_lock_irqsave(&ic->i_ack_lock, flags);
  365. seq = ic->i_ack_next;
  366. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  367. return seq;
  368. }
  369. #else
  370. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  371. int ack_required)
  372. {
  373. atomic64_set(&ic->i_ack_next, seq);
  374. if (ack_required) {
  375. smp_mb__before_clear_bit();
  376. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  377. }
  378. }
  379. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  380. {
  381. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  382. smp_mb__after_clear_bit();
  383. return atomic64_read(&ic->i_ack_next);
  384. }
  385. #endif
  386. static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
  387. {
  388. struct rds_header *hdr = ic->i_ack;
  389. struct ib_send_wr *failed_wr;
  390. u64 seq;
  391. int ret;
  392. seq = rds_ib_get_ack(ic);
  393. rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
  394. rds_message_populate_header(hdr, 0, 0, 0);
  395. hdr->h_ack = cpu_to_be64(seq);
  396. hdr->h_credit = adv_credits;
  397. rds_message_make_checksum(hdr);
  398. ic->i_ack_queued = jiffies;
  399. ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
  400. if (unlikely(ret)) {
  401. /* Failed to send. Release the WR, and
  402. * force another ACK.
  403. */
  404. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  405. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  406. rds_ib_stats_inc(s_ib_ack_send_failure);
  407. rds_ib_conn_error(ic->conn, "sending ack failed\n");
  408. } else
  409. rds_ib_stats_inc(s_ib_ack_sent);
  410. }
  411. /*
  412. * There are 3 ways of getting acknowledgements to the peer:
  413. * 1. We call rds_ib_attempt_ack from the recv completion handler
  414. * to send an ACK-only frame.
  415. * However, there can be only one such frame in the send queue
  416. * at any time, so we may have to postpone it.
  417. * 2. When another (data) packet is transmitted while there's
  418. * an ACK in the queue, we piggyback the ACK sequence number
  419. * on the data packet.
  420. * 3. If the ACK WR is done sending, we get called from the
  421. * send queue completion handler, and check whether there's
  422. * another ACK pending (postponed because the WR was on the
  423. * queue). If so, we transmit it.
  424. *
  425. * We maintain 2 variables:
  426. * - i_ack_flags, which keeps track of whether the ACK WR
  427. * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
  428. * - i_ack_next, which is the last sequence number we received
  429. *
  430. * Potentially, send queue and receive queue handlers can run concurrently.
  431. * It would be nice to not have to use a spinlock to synchronize things,
  432. * but the one problem that rules this out is that 64bit updates are
  433. * not atomic on all platforms. Things would be a lot simpler if
  434. * we had atomic64 or maybe cmpxchg64 everywhere.
  435. *
  436. * Reconnecting complicates this picture just slightly. When we
  437. * reconnect, we may be seeing duplicate packets. The peer
  438. * is retransmitting them, because it hasn't seen an ACK for
  439. * them. It is important that we ACK these.
  440. *
  441. * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
  442. * this flag set *MUST* be acknowledged immediately.
  443. */
  444. /*
  445. * When we get here, we're called from the recv queue handler.
  446. * Check whether we ought to transmit an ACK.
  447. */
  448. void rds_ib_attempt_ack(struct rds_ib_connection *ic)
  449. {
  450. unsigned int adv_credits;
  451. if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  452. return;
  453. if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
  454. rds_ib_stats_inc(s_ib_ack_send_delayed);
  455. return;
  456. }
  457. /* Can we get a send credit? */
  458. if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
  459. rds_ib_stats_inc(s_ib_tx_throttle);
  460. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  461. return;
  462. }
  463. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  464. rds_ib_send_ack(ic, adv_credits);
  465. }
  466. /*
  467. * We get here from the send completion handler, when the
  468. * adapter tells us the ACK frame was sent.
  469. */
  470. void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
  471. {
  472. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  473. rds_ib_attempt_ack(ic);
  474. }
  475. /*
  476. * This is called by the regular xmit code when it wants to piggyback
  477. * an ACK on an outgoing frame.
  478. */
  479. u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
  480. {
  481. if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  482. rds_ib_stats_inc(s_ib_ack_send_piggybacked);
  483. return rds_ib_get_ack(ic);
  484. }
  485. static struct rds_header *rds_ib_get_header(struct rds_connection *conn,
  486. struct rds_ib_recv_work *recv,
  487. u32 data_len)
  488. {
  489. struct rds_ib_connection *ic = conn->c_transport_data;
  490. void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs];
  491. void *addr;
  492. u32 misplaced_hdr_bytes;
  493. /*
  494. * Support header at the front (RDS 3.1+) as well as header-at-end.
  495. *
  496. * Cases:
  497. * 1) header all in header buff (great!)
  498. * 2) header all in data page (copy all to header buff)
  499. * 3) header split across hdr buf + data page
  500. * (move bit in hdr buff to end before copying other bit from data page)
  501. */
  502. if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE)
  503. return hdr_buff;
  504. if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) {
  505. addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
  506. memcpy(hdr_buff,
  507. addr + recv->r_frag->f_offset + data_len,
  508. sizeof(struct rds_header));
  509. kunmap_atomic(addr, KM_SOFTIRQ0);
  510. return hdr_buff;
  511. }
  512. misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len));
  513. memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes);
  514. addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
  515. memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len,
  516. sizeof(struct rds_header) - misplaced_hdr_bytes);
  517. kunmap_atomic(addr, KM_SOFTIRQ0);
  518. return hdr_buff;
  519. }
  520. /*
  521. * It's kind of lame that we're copying from the posted receive pages into
  522. * long-lived bitmaps. We could have posted the bitmaps and rdma written into
  523. * them. But receiving new congestion bitmaps should be a *rare* event, so
  524. * hopefully we won't need to invest that complexity in making it more
  525. * efficient. By copying we can share a simpler core with TCP which has to
  526. * copy.
  527. */
  528. static void rds_ib_cong_recv(struct rds_connection *conn,
  529. struct rds_ib_incoming *ibinc)
  530. {
  531. struct rds_cong_map *map;
  532. unsigned int map_off;
  533. unsigned int map_page;
  534. struct rds_page_frag *frag;
  535. unsigned long frag_off;
  536. unsigned long to_copy;
  537. unsigned long copied;
  538. uint64_t uncongested = 0;
  539. void *addr;
  540. /* catch completely corrupt packets */
  541. if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
  542. return;
  543. map = conn->c_fcong;
  544. map_page = 0;
  545. map_off = 0;
  546. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  547. frag_off = 0;
  548. copied = 0;
  549. while (copied < RDS_CONG_MAP_BYTES) {
  550. uint64_t *src, *dst;
  551. unsigned int k;
  552. to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
  553. BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
  554. addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
  555. src = addr + frag_off;
  556. dst = (void *)map->m_page_addrs[map_page] + map_off;
  557. for (k = 0; k < to_copy; k += 8) {
  558. /* Record ports that became uncongested, ie
  559. * bits that changed from 0 to 1. */
  560. uncongested |= ~(*src) & *dst;
  561. *dst++ = *src++;
  562. }
  563. kunmap_atomic(addr, KM_SOFTIRQ0);
  564. copied += to_copy;
  565. map_off += to_copy;
  566. if (map_off == PAGE_SIZE) {
  567. map_off = 0;
  568. map_page++;
  569. }
  570. frag_off += to_copy;
  571. if (frag_off == RDS_FRAG_SIZE) {
  572. frag = list_entry(frag->f_item.next,
  573. struct rds_page_frag, f_item);
  574. frag_off = 0;
  575. }
  576. }
  577. /* the congestion map is in little endian order */
  578. uncongested = le64_to_cpu(uncongested);
  579. rds_cong_map_updated(map, uncongested);
  580. }
  581. /*
  582. * Rings are posted with all the allocations they'll need to queue the
  583. * incoming message to the receiving socket so this can't fail.
  584. * All fragments start with a header, so we can make sure we're not receiving
  585. * garbage, and we can tell a small 8 byte fragment from an ACK frame.
  586. */
  587. struct rds_ib_ack_state {
  588. u64 ack_next;
  589. u64 ack_recv;
  590. unsigned int ack_required:1;
  591. unsigned int ack_next_valid:1;
  592. unsigned int ack_recv_valid:1;
  593. };
  594. static void rds_ib_process_recv(struct rds_connection *conn,
  595. struct rds_ib_recv_work *recv, u32 data_len,
  596. struct rds_ib_ack_state *state)
  597. {
  598. struct rds_ib_connection *ic = conn->c_transport_data;
  599. struct rds_ib_incoming *ibinc = ic->i_ibinc;
  600. struct rds_header *ihdr, *hdr;
  601. /* XXX shut down the connection if port 0,0 are seen? */
  602. rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
  603. data_len);
  604. if (data_len < sizeof(struct rds_header)) {
  605. rds_ib_conn_error(conn, "incoming message "
  606. "from %pI4 didn't inclue a "
  607. "header, disconnecting and "
  608. "reconnecting\n",
  609. &conn->c_faddr);
  610. return;
  611. }
  612. data_len -= sizeof(struct rds_header);
  613. ihdr = rds_ib_get_header(conn, recv, data_len);
  614. /* Validate the checksum. */
  615. if (!rds_message_verify_checksum(ihdr)) {
  616. rds_ib_conn_error(conn, "incoming message "
  617. "from %pI4 has corrupted header - "
  618. "forcing a reconnect\n",
  619. &conn->c_faddr);
  620. rds_stats_inc(s_recv_drop_bad_checksum);
  621. return;
  622. }
  623. /* Process the ACK sequence which comes with every packet */
  624. state->ack_recv = be64_to_cpu(ihdr->h_ack);
  625. state->ack_recv_valid = 1;
  626. /* Process the credits update if there was one */
  627. if (ihdr->h_credit)
  628. rds_ib_send_add_credits(conn, ihdr->h_credit);
  629. if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
  630. /* This is an ACK-only packet. The fact that it gets
  631. * special treatment here is that historically, ACKs
  632. * were rather special beasts.
  633. */
  634. rds_ib_stats_inc(s_ib_ack_received);
  635. /*
  636. * Usually the frags make their way on to incs and are then freed as
  637. * the inc is freed. We don't go that route, so we have to drop the
  638. * page ref ourselves. We can't just leave the page on the recv
  639. * because that confuses the dma mapping of pages and each recv's use
  640. * of a partial page. We can leave the frag, though, it will be
  641. * reused.
  642. *
  643. * FIXME: Fold this into the code path below.
  644. */
  645. rds_ib_frag_drop_page(recv->r_frag);
  646. return;
  647. }
  648. /*
  649. * If we don't already have an inc on the connection then this
  650. * fragment has a header and starts a message.. copy its header
  651. * into the inc and save the inc so we can hang upcoming fragments
  652. * off its list.
  653. */
  654. if (ibinc == NULL) {
  655. ibinc = recv->r_ibinc;
  656. recv->r_ibinc = NULL;
  657. ic->i_ibinc = ibinc;
  658. hdr = &ibinc->ii_inc.i_hdr;
  659. memcpy(hdr, ihdr, sizeof(*hdr));
  660. ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
  661. rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
  662. ic->i_recv_data_rem, hdr->h_flags);
  663. } else {
  664. hdr = &ibinc->ii_inc.i_hdr;
  665. /* We can't just use memcmp here; fragments of a
  666. * single message may carry different ACKs */
  667. if (hdr->h_sequence != ihdr->h_sequence ||
  668. hdr->h_len != ihdr->h_len ||
  669. hdr->h_sport != ihdr->h_sport ||
  670. hdr->h_dport != ihdr->h_dport) {
  671. rds_ib_conn_error(conn,
  672. "fragment header mismatch; forcing reconnect\n");
  673. return;
  674. }
  675. }
  676. list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
  677. recv->r_frag = NULL;
  678. if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
  679. ic->i_recv_data_rem -= RDS_FRAG_SIZE;
  680. else {
  681. ic->i_recv_data_rem = 0;
  682. ic->i_ibinc = NULL;
  683. if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
  684. rds_ib_cong_recv(conn, ibinc);
  685. else {
  686. rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
  687. &ibinc->ii_inc, GFP_ATOMIC,
  688. KM_SOFTIRQ0);
  689. state->ack_next = be64_to_cpu(hdr->h_sequence);
  690. state->ack_next_valid = 1;
  691. }
  692. /* Evaluate the ACK_REQUIRED flag *after* we received
  693. * the complete frame, and after bumping the next_rx
  694. * sequence. */
  695. if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
  696. rds_stats_inc(s_recv_ack_required);
  697. state->ack_required = 1;
  698. }
  699. rds_inc_put(&ibinc->ii_inc);
  700. }
  701. }
  702. /*
  703. * Plucking the oldest entry from the ring can be done concurrently with
  704. * the thread refilling the ring. Each ring operation is protected by
  705. * spinlocks and the transient state of refilling doesn't change the
  706. * recording of which entry is oldest.
  707. *
  708. * This relies on IB only calling one cq comp_handler for each cq so that
  709. * there will only be one caller of rds_recv_incoming() per RDS connection.
  710. */
  711. void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
  712. {
  713. struct rds_connection *conn = context;
  714. struct rds_ib_connection *ic = conn->c_transport_data;
  715. rdsdebug("conn %p cq %p\n", conn, cq);
  716. rds_ib_stats_inc(s_ib_rx_cq_call);
  717. tasklet_schedule(&ic->i_recv_tasklet);
  718. }
  719. static inline void rds_poll_cq(struct rds_ib_connection *ic,
  720. struct rds_ib_ack_state *state)
  721. {
  722. struct rds_connection *conn = ic->conn;
  723. struct ib_wc wc;
  724. struct rds_ib_recv_work *recv;
  725. while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
  726. rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
  727. (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
  728. be32_to_cpu(wc.ex.imm_data));
  729. rds_ib_stats_inc(s_ib_rx_cq_event);
  730. recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
  731. rds_ib_recv_unmap_page(ic, recv);
  732. /*
  733. * Also process recvs in connecting state because it is possible
  734. * to get a recv completion _before_ the rdmacm ESTABLISHED
  735. * event is processed.
  736. */
  737. if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
  738. /* We expect errors as the qp is drained during shutdown */
  739. if (wc.status == IB_WC_SUCCESS) {
  740. rds_ib_process_recv(conn, recv, wc.byte_len, state);
  741. } else {
  742. rds_ib_conn_error(conn, "recv completion on "
  743. "%pI4 had status %u, disconnecting and "
  744. "reconnecting\n", &conn->c_faddr,
  745. wc.status);
  746. }
  747. }
  748. rds_ib_ring_free(&ic->i_recv_ring, 1);
  749. }
  750. }
  751. void rds_ib_recv_tasklet_fn(unsigned long data)
  752. {
  753. struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
  754. struct rds_connection *conn = ic->conn;
  755. struct rds_ib_ack_state state = { 0, };
  756. rds_poll_cq(ic, &state);
  757. ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
  758. rds_poll_cq(ic, &state);
  759. if (state.ack_next_valid)
  760. rds_ib_set_ack(ic, state.ack_next, state.ack_required);
  761. if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
  762. rds_send_drop_acked(conn, state.ack_recv, NULL);
  763. ic->i_ack_recv = state.ack_recv;
  764. }
  765. if (rds_conn_up(conn))
  766. rds_ib_attempt_ack(ic);
  767. /* If we ever end up with a really empty receive ring, we're
  768. * in deep trouble, as the sender will definitely see RNR
  769. * timeouts. */
  770. if (rds_ib_ring_empty(&ic->i_recv_ring))
  771. rds_ib_stats_inc(s_ib_rx_ring_empty);
  772. /*
  773. * If the ring is running low, then schedule the thread to refill.
  774. */
  775. if (rds_ib_ring_low(&ic->i_recv_ring))
  776. queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
  777. }
  778. int rds_ib_recv(struct rds_connection *conn)
  779. {
  780. struct rds_ib_connection *ic = conn->c_transport_data;
  781. int ret = 0;
  782. rdsdebug("conn %p\n", conn);
  783. /*
  784. * If we get a temporary posting failure in this context then
  785. * we're really low and we want the caller to back off for a bit.
  786. */
  787. mutex_lock(&ic->i_recv_mutex);
  788. if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
  789. ret = -ENOMEM;
  790. else
  791. rds_ib_stats_inc(s_ib_rx_refill_from_thread);
  792. mutex_unlock(&ic->i_recv_mutex);
  793. if (rds_conn_up(conn))
  794. rds_ib_attempt_ack(ic);
  795. return ret;
  796. }
  797. int __init rds_ib_recv_init(void)
  798. {
  799. struct sysinfo si;
  800. int ret = -ENOMEM;
  801. /* Default to 30% of all available RAM for recv memory */
  802. si_meminfo(&si);
  803. rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
  804. rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
  805. sizeof(struct rds_ib_incoming),
  806. 0, 0, NULL);
  807. if (rds_ib_incoming_slab == NULL)
  808. goto out;
  809. rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
  810. sizeof(struct rds_page_frag),
  811. 0, 0, NULL);
  812. if (rds_ib_frag_slab == NULL)
  813. kmem_cache_destroy(rds_ib_incoming_slab);
  814. else
  815. ret = 0;
  816. out:
  817. return ret;
  818. }
  819. void rds_ib_recv_exit(void)
  820. {
  821. kmem_cache_destroy(rds_ib_incoming_slab);
  822. kmem_cache_destroy(rds_ib_frag_slab);
  823. }