af_key.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_pid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. };
  61. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  62. {
  63. return (struct pfkey_sock *)sk;
  64. }
  65. static int pfkey_can_dump(struct sock *sk)
  66. {
  67. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  68. return 1;
  69. return 0;
  70. }
  71. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  72. {
  73. if (pfk->dump.dump) {
  74. if (pfk->dump.skb) {
  75. kfree_skb(pfk->dump.skb);
  76. pfk->dump.skb = NULL;
  77. }
  78. pfk->dump.done(pfk);
  79. pfk->dump.dump = NULL;
  80. pfk->dump.done = NULL;
  81. }
  82. }
  83. static void pfkey_sock_destruct(struct sock *sk)
  84. {
  85. struct net *net = sock_net(sk);
  86. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  87. pfkey_terminate_dump(pfkey_sk(sk));
  88. skb_queue_purge(&sk->sk_receive_queue);
  89. if (!sock_flag(sk, SOCK_DEAD)) {
  90. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  91. return;
  92. }
  93. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  94. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  95. atomic_dec(&net_pfkey->socks_nr);
  96. }
  97. static const struct proto_ops pfkey_ops;
  98. static void pfkey_insert(struct sock *sk)
  99. {
  100. struct net *net = sock_net(sk);
  101. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  102. mutex_lock(&pfkey_mutex);
  103. sk_add_node_rcu(sk, &net_pfkey->table);
  104. mutex_unlock(&pfkey_mutex);
  105. }
  106. static void pfkey_remove(struct sock *sk)
  107. {
  108. mutex_lock(&pfkey_mutex);
  109. sk_del_node_init_rcu(sk);
  110. mutex_unlock(&pfkey_mutex);
  111. }
  112. static struct proto key_proto = {
  113. .name = "KEY",
  114. .owner = THIS_MODULE,
  115. .obj_size = sizeof(struct pfkey_sock),
  116. };
  117. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  118. int kern)
  119. {
  120. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  121. struct sock *sk;
  122. int err;
  123. if (!capable(CAP_NET_ADMIN))
  124. return -EPERM;
  125. if (sock->type != SOCK_RAW)
  126. return -ESOCKTNOSUPPORT;
  127. if (protocol != PF_KEY_V2)
  128. return -EPROTONOSUPPORT;
  129. err = -ENOMEM;
  130. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  131. if (sk == NULL)
  132. goto out;
  133. sock->ops = &pfkey_ops;
  134. sock_init_data(sock, sk);
  135. sk->sk_family = PF_KEY;
  136. sk->sk_destruct = pfkey_sock_destruct;
  137. atomic_inc(&net_pfkey->socks_nr);
  138. pfkey_insert(sk);
  139. return 0;
  140. out:
  141. return err;
  142. }
  143. static int pfkey_release(struct socket *sock)
  144. {
  145. struct sock *sk = sock->sk;
  146. if (!sk)
  147. return 0;
  148. pfkey_remove(sk);
  149. sock_orphan(sk);
  150. sock->sk = NULL;
  151. skb_queue_purge(&sk->sk_write_queue);
  152. synchronize_rcu();
  153. sock_put(sk);
  154. return 0;
  155. }
  156. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  157. gfp_t allocation, struct sock *sk)
  158. {
  159. int err = -ENOBUFS;
  160. sock_hold(sk);
  161. if (*skb2 == NULL) {
  162. if (atomic_read(&skb->users) != 1) {
  163. *skb2 = skb_clone(skb, allocation);
  164. } else {
  165. *skb2 = skb;
  166. atomic_inc(&skb->users);
  167. }
  168. }
  169. if (*skb2 != NULL) {
  170. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  171. skb_orphan(*skb2);
  172. skb_set_owner_r(*skb2, sk);
  173. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  174. sk->sk_data_ready(sk, (*skb2)->len);
  175. *skb2 = NULL;
  176. err = 0;
  177. }
  178. }
  179. sock_put(sk);
  180. return err;
  181. }
  182. /* Send SKB to all pfkey sockets matching selected criteria. */
  183. #define BROADCAST_ALL 0
  184. #define BROADCAST_ONE 1
  185. #define BROADCAST_REGISTERED 2
  186. #define BROADCAST_PROMISC_ONLY 4
  187. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  188. int broadcast_flags, struct sock *one_sk,
  189. struct net *net)
  190. {
  191. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  192. struct sock *sk;
  193. struct hlist_node *node;
  194. struct sk_buff *skb2 = NULL;
  195. int err = -ESRCH;
  196. /* XXX Do we need something like netlink_overrun? I think
  197. * XXX PF_KEY socket apps will not mind current behavior.
  198. */
  199. if (!skb)
  200. return -ENOMEM;
  201. rcu_read_lock();
  202. sk_for_each_rcu(sk, node, &net_pfkey->table) {
  203. struct pfkey_sock *pfk = pfkey_sk(sk);
  204. int err2;
  205. /* Yes, it means that if you are meant to receive this
  206. * pfkey message you receive it twice as promiscuous
  207. * socket.
  208. */
  209. if (pfk->promisc)
  210. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  211. /* the exact target will be processed later */
  212. if (sk == one_sk)
  213. continue;
  214. if (broadcast_flags != BROADCAST_ALL) {
  215. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  216. continue;
  217. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  218. !pfk->registered)
  219. continue;
  220. if (broadcast_flags & BROADCAST_ONE)
  221. continue;
  222. }
  223. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  224. /* Error is cleare after succecful sending to at least one
  225. * registered KM */
  226. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  227. err = err2;
  228. }
  229. rcu_read_unlock();
  230. if (one_sk != NULL)
  231. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  232. kfree_skb(skb2);
  233. kfree_skb(skb);
  234. return err;
  235. }
  236. static int pfkey_do_dump(struct pfkey_sock *pfk)
  237. {
  238. struct sadb_msg *hdr;
  239. int rc;
  240. rc = pfk->dump.dump(pfk);
  241. if (rc == -ENOBUFS)
  242. return 0;
  243. if (pfk->dump.skb) {
  244. if (!pfkey_can_dump(&pfk->sk))
  245. return 0;
  246. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  247. hdr->sadb_msg_seq = 0;
  248. hdr->sadb_msg_errno = rc;
  249. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  250. &pfk->sk, sock_net(&pfk->sk));
  251. pfk->dump.skb = NULL;
  252. }
  253. pfkey_terminate_dump(pfk);
  254. return rc;
  255. }
  256. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  257. {
  258. *new = *orig;
  259. }
  260. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  261. {
  262. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  263. struct sadb_msg *hdr;
  264. if (!skb)
  265. return -ENOBUFS;
  266. /* Woe be to the platform trying to support PFKEY yet
  267. * having normal errnos outside the 1-255 range, inclusive.
  268. */
  269. err = -err;
  270. if (err == ERESTARTSYS ||
  271. err == ERESTARTNOHAND ||
  272. err == ERESTARTNOINTR)
  273. err = EINTR;
  274. if (err >= 512)
  275. err = EINVAL;
  276. BUG_ON(err <= 0 || err >= 256);
  277. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  278. pfkey_hdr_dup(hdr, orig);
  279. hdr->sadb_msg_errno = (uint8_t) err;
  280. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  281. sizeof(uint64_t));
  282. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  283. return 0;
  284. }
  285. static u8 sadb_ext_min_len[] = {
  286. [SADB_EXT_RESERVED] = (u8) 0,
  287. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  288. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  289. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  292. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  295. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  297. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  299. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  300. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  301. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  303. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  304. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  305. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  306. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  307. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  308. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  310. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  311. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  312. };
  313. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  314. static int verify_address_len(void *p)
  315. {
  316. struct sadb_address *sp = p;
  317. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  318. struct sockaddr_in *sin;
  319. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  320. struct sockaddr_in6 *sin6;
  321. #endif
  322. int len;
  323. switch (addr->sa_family) {
  324. case AF_INET:
  325. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  326. if (sp->sadb_address_len != len ||
  327. sp->sadb_address_prefixlen > 32)
  328. return -EINVAL;
  329. break;
  330. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  331. case AF_INET6:
  332. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  333. if (sp->sadb_address_len != len ||
  334. sp->sadb_address_prefixlen > 128)
  335. return -EINVAL;
  336. break;
  337. #endif
  338. default:
  339. /* It is user using kernel to keep track of security
  340. * associations for another protocol, such as
  341. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  342. * lengths.
  343. *
  344. * XXX Actually, association/policy database is not yet
  345. * XXX able to cope with arbitrary sockaddr families.
  346. * XXX When it can, remove this -EINVAL. -DaveM
  347. */
  348. return -EINVAL;
  349. break;
  350. }
  351. return 0;
  352. }
  353. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  354. {
  355. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  356. sec_ctx->sadb_x_ctx_len,
  357. sizeof(uint64_t));
  358. }
  359. static inline int verify_sec_ctx_len(void *p)
  360. {
  361. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  362. int len = sec_ctx->sadb_x_ctx_len;
  363. if (len > PAGE_SIZE)
  364. return -EINVAL;
  365. len = pfkey_sec_ctx_len(sec_ctx);
  366. if (sec_ctx->sadb_x_sec_len != len)
  367. return -EINVAL;
  368. return 0;
  369. }
  370. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. struct xfrm_user_sec_ctx *uctx = NULL;
  373. int ctx_size = sec_ctx->sadb_x_ctx_len;
  374. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  375. if (!uctx)
  376. return NULL;
  377. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  378. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  379. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  380. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  381. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  382. memcpy(uctx + 1, sec_ctx + 1,
  383. uctx->ctx_len);
  384. return uctx;
  385. }
  386. static int present_and_same_family(struct sadb_address *src,
  387. struct sadb_address *dst)
  388. {
  389. struct sockaddr *s_addr, *d_addr;
  390. if (!src || !dst)
  391. return 0;
  392. s_addr = (struct sockaddr *)(src + 1);
  393. d_addr = (struct sockaddr *)(dst + 1);
  394. if (s_addr->sa_family != d_addr->sa_family)
  395. return 0;
  396. if (s_addr->sa_family != AF_INET
  397. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  398. && s_addr->sa_family != AF_INET6
  399. #endif
  400. )
  401. return 0;
  402. return 1;
  403. }
  404. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  405. {
  406. char *p = (char *) hdr;
  407. int len = skb->len;
  408. len -= sizeof(*hdr);
  409. p += sizeof(*hdr);
  410. while (len > 0) {
  411. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  412. uint16_t ext_type;
  413. int ext_len;
  414. ext_len = ehdr->sadb_ext_len;
  415. ext_len *= sizeof(uint64_t);
  416. ext_type = ehdr->sadb_ext_type;
  417. if (ext_len < sizeof(uint64_t) ||
  418. ext_len > len ||
  419. ext_type == SADB_EXT_RESERVED)
  420. return -EINVAL;
  421. if (ext_type <= SADB_EXT_MAX) {
  422. int min = (int) sadb_ext_min_len[ext_type];
  423. if (ext_len < min)
  424. return -EINVAL;
  425. if (ext_hdrs[ext_type-1] != NULL)
  426. return -EINVAL;
  427. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  428. ext_type == SADB_EXT_ADDRESS_DST ||
  429. ext_type == SADB_EXT_ADDRESS_PROXY ||
  430. ext_type == SADB_X_EXT_NAT_T_OA) {
  431. if (verify_address_len(p))
  432. return -EINVAL;
  433. }
  434. if (ext_type == SADB_X_EXT_SEC_CTX) {
  435. if (verify_sec_ctx_len(p))
  436. return -EINVAL;
  437. }
  438. ext_hdrs[ext_type-1] = p;
  439. }
  440. p += ext_len;
  441. len -= ext_len;
  442. }
  443. return 0;
  444. }
  445. static uint16_t
  446. pfkey_satype2proto(uint8_t satype)
  447. {
  448. switch (satype) {
  449. case SADB_SATYPE_UNSPEC:
  450. return IPSEC_PROTO_ANY;
  451. case SADB_SATYPE_AH:
  452. return IPPROTO_AH;
  453. case SADB_SATYPE_ESP:
  454. return IPPROTO_ESP;
  455. case SADB_X_SATYPE_IPCOMP:
  456. return IPPROTO_COMP;
  457. break;
  458. default:
  459. return 0;
  460. }
  461. /* NOTREACHED */
  462. }
  463. static uint8_t
  464. pfkey_proto2satype(uint16_t proto)
  465. {
  466. switch (proto) {
  467. case IPPROTO_AH:
  468. return SADB_SATYPE_AH;
  469. case IPPROTO_ESP:
  470. return SADB_SATYPE_ESP;
  471. case IPPROTO_COMP:
  472. return SADB_X_SATYPE_IPCOMP;
  473. break;
  474. default:
  475. return 0;
  476. }
  477. /* NOTREACHED */
  478. }
  479. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  480. * say specifically 'just raw sockets' as we encode them as 255.
  481. */
  482. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  483. {
  484. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  485. }
  486. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  487. {
  488. return (proto ? proto : IPSEC_PROTO_ANY);
  489. }
  490. static inline int pfkey_sockaddr_len(sa_family_t family)
  491. {
  492. switch (family) {
  493. case AF_INET:
  494. return sizeof(struct sockaddr_in);
  495. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  496. case AF_INET6:
  497. return sizeof(struct sockaddr_in6);
  498. #endif
  499. }
  500. return 0;
  501. }
  502. static
  503. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  504. {
  505. switch (sa->sa_family) {
  506. case AF_INET:
  507. xaddr->a4 =
  508. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  509. return AF_INET;
  510. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  511. case AF_INET6:
  512. memcpy(xaddr->a6,
  513. &((struct sockaddr_in6 *)sa)->sin6_addr,
  514. sizeof(struct in6_addr));
  515. return AF_INET6;
  516. #endif
  517. }
  518. return 0;
  519. }
  520. static
  521. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  522. {
  523. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  524. xaddr);
  525. }
  526. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, struct sadb_msg *hdr, void **ext_hdrs)
  527. {
  528. struct sadb_sa *sa;
  529. struct sadb_address *addr;
  530. uint16_t proto;
  531. unsigned short family;
  532. xfrm_address_t *xaddr;
  533. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  534. if (sa == NULL)
  535. return NULL;
  536. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  537. if (proto == 0)
  538. return NULL;
  539. /* sadb_address_len should be checked by caller */
  540. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  541. if (addr == NULL)
  542. return NULL;
  543. family = ((struct sockaddr *)(addr + 1))->sa_family;
  544. switch (family) {
  545. case AF_INET:
  546. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  547. break;
  548. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  549. case AF_INET6:
  550. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  551. break;
  552. #endif
  553. default:
  554. xaddr = NULL;
  555. }
  556. if (!xaddr)
  557. return NULL;
  558. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  559. }
  560. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  561. static int
  562. pfkey_sockaddr_size(sa_family_t family)
  563. {
  564. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  565. }
  566. static inline int pfkey_mode_from_xfrm(int mode)
  567. {
  568. switch(mode) {
  569. case XFRM_MODE_TRANSPORT:
  570. return IPSEC_MODE_TRANSPORT;
  571. case XFRM_MODE_TUNNEL:
  572. return IPSEC_MODE_TUNNEL;
  573. case XFRM_MODE_BEET:
  574. return IPSEC_MODE_BEET;
  575. default:
  576. return -1;
  577. }
  578. }
  579. static inline int pfkey_mode_to_xfrm(int mode)
  580. {
  581. switch(mode) {
  582. case IPSEC_MODE_ANY: /*XXX*/
  583. case IPSEC_MODE_TRANSPORT:
  584. return XFRM_MODE_TRANSPORT;
  585. case IPSEC_MODE_TUNNEL:
  586. return XFRM_MODE_TUNNEL;
  587. case IPSEC_MODE_BEET:
  588. return XFRM_MODE_BEET;
  589. default:
  590. return -1;
  591. }
  592. }
  593. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  594. struct sockaddr *sa,
  595. unsigned short family)
  596. {
  597. switch (family) {
  598. case AF_INET:
  599. {
  600. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  601. sin->sin_family = AF_INET;
  602. sin->sin_port = port;
  603. sin->sin_addr.s_addr = xaddr->a4;
  604. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  605. return 32;
  606. }
  607. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  608. case AF_INET6:
  609. {
  610. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  611. sin6->sin6_family = AF_INET6;
  612. sin6->sin6_port = port;
  613. sin6->sin6_flowinfo = 0;
  614. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  615. sin6->sin6_scope_id = 0;
  616. return 128;
  617. }
  618. #endif
  619. }
  620. return 0;
  621. }
  622. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  623. int add_keys, int hsc)
  624. {
  625. struct sk_buff *skb;
  626. struct sadb_msg *hdr;
  627. struct sadb_sa *sa;
  628. struct sadb_lifetime *lifetime;
  629. struct sadb_address *addr;
  630. struct sadb_key *key;
  631. struct sadb_x_sa2 *sa2;
  632. struct sadb_x_sec_ctx *sec_ctx;
  633. struct xfrm_sec_ctx *xfrm_ctx;
  634. int ctx_size = 0;
  635. int size;
  636. int auth_key_size = 0;
  637. int encrypt_key_size = 0;
  638. int sockaddr_size;
  639. struct xfrm_encap_tmpl *natt = NULL;
  640. int mode;
  641. /* address family check */
  642. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  643. if (!sockaddr_size)
  644. return ERR_PTR(-EINVAL);
  645. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  646. key(AE), (identity(SD),) (sensitivity)> */
  647. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  648. sizeof(struct sadb_lifetime) +
  649. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  650. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  651. sizeof(struct sadb_address)*2 +
  652. sockaddr_size*2 +
  653. sizeof(struct sadb_x_sa2);
  654. if ((xfrm_ctx = x->security)) {
  655. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  656. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  657. }
  658. /* identity & sensitivity */
  659. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  660. size += sizeof(struct sadb_address) + sockaddr_size;
  661. if (add_keys) {
  662. if (x->aalg && x->aalg->alg_key_len) {
  663. auth_key_size =
  664. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  665. size += sizeof(struct sadb_key) + auth_key_size;
  666. }
  667. if (x->ealg && x->ealg->alg_key_len) {
  668. encrypt_key_size =
  669. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  670. size += sizeof(struct sadb_key) + encrypt_key_size;
  671. }
  672. }
  673. if (x->encap)
  674. natt = x->encap;
  675. if (natt && natt->encap_type) {
  676. size += sizeof(struct sadb_x_nat_t_type);
  677. size += sizeof(struct sadb_x_nat_t_port);
  678. size += sizeof(struct sadb_x_nat_t_port);
  679. }
  680. skb = alloc_skb(size + 16, GFP_ATOMIC);
  681. if (skb == NULL)
  682. return ERR_PTR(-ENOBUFS);
  683. /* call should fill header later */
  684. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  685. memset(hdr, 0, size); /* XXX do we need this ? */
  686. hdr->sadb_msg_len = size / sizeof(uint64_t);
  687. /* sa */
  688. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  689. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  690. sa->sadb_sa_exttype = SADB_EXT_SA;
  691. sa->sadb_sa_spi = x->id.spi;
  692. sa->sadb_sa_replay = x->props.replay_window;
  693. switch (x->km.state) {
  694. case XFRM_STATE_VALID:
  695. sa->sadb_sa_state = x->km.dying ?
  696. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  697. break;
  698. case XFRM_STATE_ACQ:
  699. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  700. break;
  701. default:
  702. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  703. break;
  704. }
  705. sa->sadb_sa_auth = 0;
  706. if (x->aalg) {
  707. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  708. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  709. }
  710. sa->sadb_sa_encrypt = 0;
  711. BUG_ON(x->ealg && x->calg);
  712. if (x->ealg) {
  713. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  714. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  715. }
  716. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  717. if (x->calg) {
  718. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  719. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  720. }
  721. sa->sadb_sa_flags = 0;
  722. if (x->props.flags & XFRM_STATE_NOECN)
  723. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  724. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  725. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  726. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  727. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  728. /* hard time */
  729. if (hsc & 2) {
  730. lifetime = (struct sadb_lifetime *) skb_put(skb,
  731. sizeof(struct sadb_lifetime));
  732. lifetime->sadb_lifetime_len =
  733. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  734. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  735. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  736. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  737. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  738. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  739. }
  740. /* soft time */
  741. if (hsc & 1) {
  742. lifetime = (struct sadb_lifetime *) skb_put(skb,
  743. sizeof(struct sadb_lifetime));
  744. lifetime->sadb_lifetime_len =
  745. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  746. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  747. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  748. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  749. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  750. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  751. }
  752. /* current time */
  753. lifetime = (struct sadb_lifetime *) skb_put(skb,
  754. sizeof(struct sadb_lifetime));
  755. lifetime->sadb_lifetime_len =
  756. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  757. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  758. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  759. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  760. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  761. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  762. /* src address */
  763. addr = (struct sadb_address*) skb_put(skb,
  764. sizeof(struct sadb_address)+sockaddr_size);
  765. addr->sadb_address_len =
  766. (sizeof(struct sadb_address)+sockaddr_size)/
  767. sizeof(uint64_t);
  768. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  769. /* "if the ports are non-zero, then the sadb_address_proto field,
  770. normally zero, MUST be filled in with the transport
  771. protocol's number." - RFC2367 */
  772. addr->sadb_address_proto = 0;
  773. addr->sadb_address_reserved = 0;
  774. addr->sadb_address_prefixlen =
  775. pfkey_sockaddr_fill(&x->props.saddr, 0,
  776. (struct sockaddr *) (addr + 1),
  777. x->props.family);
  778. if (!addr->sadb_address_prefixlen)
  779. BUG();
  780. /* dst address */
  781. addr = (struct sadb_address*) skb_put(skb,
  782. sizeof(struct sadb_address)+sockaddr_size);
  783. addr->sadb_address_len =
  784. (sizeof(struct sadb_address)+sockaddr_size)/
  785. sizeof(uint64_t);
  786. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  787. addr->sadb_address_proto = 0;
  788. addr->sadb_address_reserved = 0;
  789. addr->sadb_address_prefixlen =
  790. pfkey_sockaddr_fill(&x->id.daddr, 0,
  791. (struct sockaddr *) (addr + 1),
  792. x->props.family);
  793. if (!addr->sadb_address_prefixlen)
  794. BUG();
  795. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  796. x->props.family)) {
  797. addr = (struct sadb_address*) skb_put(skb,
  798. sizeof(struct sadb_address)+sockaddr_size);
  799. addr->sadb_address_len =
  800. (sizeof(struct sadb_address)+sockaddr_size)/
  801. sizeof(uint64_t);
  802. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  803. addr->sadb_address_proto =
  804. pfkey_proto_from_xfrm(x->sel.proto);
  805. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  806. addr->sadb_address_reserved = 0;
  807. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  808. (struct sockaddr *) (addr + 1),
  809. x->props.family);
  810. }
  811. /* auth key */
  812. if (add_keys && auth_key_size) {
  813. key = (struct sadb_key *) skb_put(skb,
  814. sizeof(struct sadb_key)+auth_key_size);
  815. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  816. sizeof(uint64_t);
  817. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  818. key->sadb_key_bits = x->aalg->alg_key_len;
  819. key->sadb_key_reserved = 0;
  820. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  821. }
  822. /* encrypt key */
  823. if (add_keys && encrypt_key_size) {
  824. key = (struct sadb_key *) skb_put(skb,
  825. sizeof(struct sadb_key)+encrypt_key_size);
  826. key->sadb_key_len = (sizeof(struct sadb_key) +
  827. encrypt_key_size) / sizeof(uint64_t);
  828. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  829. key->sadb_key_bits = x->ealg->alg_key_len;
  830. key->sadb_key_reserved = 0;
  831. memcpy(key + 1, x->ealg->alg_key,
  832. (x->ealg->alg_key_len+7)/8);
  833. }
  834. /* sa */
  835. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  836. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  837. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  838. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  839. kfree_skb(skb);
  840. return ERR_PTR(-EINVAL);
  841. }
  842. sa2->sadb_x_sa2_mode = mode;
  843. sa2->sadb_x_sa2_reserved1 = 0;
  844. sa2->sadb_x_sa2_reserved2 = 0;
  845. sa2->sadb_x_sa2_sequence = 0;
  846. sa2->sadb_x_sa2_reqid = x->props.reqid;
  847. if (natt && natt->encap_type) {
  848. struct sadb_x_nat_t_type *n_type;
  849. struct sadb_x_nat_t_port *n_port;
  850. /* type */
  851. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  852. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  853. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  854. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  855. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  856. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  857. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  858. /* source port */
  859. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  860. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  861. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  862. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  863. n_port->sadb_x_nat_t_port_reserved = 0;
  864. /* dest port */
  865. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  866. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  867. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  868. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  869. n_port->sadb_x_nat_t_port_reserved = 0;
  870. }
  871. /* security context */
  872. if (xfrm_ctx) {
  873. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  874. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  875. sec_ctx->sadb_x_sec_len =
  876. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  877. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  878. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  879. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  880. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  881. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  882. xfrm_ctx->ctx_len);
  883. }
  884. return skb;
  885. }
  886. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  887. {
  888. struct sk_buff *skb;
  889. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  890. return skb;
  891. }
  892. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  893. int hsc)
  894. {
  895. return __pfkey_xfrm_state2msg(x, 0, hsc);
  896. }
  897. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  898. struct sadb_msg *hdr,
  899. void **ext_hdrs)
  900. {
  901. struct xfrm_state *x;
  902. struct sadb_lifetime *lifetime;
  903. struct sadb_sa *sa;
  904. struct sadb_key *key;
  905. struct sadb_x_sec_ctx *sec_ctx;
  906. uint16_t proto;
  907. int err;
  908. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  909. if (!sa ||
  910. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  911. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  912. return ERR_PTR(-EINVAL);
  913. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  914. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  915. return ERR_PTR(-EINVAL);
  916. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  917. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  918. return ERR_PTR(-EINVAL);
  919. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  920. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  921. return ERR_PTR(-EINVAL);
  922. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  923. if (proto == 0)
  924. return ERR_PTR(-EINVAL);
  925. /* default error is no buffer space */
  926. err = -ENOBUFS;
  927. /* RFC2367:
  928. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  929. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  930. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  931. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  932. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  933. not true.
  934. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  935. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  936. */
  937. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  938. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  939. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  940. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  941. return ERR_PTR(-EINVAL);
  942. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  943. if (key != NULL &&
  944. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  945. ((key->sadb_key_bits+7) / 8 == 0 ||
  946. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  947. return ERR_PTR(-EINVAL);
  948. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  949. if (key != NULL &&
  950. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  951. ((key->sadb_key_bits+7) / 8 == 0 ||
  952. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  953. return ERR_PTR(-EINVAL);
  954. x = xfrm_state_alloc(net);
  955. if (x == NULL)
  956. return ERR_PTR(-ENOBUFS);
  957. x->id.proto = proto;
  958. x->id.spi = sa->sadb_sa_spi;
  959. x->props.replay_window = sa->sadb_sa_replay;
  960. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  961. x->props.flags |= XFRM_STATE_NOECN;
  962. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  963. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  964. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  965. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  966. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  967. if (lifetime != NULL) {
  968. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  969. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  970. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  971. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  972. }
  973. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  974. if (lifetime != NULL) {
  975. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  976. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  977. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  978. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  979. }
  980. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  981. if (sec_ctx != NULL) {
  982. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  983. if (!uctx)
  984. goto out;
  985. err = security_xfrm_state_alloc(x, uctx);
  986. kfree(uctx);
  987. if (err)
  988. goto out;
  989. }
  990. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  991. if (sa->sadb_sa_auth) {
  992. int keysize = 0;
  993. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  994. if (!a) {
  995. err = -ENOSYS;
  996. goto out;
  997. }
  998. if (key)
  999. keysize = (key->sadb_key_bits + 7) / 8;
  1000. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1001. if (!x->aalg)
  1002. goto out;
  1003. strcpy(x->aalg->alg_name, a->name);
  1004. x->aalg->alg_key_len = 0;
  1005. if (key) {
  1006. x->aalg->alg_key_len = key->sadb_key_bits;
  1007. memcpy(x->aalg->alg_key, key+1, keysize);
  1008. }
  1009. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1010. x->props.aalgo = sa->sadb_sa_auth;
  1011. /* x->algo.flags = sa->sadb_sa_flags; */
  1012. }
  1013. if (sa->sadb_sa_encrypt) {
  1014. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1015. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1016. if (!a) {
  1017. err = -ENOSYS;
  1018. goto out;
  1019. }
  1020. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1021. if (!x->calg)
  1022. goto out;
  1023. strcpy(x->calg->alg_name, a->name);
  1024. x->props.calgo = sa->sadb_sa_encrypt;
  1025. } else {
  1026. int keysize = 0;
  1027. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1028. if (!a) {
  1029. err = -ENOSYS;
  1030. goto out;
  1031. }
  1032. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1033. if (key)
  1034. keysize = (key->sadb_key_bits + 7) / 8;
  1035. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1036. if (!x->ealg)
  1037. goto out;
  1038. strcpy(x->ealg->alg_name, a->name);
  1039. x->ealg->alg_key_len = 0;
  1040. if (key) {
  1041. x->ealg->alg_key_len = key->sadb_key_bits;
  1042. memcpy(x->ealg->alg_key, key+1, keysize);
  1043. }
  1044. x->props.ealgo = sa->sadb_sa_encrypt;
  1045. }
  1046. }
  1047. /* x->algo.flags = sa->sadb_sa_flags; */
  1048. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1049. &x->props.saddr);
  1050. if (!x->props.family) {
  1051. err = -EAFNOSUPPORT;
  1052. goto out;
  1053. }
  1054. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1055. &x->id.daddr);
  1056. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1057. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1058. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1059. if (mode < 0) {
  1060. err = -EINVAL;
  1061. goto out;
  1062. }
  1063. x->props.mode = mode;
  1064. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1065. }
  1066. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1067. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1068. /* Nobody uses this, but we try. */
  1069. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1070. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1071. }
  1072. if (!x->sel.family)
  1073. x->sel.family = x->props.family;
  1074. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1075. struct sadb_x_nat_t_type* n_type;
  1076. struct xfrm_encap_tmpl *natt;
  1077. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1078. if (!x->encap)
  1079. goto out;
  1080. natt = x->encap;
  1081. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1082. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1083. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1084. struct sadb_x_nat_t_port* n_port =
  1085. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1086. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1087. }
  1088. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1089. struct sadb_x_nat_t_port* n_port =
  1090. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1091. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1092. }
  1093. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1094. }
  1095. err = xfrm_init_state(x);
  1096. if (err)
  1097. goto out;
  1098. x->km.seq = hdr->sadb_msg_seq;
  1099. return x;
  1100. out:
  1101. x->km.state = XFRM_STATE_DEAD;
  1102. xfrm_state_put(x);
  1103. return ERR_PTR(err);
  1104. }
  1105. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1106. {
  1107. return -EOPNOTSUPP;
  1108. }
  1109. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1110. {
  1111. struct net *net = sock_net(sk);
  1112. struct sk_buff *resp_skb;
  1113. struct sadb_x_sa2 *sa2;
  1114. struct sadb_address *saddr, *daddr;
  1115. struct sadb_msg *out_hdr;
  1116. struct sadb_spirange *range;
  1117. struct xfrm_state *x = NULL;
  1118. int mode;
  1119. int err;
  1120. u32 min_spi, max_spi;
  1121. u32 reqid;
  1122. u8 proto;
  1123. unsigned short family;
  1124. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1125. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1126. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1127. return -EINVAL;
  1128. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1129. if (proto == 0)
  1130. return -EINVAL;
  1131. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1132. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1133. if (mode < 0)
  1134. return -EINVAL;
  1135. reqid = sa2->sadb_x_sa2_reqid;
  1136. } else {
  1137. mode = 0;
  1138. reqid = 0;
  1139. }
  1140. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1141. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1142. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1143. switch (family) {
  1144. case AF_INET:
  1145. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1146. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1147. break;
  1148. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1149. case AF_INET6:
  1150. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1151. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1152. break;
  1153. #endif
  1154. }
  1155. if (hdr->sadb_msg_seq) {
  1156. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1157. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1158. xfrm_state_put(x);
  1159. x = NULL;
  1160. }
  1161. }
  1162. if (!x)
  1163. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1164. if (x == NULL)
  1165. return -ENOENT;
  1166. min_spi = 0x100;
  1167. max_spi = 0x0fffffff;
  1168. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1169. if (range) {
  1170. min_spi = range->sadb_spirange_min;
  1171. max_spi = range->sadb_spirange_max;
  1172. }
  1173. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1174. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1175. if (IS_ERR(resp_skb)) {
  1176. xfrm_state_put(x);
  1177. return PTR_ERR(resp_skb);
  1178. }
  1179. out_hdr = (struct sadb_msg *) resp_skb->data;
  1180. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1181. out_hdr->sadb_msg_type = SADB_GETSPI;
  1182. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1183. out_hdr->sadb_msg_errno = 0;
  1184. out_hdr->sadb_msg_reserved = 0;
  1185. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1186. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1187. xfrm_state_put(x);
  1188. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1189. return 0;
  1190. }
  1191. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1192. {
  1193. struct net *net = sock_net(sk);
  1194. struct xfrm_state *x;
  1195. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1196. return -EOPNOTSUPP;
  1197. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1198. return 0;
  1199. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1200. if (x == NULL)
  1201. return 0;
  1202. spin_lock_bh(&x->lock);
  1203. if (x->km.state == XFRM_STATE_ACQ) {
  1204. x->km.state = XFRM_STATE_ERROR;
  1205. wake_up(&net->xfrm.km_waitq);
  1206. }
  1207. spin_unlock_bh(&x->lock);
  1208. xfrm_state_put(x);
  1209. return 0;
  1210. }
  1211. static inline int event2poltype(int event)
  1212. {
  1213. switch (event) {
  1214. case XFRM_MSG_DELPOLICY:
  1215. return SADB_X_SPDDELETE;
  1216. case XFRM_MSG_NEWPOLICY:
  1217. return SADB_X_SPDADD;
  1218. case XFRM_MSG_UPDPOLICY:
  1219. return SADB_X_SPDUPDATE;
  1220. case XFRM_MSG_POLEXPIRE:
  1221. // return SADB_X_SPDEXPIRE;
  1222. default:
  1223. pr_err("pfkey: Unknown policy event %d\n", event);
  1224. break;
  1225. }
  1226. return 0;
  1227. }
  1228. static inline int event2keytype(int event)
  1229. {
  1230. switch (event) {
  1231. case XFRM_MSG_DELSA:
  1232. return SADB_DELETE;
  1233. case XFRM_MSG_NEWSA:
  1234. return SADB_ADD;
  1235. case XFRM_MSG_UPDSA:
  1236. return SADB_UPDATE;
  1237. case XFRM_MSG_EXPIRE:
  1238. return SADB_EXPIRE;
  1239. default:
  1240. pr_err("pfkey: Unknown SA event %d\n", event);
  1241. break;
  1242. }
  1243. return 0;
  1244. }
  1245. /* ADD/UPD/DEL */
  1246. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1247. {
  1248. struct sk_buff *skb;
  1249. struct sadb_msg *hdr;
  1250. skb = pfkey_xfrm_state2msg(x);
  1251. if (IS_ERR(skb))
  1252. return PTR_ERR(skb);
  1253. hdr = (struct sadb_msg *) skb->data;
  1254. hdr->sadb_msg_version = PF_KEY_V2;
  1255. hdr->sadb_msg_type = event2keytype(c->event);
  1256. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1257. hdr->sadb_msg_errno = 0;
  1258. hdr->sadb_msg_reserved = 0;
  1259. hdr->sadb_msg_seq = c->seq;
  1260. hdr->sadb_msg_pid = c->pid;
  1261. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1262. return 0;
  1263. }
  1264. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1265. {
  1266. struct net *net = sock_net(sk);
  1267. struct xfrm_state *x;
  1268. int err;
  1269. struct km_event c;
  1270. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1271. if (IS_ERR(x))
  1272. return PTR_ERR(x);
  1273. xfrm_state_hold(x);
  1274. if (hdr->sadb_msg_type == SADB_ADD)
  1275. err = xfrm_state_add(x);
  1276. else
  1277. err = xfrm_state_update(x);
  1278. xfrm_audit_state_add(x, err ? 0 : 1,
  1279. audit_get_loginuid(current),
  1280. audit_get_sessionid(current), 0);
  1281. if (err < 0) {
  1282. x->km.state = XFRM_STATE_DEAD;
  1283. __xfrm_state_put(x);
  1284. goto out;
  1285. }
  1286. if (hdr->sadb_msg_type == SADB_ADD)
  1287. c.event = XFRM_MSG_NEWSA;
  1288. else
  1289. c.event = XFRM_MSG_UPDSA;
  1290. c.seq = hdr->sadb_msg_seq;
  1291. c.pid = hdr->sadb_msg_pid;
  1292. km_state_notify(x, &c);
  1293. out:
  1294. xfrm_state_put(x);
  1295. return err;
  1296. }
  1297. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1298. {
  1299. struct net *net = sock_net(sk);
  1300. struct xfrm_state *x;
  1301. struct km_event c;
  1302. int err;
  1303. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1304. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1305. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1306. return -EINVAL;
  1307. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1308. if (x == NULL)
  1309. return -ESRCH;
  1310. if ((err = security_xfrm_state_delete(x)))
  1311. goto out;
  1312. if (xfrm_state_kern(x)) {
  1313. err = -EPERM;
  1314. goto out;
  1315. }
  1316. err = xfrm_state_delete(x);
  1317. if (err < 0)
  1318. goto out;
  1319. c.seq = hdr->sadb_msg_seq;
  1320. c.pid = hdr->sadb_msg_pid;
  1321. c.event = XFRM_MSG_DELSA;
  1322. km_state_notify(x, &c);
  1323. out:
  1324. xfrm_audit_state_delete(x, err ? 0 : 1,
  1325. audit_get_loginuid(current),
  1326. audit_get_sessionid(current), 0);
  1327. xfrm_state_put(x);
  1328. return err;
  1329. }
  1330. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1331. {
  1332. struct net *net = sock_net(sk);
  1333. __u8 proto;
  1334. struct sk_buff *out_skb;
  1335. struct sadb_msg *out_hdr;
  1336. struct xfrm_state *x;
  1337. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1338. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1339. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1340. return -EINVAL;
  1341. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1342. if (x == NULL)
  1343. return -ESRCH;
  1344. out_skb = pfkey_xfrm_state2msg(x);
  1345. proto = x->id.proto;
  1346. xfrm_state_put(x);
  1347. if (IS_ERR(out_skb))
  1348. return PTR_ERR(out_skb);
  1349. out_hdr = (struct sadb_msg *) out_skb->data;
  1350. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1351. out_hdr->sadb_msg_type = SADB_GET;
  1352. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1353. out_hdr->sadb_msg_errno = 0;
  1354. out_hdr->sadb_msg_reserved = 0;
  1355. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1356. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1357. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1358. return 0;
  1359. }
  1360. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1361. gfp_t allocation)
  1362. {
  1363. struct sk_buff *skb;
  1364. struct sadb_msg *hdr;
  1365. int len, auth_len, enc_len, i;
  1366. auth_len = xfrm_count_auth_supported();
  1367. if (auth_len) {
  1368. auth_len *= sizeof(struct sadb_alg);
  1369. auth_len += sizeof(struct sadb_supported);
  1370. }
  1371. enc_len = xfrm_count_enc_supported();
  1372. if (enc_len) {
  1373. enc_len *= sizeof(struct sadb_alg);
  1374. enc_len += sizeof(struct sadb_supported);
  1375. }
  1376. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1377. skb = alloc_skb(len + 16, allocation);
  1378. if (!skb)
  1379. goto out_put_algs;
  1380. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1381. pfkey_hdr_dup(hdr, orig);
  1382. hdr->sadb_msg_errno = 0;
  1383. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1384. if (auth_len) {
  1385. struct sadb_supported *sp;
  1386. struct sadb_alg *ap;
  1387. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1388. ap = (struct sadb_alg *) (sp + 1);
  1389. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1390. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1391. for (i = 0; ; i++) {
  1392. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1393. if (!aalg)
  1394. break;
  1395. if (aalg->available)
  1396. *ap++ = aalg->desc;
  1397. }
  1398. }
  1399. if (enc_len) {
  1400. struct sadb_supported *sp;
  1401. struct sadb_alg *ap;
  1402. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1403. ap = (struct sadb_alg *) (sp + 1);
  1404. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1405. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1406. for (i = 0; ; i++) {
  1407. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1408. if (!ealg)
  1409. break;
  1410. if (ealg->available)
  1411. *ap++ = ealg->desc;
  1412. }
  1413. }
  1414. out_put_algs:
  1415. return skb;
  1416. }
  1417. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1418. {
  1419. struct pfkey_sock *pfk = pfkey_sk(sk);
  1420. struct sk_buff *supp_skb;
  1421. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1422. return -EINVAL;
  1423. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1424. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1425. return -EEXIST;
  1426. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1427. }
  1428. xfrm_probe_algs();
  1429. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1430. if (!supp_skb) {
  1431. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1432. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1433. return -ENOBUFS;
  1434. }
  1435. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1436. return 0;
  1437. }
  1438. static int unicast_flush_resp(struct sock *sk, struct sadb_msg *ihdr)
  1439. {
  1440. struct sk_buff *skb;
  1441. struct sadb_msg *hdr;
  1442. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1443. if (!skb)
  1444. return -ENOBUFS;
  1445. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1446. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1447. hdr->sadb_msg_errno = (uint8_t) 0;
  1448. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1449. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1450. }
  1451. static int key_notify_sa_flush(struct km_event *c)
  1452. {
  1453. struct sk_buff *skb;
  1454. struct sadb_msg *hdr;
  1455. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1456. if (!skb)
  1457. return -ENOBUFS;
  1458. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1459. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1460. hdr->sadb_msg_type = SADB_FLUSH;
  1461. hdr->sadb_msg_seq = c->seq;
  1462. hdr->sadb_msg_pid = c->pid;
  1463. hdr->sadb_msg_version = PF_KEY_V2;
  1464. hdr->sadb_msg_errno = (uint8_t) 0;
  1465. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1466. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1467. return 0;
  1468. }
  1469. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1470. {
  1471. struct net *net = sock_net(sk);
  1472. unsigned proto;
  1473. struct km_event c;
  1474. struct xfrm_audit audit_info;
  1475. int err, err2;
  1476. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1477. if (proto == 0)
  1478. return -EINVAL;
  1479. audit_info.loginuid = audit_get_loginuid(current);
  1480. audit_info.sessionid = audit_get_sessionid(current);
  1481. audit_info.secid = 0;
  1482. err = xfrm_state_flush(net, proto, &audit_info);
  1483. err2 = unicast_flush_resp(sk, hdr);
  1484. if (err || err2) {
  1485. if (err == -ESRCH) /* empty table - go quietly */
  1486. err = 0;
  1487. return err ? err : err2;
  1488. }
  1489. c.data.proto = proto;
  1490. c.seq = hdr->sadb_msg_seq;
  1491. c.pid = hdr->sadb_msg_pid;
  1492. c.event = XFRM_MSG_FLUSHSA;
  1493. c.net = net;
  1494. km_state_notify(NULL, &c);
  1495. return 0;
  1496. }
  1497. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1498. {
  1499. struct pfkey_sock *pfk = ptr;
  1500. struct sk_buff *out_skb;
  1501. struct sadb_msg *out_hdr;
  1502. if (!pfkey_can_dump(&pfk->sk))
  1503. return -ENOBUFS;
  1504. out_skb = pfkey_xfrm_state2msg(x);
  1505. if (IS_ERR(out_skb))
  1506. return PTR_ERR(out_skb);
  1507. out_hdr = (struct sadb_msg *) out_skb->data;
  1508. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1509. out_hdr->sadb_msg_type = SADB_DUMP;
  1510. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1511. out_hdr->sadb_msg_errno = 0;
  1512. out_hdr->sadb_msg_reserved = 0;
  1513. out_hdr->sadb_msg_seq = count + 1;
  1514. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1515. if (pfk->dump.skb)
  1516. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1517. &pfk->sk, sock_net(&pfk->sk));
  1518. pfk->dump.skb = out_skb;
  1519. return 0;
  1520. }
  1521. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1522. {
  1523. struct net *net = sock_net(&pfk->sk);
  1524. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1525. }
  1526. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1527. {
  1528. xfrm_state_walk_done(&pfk->dump.u.state);
  1529. }
  1530. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1531. {
  1532. u8 proto;
  1533. struct pfkey_sock *pfk = pfkey_sk(sk);
  1534. if (pfk->dump.dump != NULL)
  1535. return -EBUSY;
  1536. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1537. if (proto == 0)
  1538. return -EINVAL;
  1539. pfk->dump.msg_version = hdr->sadb_msg_version;
  1540. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1541. pfk->dump.dump = pfkey_dump_sa;
  1542. pfk->dump.done = pfkey_dump_sa_done;
  1543. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1544. return pfkey_do_dump(pfk);
  1545. }
  1546. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1547. {
  1548. struct pfkey_sock *pfk = pfkey_sk(sk);
  1549. int satype = hdr->sadb_msg_satype;
  1550. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1551. /* XXX we mangle packet... */
  1552. hdr->sadb_msg_errno = 0;
  1553. if (satype != 0 && satype != 1)
  1554. return -EINVAL;
  1555. pfk->promisc = satype;
  1556. }
  1557. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1558. return 0;
  1559. }
  1560. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1561. {
  1562. int i;
  1563. u32 reqid = *(u32*)ptr;
  1564. for (i=0; i<xp->xfrm_nr; i++) {
  1565. if (xp->xfrm_vec[i].reqid == reqid)
  1566. return -EEXIST;
  1567. }
  1568. return 0;
  1569. }
  1570. static u32 gen_reqid(struct net *net)
  1571. {
  1572. struct xfrm_policy_walk walk;
  1573. u32 start;
  1574. int rc;
  1575. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1576. start = reqid;
  1577. do {
  1578. ++reqid;
  1579. if (reqid == 0)
  1580. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1581. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1582. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1583. xfrm_policy_walk_done(&walk);
  1584. if (rc != -EEXIST)
  1585. return reqid;
  1586. } while (reqid != start);
  1587. return 0;
  1588. }
  1589. static int
  1590. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1591. {
  1592. struct net *net = xp_net(xp);
  1593. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1594. int mode;
  1595. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1596. return -ELOOP;
  1597. if (rq->sadb_x_ipsecrequest_mode == 0)
  1598. return -EINVAL;
  1599. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1600. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1601. return -EINVAL;
  1602. t->mode = mode;
  1603. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1604. t->optional = 1;
  1605. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1606. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1607. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1608. t->reqid = 0;
  1609. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1610. return -ENOBUFS;
  1611. }
  1612. /* addresses present only in tunnel mode */
  1613. if (t->mode == XFRM_MODE_TUNNEL) {
  1614. u8 *sa = (u8 *) (rq + 1);
  1615. int family, socklen;
  1616. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1617. &t->saddr);
  1618. if (!family)
  1619. return -EINVAL;
  1620. socklen = pfkey_sockaddr_len(family);
  1621. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1622. &t->id.daddr) != family)
  1623. return -EINVAL;
  1624. t->encap_family = family;
  1625. } else
  1626. t->encap_family = xp->family;
  1627. /* No way to set this via kame pfkey */
  1628. t->allalgs = 1;
  1629. xp->xfrm_nr++;
  1630. return 0;
  1631. }
  1632. static int
  1633. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1634. {
  1635. int err;
  1636. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1637. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1638. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1639. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1640. return err;
  1641. len -= rq->sadb_x_ipsecrequest_len;
  1642. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1643. }
  1644. return 0;
  1645. }
  1646. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1647. {
  1648. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1649. if (xfrm_ctx) {
  1650. int len = sizeof(struct sadb_x_sec_ctx);
  1651. len += xfrm_ctx->ctx_len;
  1652. return PFKEY_ALIGN8(len);
  1653. }
  1654. return 0;
  1655. }
  1656. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1657. {
  1658. struct xfrm_tmpl *t;
  1659. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1660. int socklen = 0;
  1661. int i;
  1662. for (i=0; i<xp->xfrm_nr; i++) {
  1663. t = xp->xfrm_vec + i;
  1664. socklen += pfkey_sockaddr_len(t->encap_family);
  1665. }
  1666. return sizeof(struct sadb_msg) +
  1667. (sizeof(struct sadb_lifetime) * 3) +
  1668. (sizeof(struct sadb_address) * 2) +
  1669. (sockaddr_size * 2) +
  1670. sizeof(struct sadb_x_policy) +
  1671. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1672. (socklen * 2) +
  1673. pfkey_xfrm_policy2sec_ctx_size(xp);
  1674. }
  1675. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1676. {
  1677. struct sk_buff *skb;
  1678. int size;
  1679. size = pfkey_xfrm_policy2msg_size(xp);
  1680. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1681. if (skb == NULL)
  1682. return ERR_PTR(-ENOBUFS);
  1683. return skb;
  1684. }
  1685. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1686. {
  1687. struct sadb_msg *hdr;
  1688. struct sadb_address *addr;
  1689. struct sadb_lifetime *lifetime;
  1690. struct sadb_x_policy *pol;
  1691. struct sadb_x_sec_ctx *sec_ctx;
  1692. struct xfrm_sec_ctx *xfrm_ctx;
  1693. int i;
  1694. int size;
  1695. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1696. int socklen = pfkey_sockaddr_len(xp->family);
  1697. size = pfkey_xfrm_policy2msg_size(xp);
  1698. /* call should fill header later */
  1699. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1700. memset(hdr, 0, size); /* XXX do we need this ? */
  1701. /* src address */
  1702. addr = (struct sadb_address*) skb_put(skb,
  1703. sizeof(struct sadb_address)+sockaddr_size);
  1704. addr->sadb_address_len =
  1705. (sizeof(struct sadb_address)+sockaddr_size)/
  1706. sizeof(uint64_t);
  1707. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1708. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1709. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1710. addr->sadb_address_reserved = 0;
  1711. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1712. xp->selector.sport,
  1713. (struct sockaddr *) (addr + 1),
  1714. xp->family))
  1715. BUG();
  1716. /* dst address */
  1717. addr = (struct sadb_address*) skb_put(skb,
  1718. sizeof(struct sadb_address)+sockaddr_size);
  1719. addr->sadb_address_len =
  1720. (sizeof(struct sadb_address)+sockaddr_size)/
  1721. sizeof(uint64_t);
  1722. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1723. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1724. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1725. addr->sadb_address_reserved = 0;
  1726. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1727. (struct sockaddr *) (addr + 1),
  1728. xp->family);
  1729. /* hard time */
  1730. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1731. sizeof(struct sadb_lifetime));
  1732. lifetime->sadb_lifetime_len =
  1733. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1734. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1735. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1736. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1737. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1738. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1739. /* soft time */
  1740. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1741. sizeof(struct sadb_lifetime));
  1742. lifetime->sadb_lifetime_len =
  1743. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1744. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1745. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1746. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1747. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1748. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1749. /* current time */
  1750. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1751. sizeof(struct sadb_lifetime));
  1752. lifetime->sadb_lifetime_len =
  1753. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1754. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1755. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1756. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1757. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1758. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1759. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1760. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1761. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1762. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1763. if (xp->action == XFRM_POLICY_ALLOW) {
  1764. if (xp->xfrm_nr)
  1765. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1766. else
  1767. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1768. }
  1769. pol->sadb_x_policy_dir = dir+1;
  1770. pol->sadb_x_policy_id = xp->index;
  1771. pol->sadb_x_policy_priority = xp->priority;
  1772. for (i=0; i<xp->xfrm_nr; i++) {
  1773. struct sadb_x_ipsecrequest *rq;
  1774. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1775. int req_size;
  1776. int mode;
  1777. req_size = sizeof(struct sadb_x_ipsecrequest);
  1778. if (t->mode == XFRM_MODE_TUNNEL) {
  1779. socklen = pfkey_sockaddr_len(t->encap_family);
  1780. req_size += socklen * 2;
  1781. } else {
  1782. size -= 2*socklen;
  1783. }
  1784. rq = (void*)skb_put(skb, req_size);
  1785. pol->sadb_x_policy_len += req_size/8;
  1786. memset(rq, 0, sizeof(*rq));
  1787. rq->sadb_x_ipsecrequest_len = req_size;
  1788. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1789. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1790. return -EINVAL;
  1791. rq->sadb_x_ipsecrequest_mode = mode;
  1792. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1793. if (t->reqid)
  1794. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1795. if (t->optional)
  1796. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1797. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1798. if (t->mode == XFRM_MODE_TUNNEL) {
  1799. u8 *sa = (void *)(rq + 1);
  1800. pfkey_sockaddr_fill(&t->saddr, 0,
  1801. (struct sockaddr *)sa,
  1802. t->encap_family);
  1803. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1804. (struct sockaddr *) (sa + socklen),
  1805. t->encap_family);
  1806. }
  1807. }
  1808. /* security context */
  1809. if ((xfrm_ctx = xp->security)) {
  1810. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1811. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1812. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1813. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1814. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1815. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1816. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1817. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1818. xfrm_ctx->ctx_len);
  1819. }
  1820. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1821. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1822. return 0;
  1823. }
  1824. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1825. {
  1826. struct sk_buff *out_skb;
  1827. struct sadb_msg *out_hdr;
  1828. int err;
  1829. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1830. if (IS_ERR(out_skb))
  1831. return PTR_ERR(out_skb);
  1832. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1833. if (err < 0)
  1834. return err;
  1835. out_hdr = (struct sadb_msg *) out_skb->data;
  1836. out_hdr->sadb_msg_version = PF_KEY_V2;
  1837. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1838. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1839. else
  1840. out_hdr->sadb_msg_type = event2poltype(c->event);
  1841. out_hdr->sadb_msg_errno = 0;
  1842. out_hdr->sadb_msg_seq = c->seq;
  1843. out_hdr->sadb_msg_pid = c->pid;
  1844. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1845. return 0;
  1846. }
  1847. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1848. {
  1849. struct net *net = sock_net(sk);
  1850. int err = 0;
  1851. struct sadb_lifetime *lifetime;
  1852. struct sadb_address *sa;
  1853. struct sadb_x_policy *pol;
  1854. struct xfrm_policy *xp;
  1855. struct km_event c;
  1856. struct sadb_x_sec_ctx *sec_ctx;
  1857. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1858. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1859. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1860. return -EINVAL;
  1861. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1862. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1863. return -EINVAL;
  1864. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1865. return -EINVAL;
  1866. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1867. if (xp == NULL)
  1868. return -ENOBUFS;
  1869. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1870. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1871. xp->priority = pol->sadb_x_policy_priority;
  1872. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1873. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1874. if (!xp->family) {
  1875. err = -EINVAL;
  1876. goto out;
  1877. }
  1878. xp->selector.family = xp->family;
  1879. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1880. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1881. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1882. if (xp->selector.sport)
  1883. xp->selector.sport_mask = htons(0xffff);
  1884. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1885. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1886. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1887. /* Amusing, we set this twice. KAME apps appear to set same value
  1888. * in both addresses.
  1889. */
  1890. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1891. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1892. if (xp->selector.dport)
  1893. xp->selector.dport_mask = htons(0xffff);
  1894. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1895. if (sec_ctx != NULL) {
  1896. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1897. if (!uctx) {
  1898. err = -ENOBUFS;
  1899. goto out;
  1900. }
  1901. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1902. kfree(uctx);
  1903. if (err)
  1904. goto out;
  1905. }
  1906. xp->lft.soft_byte_limit = XFRM_INF;
  1907. xp->lft.hard_byte_limit = XFRM_INF;
  1908. xp->lft.soft_packet_limit = XFRM_INF;
  1909. xp->lft.hard_packet_limit = XFRM_INF;
  1910. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1911. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1912. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1913. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1914. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1915. }
  1916. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1917. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1918. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1919. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1920. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1921. }
  1922. xp->xfrm_nr = 0;
  1923. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1924. (err = parse_ipsecrequests(xp, pol)) < 0)
  1925. goto out;
  1926. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1927. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1928. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1929. audit_get_loginuid(current),
  1930. audit_get_sessionid(current), 0);
  1931. if (err)
  1932. goto out;
  1933. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1934. c.event = XFRM_MSG_UPDPOLICY;
  1935. else
  1936. c.event = XFRM_MSG_NEWPOLICY;
  1937. c.seq = hdr->sadb_msg_seq;
  1938. c.pid = hdr->sadb_msg_pid;
  1939. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1940. xfrm_pol_put(xp);
  1941. return 0;
  1942. out:
  1943. xp->walk.dead = 1;
  1944. xfrm_policy_destroy(xp);
  1945. return err;
  1946. }
  1947. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1948. {
  1949. struct net *net = sock_net(sk);
  1950. int err;
  1951. struct sadb_address *sa;
  1952. struct sadb_x_policy *pol;
  1953. struct xfrm_policy *xp;
  1954. struct xfrm_selector sel;
  1955. struct km_event c;
  1956. struct sadb_x_sec_ctx *sec_ctx;
  1957. struct xfrm_sec_ctx *pol_ctx = NULL;
  1958. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1959. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1960. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1961. return -EINVAL;
  1962. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1963. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1964. return -EINVAL;
  1965. memset(&sel, 0, sizeof(sel));
  1966. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1967. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1968. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1969. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1970. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1971. if (sel.sport)
  1972. sel.sport_mask = htons(0xffff);
  1973. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1974. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1975. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1976. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1977. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1978. if (sel.dport)
  1979. sel.dport_mask = htons(0xffff);
  1980. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1981. if (sec_ctx != NULL) {
  1982. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1983. if (!uctx)
  1984. return -ENOMEM;
  1985. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1986. kfree(uctx);
  1987. if (err)
  1988. return err;
  1989. }
  1990. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  1991. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  1992. 1, &err);
  1993. security_xfrm_policy_free(pol_ctx);
  1994. if (xp == NULL)
  1995. return -ENOENT;
  1996. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  1997. audit_get_loginuid(current),
  1998. audit_get_sessionid(current), 0);
  1999. if (err)
  2000. goto out;
  2001. c.seq = hdr->sadb_msg_seq;
  2002. c.pid = hdr->sadb_msg_pid;
  2003. c.data.byid = 0;
  2004. c.event = XFRM_MSG_DELPOLICY;
  2005. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2006. out:
  2007. xfrm_pol_put(xp);
  2008. return err;
  2009. }
  2010. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2011. {
  2012. int err;
  2013. struct sk_buff *out_skb;
  2014. struct sadb_msg *out_hdr;
  2015. err = 0;
  2016. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2017. if (IS_ERR(out_skb)) {
  2018. err = PTR_ERR(out_skb);
  2019. goto out;
  2020. }
  2021. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2022. if (err < 0)
  2023. goto out;
  2024. out_hdr = (struct sadb_msg *) out_skb->data;
  2025. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2026. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2027. out_hdr->sadb_msg_satype = 0;
  2028. out_hdr->sadb_msg_errno = 0;
  2029. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2030. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2031. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2032. err = 0;
  2033. out:
  2034. return err;
  2035. }
  2036. #ifdef CONFIG_NET_KEY_MIGRATE
  2037. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2038. {
  2039. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2040. }
  2041. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2042. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2043. u16 *family)
  2044. {
  2045. int af, socklen;
  2046. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2047. return -EINVAL;
  2048. af = pfkey_sockaddr_extract(sa, saddr);
  2049. if (!af)
  2050. return -EINVAL;
  2051. socklen = pfkey_sockaddr_len(af);
  2052. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2053. daddr) != af)
  2054. return -EINVAL;
  2055. *family = af;
  2056. return 0;
  2057. }
  2058. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2059. struct xfrm_migrate *m)
  2060. {
  2061. int err;
  2062. struct sadb_x_ipsecrequest *rq2;
  2063. int mode;
  2064. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2065. len < rq1->sadb_x_ipsecrequest_len)
  2066. return -EINVAL;
  2067. /* old endoints */
  2068. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2069. rq1->sadb_x_ipsecrequest_len,
  2070. &m->old_saddr, &m->old_daddr,
  2071. &m->old_family);
  2072. if (err)
  2073. return err;
  2074. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2075. len -= rq1->sadb_x_ipsecrequest_len;
  2076. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2077. len < rq2->sadb_x_ipsecrequest_len)
  2078. return -EINVAL;
  2079. /* new endpoints */
  2080. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2081. rq2->sadb_x_ipsecrequest_len,
  2082. &m->new_saddr, &m->new_daddr,
  2083. &m->new_family);
  2084. if (err)
  2085. return err;
  2086. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2087. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2088. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2089. return -EINVAL;
  2090. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2091. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2092. return -EINVAL;
  2093. m->mode = mode;
  2094. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2095. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2096. rq2->sadb_x_ipsecrequest_len));
  2097. }
  2098. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2099. struct sadb_msg *hdr, void **ext_hdrs)
  2100. {
  2101. int i, len, ret, err = -EINVAL;
  2102. u8 dir;
  2103. struct sadb_address *sa;
  2104. struct sadb_x_kmaddress *kma;
  2105. struct sadb_x_policy *pol;
  2106. struct sadb_x_ipsecrequest *rq;
  2107. struct xfrm_selector sel;
  2108. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2109. struct xfrm_kmaddress k;
  2110. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2111. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2112. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2113. err = -EINVAL;
  2114. goto out;
  2115. }
  2116. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2117. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2118. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2119. err = -EINVAL;
  2120. goto out;
  2121. }
  2122. if (kma) {
  2123. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2124. k.reserved = kma->sadb_x_kmaddress_reserved;
  2125. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2126. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2127. &k.local, &k.remote, &k.family);
  2128. if (ret < 0) {
  2129. err = ret;
  2130. goto out;
  2131. }
  2132. }
  2133. dir = pol->sadb_x_policy_dir - 1;
  2134. memset(&sel, 0, sizeof(sel));
  2135. /* set source address info of selector */
  2136. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2137. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2138. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2139. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2140. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2141. if (sel.sport)
  2142. sel.sport_mask = htons(0xffff);
  2143. /* set destination address info of selector */
  2144. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2145. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2146. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2147. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2148. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2149. if (sel.dport)
  2150. sel.dport_mask = htons(0xffff);
  2151. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2152. /* extract ipsecrequests */
  2153. i = 0;
  2154. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2155. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2156. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2157. if (ret < 0) {
  2158. err = ret;
  2159. goto out;
  2160. } else {
  2161. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2162. len -= ret;
  2163. i++;
  2164. }
  2165. }
  2166. if (!i || len > 0) {
  2167. err = -EINVAL;
  2168. goto out;
  2169. }
  2170. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2171. kma ? &k : NULL);
  2172. out:
  2173. return err;
  2174. }
  2175. #else
  2176. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2177. struct sadb_msg *hdr, void **ext_hdrs)
  2178. {
  2179. return -ENOPROTOOPT;
  2180. }
  2181. #endif
  2182. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2183. {
  2184. struct net *net = sock_net(sk);
  2185. unsigned int dir;
  2186. int err = 0, delete;
  2187. struct sadb_x_policy *pol;
  2188. struct xfrm_policy *xp;
  2189. struct km_event c;
  2190. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2191. return -EINVAL;
  2192. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2193. if (dir >= XFRM_POLICY_MAX)
  2194. return -EINVAL;
  2195. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2196. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2197. dir, pol->sadb_x_policy_id, delete, &err);
  2198. if (xp == NULL)
  2199. return -ENOENT;
  2200. if (delete) {
  2201. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2202. audit_get_loginuid(current),
  2203. audit_get_sessionid(current), 0);
  2204. if (err)
  2205. goto out;
  2206. c.seq = hdr->sadb_msg_seq;
  2207. c.pid = hdr->sadb_msg_pid;
  2208. c.data.byid = 1;
  2209. c.event = XFRM_MSG_DELPOLICY;
  2210. km_policy_notify(xp, dir, &c);
  2211. } else {
  2212. err = key_pol_get_resp(sk, xp, hdr, dir);
  2213. }
  2214. out:
  2215. xfrm_pol_put(xp);
  2216. return err;
  2217. }
  2218. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2219. {
  2220. struct pfkey_sock *pfk = ptr;
  2221. struct sk_buff *out_skb;
  2222. struct sadb_msg *out_hdr;
  2223. int err;
  2224. if (!pfkey_can_dump(&pfk->sk))
  2225. return -ENOBUFS;
  2226. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2227. if (IS_ERR(out_skb))
  2228. return PTR_ERR(out_skb);
  2229. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2230. if (err < 0)
  2231. return err;
  2232. out_hdr = (struct sadb_msg *) out_skb->data;
  2233. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2234. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2235. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2236. out_hdr->sadb_msg_errno = 0;
  2237. out_hdr->sadb_msg_seq = count + 1;
  2238. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2239. if (pfk->dump.skb)
  2240. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2241. &pfk->sk, sock_net(&pfk->sk));
  2242. pfk->dump.skb = out_skb;
  2243. return 0;
  2244. }
  2245. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2246. {
  2247. struct net *net = sock_net(&pfk->sk);
  2248. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2249. }
  2250. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2251. {
  2252. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2253. }
  2254. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2255. {
  2256. struct pfkey_sock *pfk = pfkey_sk(sk);
  2257. if (pfk->dump.dump != NULL)
  2258. return -EBUSY;
  2259. pfk->dump.msg_version = hdr->sadb_msg_version;
  2260. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2261. pfk->dump.dump = pfkey_dump_sp;
  2262. pfk->dump.done = pfkey_dump_sp_done;
  2263. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2264. return pfkey_do_dump(pfk);
  2265. }
  2266. static int key_notify_policy_flush(struct km_event *c)
  2267. {
  2268. struct sk_buff *skb_out;
  2269. struct sadb_msg *hdr;
  2270. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2271. if (!skb_out)
  2272. return -ENOBUFS;
  2273. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2274. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2275. hdr->sadb_msg_seq = c->seq;
  2276. hdr->sadb_msg_pid = c->pid;
  2277. hdr->sadb_msg_version = PF_KEY_V2;
  2278. hdr->sadb_msg_errno = (uint8_t) 0;
  2279. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2280. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2281. return 0;
  2282. }
  2283. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2284. {
  2285. struct net *net = sock_net(sk);
  2286. struct km_event c;
  2287. struct xfrm_audit audit_info;
  2288. int err, err2;
  2289. audit_info.loginuid = audit_get_loginuid(current);
  2290. audit_info.sessionid = audit_get_sessionid(current);
  2291. audit_info.secid = 0;
  2292. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2293. err2 = unicast_flush_resp(sk, hdr);
  2294. if (err || err2) {
  2295. if (err == -ESRCH) /* empty table - old silent behavior */
  2296. return 0;
  2297. return err;
  2298. }
  2299. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2300. c.event = XFRM_MSG_FLUSHPOLICY;
  2301. c.pid = hdr->sadb_msg_pid;
  2302. c.seq = hdr->sadb_msg_seq;
  2303. c.net = net;
  2304. km_policy_notify(NULL, 0, &c);
  2305. return 0;
  2306. }
  2307. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2308. struct sadb_msg *hdr, void **ext_hdrs);
  2309. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2310. [SADB_RESERVED] = pfkey_reserved,
  2311. [SADB_GETSPI] = pfkey_getspi,
  2312. [SADB_UPDATE] = pfkey_add,
  2313. [SADB_ADD] = pfkey_add,
  2314. [SADB_DELETE] = pfkey_delete,
  2315. [SADB_GET] = pfkey_get,
  2316. [SADB_ACQUIRE] = pfkey_acquire,
  2317. [SADB_REGISTER] = pfkey_register,
  2318. [SADB_EXPIRE] = NULL,
  2319. [SADB_FLUSH] = pfkey_flush,
  2320. [SADB_DUMP] = pfkey_dump,
  2321. [SADB_X_PROMISC] = pfkey_promisc,
  2322. [SADB_X_PCHANGE] = NULL,
  2323. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2324. [SADB_X_SPDADD] = pfkey_spdadd,
  2325. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2326. [SADB_X_SPDGET] = pfkey_spdget,
  2327. [SADB_X_SPDACQUIRE] = NULL,
  2328. [SADB_X_SPDDUMP] = pfkey_spddump,
  2329. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2330. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2331. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2332. [SADB_X_MIGRATE] = pfkey_migrate,
  2333. };
  2334. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2335. {
  2336. void *ext_hdrs[SADB_EXT_MAX];
  2337. int err;
  2338. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2339. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2340. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2341. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2342. if (!err) {
  2343. err = -EOPNOTSUPP;
  2344. if (pfkey_funcs[hdr->sadb_msg_type])
  2345. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2346. }
  2347. return err;
  2348. }
  2349. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2350. {
  2351. struct sadb_msg *hdr = NULL;
  2352. if (skb->len < sizeof(*hdr)) {
  2353. *errp = -EMSGSIZE;
  2354. } else {
  2355. hdr = (struct sadb_msg *) skb->data;
  2356. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2357. hdr->sadb_msg_reserved != 0 ||
  2358. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2359. hdr->sadb_msg_type > SADB_MAX)) {
  2360. hdr = NULL;
  2361. *errp = -EINVAL;
  2362. } else if (hdr->sadb_msg_len != (skb->len /
  2363. sizeof(uint64_t)) ||
  2364. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2365. sizeof(uint64_t))) {
  2366. hdr = NULL;
  2367. *errp = -EMSGSIZE;
  2368. } else {
  2369. *errp = 0;
  2370. }
  2371. }
  2372. return hdr;
  2373. }
  2374. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2375. {
  2376. unsigned int id = d->desc.sadb_alg_id;
  2377. if (id >= sizeof(t->aalgos) * 8)
  2378. return 0;
  2379. return (t->aalgos >> id) & 1;
  2380. }
  2381. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2382. {
  2383. unsigned int id = d->desc.sadb_alg_id;
  2384. if (id >= sizeof(t->ealgos) * 8)
  2385. return 0;
  2386. return (t->ealgos >> id) & 1;
  2387. }
  2388. static int count_ah_combs(struct xfrm_tmpl *t)
  2389. {
  2390. int i, sz = 0;
  2391. for (i = 0; ; i++) {
  2392. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2393. if (!aalg)
  2394. break;
  2395. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2396. sz += sizeof(struct sadb_comb);
  2397. }
  2398. return sz + sizeof(struct sadb_prop);
  2399. }
  2400. static int count_esp_combs(struct xfrm_tmpl *t)
  2401. {
  2402. int i, k, sz = 0;
  2403. for (i = 0; ; i++) {
  2404. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2405. if (!ealg)
  2406. break;
  2407. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2408. continue;
  2409. for (k = 1; ; k++) {
  2410. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2411. if (!aalg)
  2412. break;
  2413. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2414. sz += sizeof(struct sadb_comb);
  2415. }
  2416. }
  2417. return sz + sizeof(struct sadb_prop);
  2418. }
  2419. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2420. {
  2421. struct sadb_prop *p;
  2422. int i;
  2423. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2424. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2425. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2426. p->sadb_prop_replay = 32;
  2427. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2428. for (i = 0; ; i++) {
  2429. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2430. if (!aalg)
  2431. break;
  2432. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2433. struct sadb_comb *c;
  2434. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2435. memset(c, 0, sizeof(*c));
  2436. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2437. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2438. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2439. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2440. c->sadb_comb_hard_addtime = 24*60*60;
  2441. c->sadb_comb_soft_addtime = 20*60*60;
  2442. c->sadb_comb_hard_usetime = 8*60*60;
  2443. c->sadb_comb_soft_usetime = 7*60*60;
  2444. }
  2445. }
  2446. }
  2447. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2448. {
  2449. struct sadb_prop *p;
  2450. int i, k;
  2451. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2452. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2453. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2454. p->sadb_prop_replay = 32;
  2455. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2456. for (i=0; ; i++) {
  2457. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2458. if (!ealg)
  2459. break;
  2460. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2461. continue;
  2462. for (k = 1; ; k++) {
  2463. struct sadb_comb *c;
  2464. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2465. if (!aalg)
  2466. break;
  2467. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2468. continue;
  2469. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2470. memset(c, 0, sizeof(*c));
  2471. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2472. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2473. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2474. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2475. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2476. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2477. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2478. c->sadb_comb_hard_addtime = 24*60*60;
  2479. c->sadb_comb_soft_addtime = 20*60*60;
  2480. c->sadb_comb_hard_usetime = 8*60*60;
  2481. c->sadb_comb_soft_usetime = 7*60*60;
  2482. }
  2483. }
  2484. }
  2485. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2486. {
  2487. return 0;
  2488. }
  2489. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2490. {
  2491. struct sk_buff *out_skb;
  2492. struct sadb_msg *out_hdr;
  2493. int hard;
  2494. int hsc;
  2495. hard = c->data.hard;
  2496. if (hard)
  2497. hsc = 2;
  2498. else
  2499. hsc = 1;
  2500. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2501. if (IS_ERR(out_skb))
  2502. return PTR_ERR(out_skb);
  2503. out_hdr = (struct sadb_msg *) out_skb->data;
  2504. out_hdr->sadb_msg_version = PF_KEY_V2;
  2505. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2506. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2507. out_hdr->sadb_msg_errno = 0;
  2508. out_hdr->sadb_msg_reserved = 0;
  2509. out_hdr->sadb_msg_seq = 0;
  2510. out_hdr->sadb_msg_pid = 0;
  2511. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2512. return 0;
  2513. }
  2514. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2515. {
  2516. struct net *net = x ? xs_net(x) : c->net;
  2517. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2518. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2519. return 0;
  2520. switch (c->event) {
  2521. case XFRM_MSG_EXPIRE:
  2522. return key_notify_sa_expire(x, c);
  2523. case XFRM_MSG_DELSA:
  2524. case XFRM_MSG_NEWSA:
  2525. case XFRM_MSG_UPDSA:
  2526. return key_notify_sa(x, c);
  2527. case XFRM_MSG_FLUSHSA:
  2528. return key_notify_sa_flush(c);
  2529. case XFRM_MSG_NEWAE: /* not yet supported */
  2530. break;
  2531. default:
  2532. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2533. break;
  2534. }
  2535. return 0;
  2536. }
  2537. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2538. {
  2539. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2540. return 0;
  2541. switch (c->event) {
  2542. case XFRM_MSG_POLEXPIRE:
  2543. return key_notify_policy_expire(xp, c);
  2544. case XFRM_MSG_DELPOLICY:
  2545. case XFRM_MSG_NEWPOLICY:
  2546. case XFRM_MSG_UPDPOLICY:
  2547. return key_notify_policy(xp, dir, c);
  2548. case XFRM_MSG_FLUSHPOLICY:
  2549. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2550. break;
  2551. return key_notify_policy_flush(c);
  2552. default:
  2553. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2554. break;
  2555. }
  2556. return 0;
  2557. }
  2558. static u32 get_acqseq(void)
  2559. {
  2560. u32 res;
  2561. static atomic_t acqseq;
  2562. do {
  2563. res = atomic_inc_return(&acqseq);
  2564. } while (!res);
  2565. return res;
  2566. }
  2567. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2568. {
  2569. struct sk_buff *skb;
  2570. struct sadb_msg *hdr;
  2571. struct sadb_address *addr;
  2572. struct sadb_x_policy *pol;
  2573. int sockaddr_size;
  2574. int size;
  2575. struct sadb_x_sec_ctx *sec_ctx;
  2576. struct xfrm_sec_ctx *xfrm_ctx;
  2577. int ctx_size = 0;
  2578. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2579. if (!sockaddr_size)
  2580. return -EINVAL;
  2581. size = sizeof(struct sadb_msg) +
  2582. (sizeof(struct sadb_address) * 2) +
  2583. (sockaddr_size * 2) +
  2584. sizeof(struct sadb_x_policy);
  2585. if (x->id.proto == IPPROTO_AH)
  2586. size += count_ah_combs(t);
  2587. else if (x->id.proto == IPPROTO_ESP)
  2588. size += count_esp_combs(t);
  2589. if ((xfrm_ctx = x->security)) {
  2590. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2591. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2592. }
  2593. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2594. if (skb == NULL)
  2595. return -ENOMEM;
  2596. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2597. hdr->sadb_msg_version = PF_KEY_V2;
  2598. hdr->sadb_msg_type = SADB_ACQUIRE;
  2599. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2600. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2601. hdr->sadb_msg_errno = 0;
  2602. hdr->sadb_msg_reserved = 0;
  2603. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2604. hdr->sadb_msg_pid = 0;
  2605. /* src address */
  2606. addr = (struct sadb_address*) skb_put(skb,
  2607. sizeof(struct sadb_address)+sockaddr_size);
  2608. addr->sadb_address_len =
  2609. (sizeof(struct sadb_address)+sockaddr_size)/
  2610. sizeof(uint64_t);
  2611. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2612. addr->sadb_address_proto = 0;
  2613. addr->sadb_address_reserved = 0;
  2614. addr->sadb_address_prefixlen =
  2615. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2616. (struct sockaddr *) (addr + 1),
  2617. x->props.family);
  2618. if (!addr->sadb_address_prefixlen)
  2619. BUG();
  2620. /* dst address */
  2621. addr = (struct sadb_address*) skb_put(skb,
  2622. sizeof(struct sadb_address)+sockaddr_size);
  2623. addr->sadb_address_len =
  2624. (sizeof(struct sadb_address)+sockaddr_size)/
  2625. sizeof(uint64_t);
  2626. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2627. addr->sadb_address_proto = 0;
  2628. addr->sadb_address_reserved = 0;
  2629. addr->sadb_address_prefixlen =
  2630. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2631. (struct sockaddr *) (addr + 1),
  2632. x->props.family);
  2633. if (!addr->sadb_address_prefixlen)
  2634. BUG();
  2635. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2636. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2637. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2638. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2639. pol->sadb_x_policy_dir = dir+1;
  2640. pol->sadb_x_policy_id = xp->index;
  2641. /* Set sadb_comb's. */
  2642. if (x->id.proto == IPPROTO_AH)
  2643. dump_ah_combs(skb, t);
  2644. else if (x->id.proto == IPPROTO_ESP)
  2645. dump_esp_combs(skb, t);
  2646. /* security context */
  2647. if (xfrm_ctx) {
  2648. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2649. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2650. sec_ctx->sadb_x_sec_len =
  2651. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2652. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2653. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2654. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2655. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2656. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2657. xfrm_ctx->ctx_len);
  2658. }
  2659. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2660. }
  2661. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2662. u8 *data, int len, int *dir)
  2663. {
  2664. struct net *net = sock_net(sk);
  2665. struct xfrm_policy *xp;
  2666. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2667. struct sadb_x_sec_ctx *sec_ctx;
  2668. switch (sk->sk_family) {
  2669. case AF_INET:
  2670. if (opt != IP_IPSEC_POLICY) {
  2671. *dir = -EOPNOTSUPP;
  2672. return NULL;
  2673. }
  2674. break;
  2675. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2676. case AF_INET6:
  2677. if (opt != IPV6_IPSEC_POLICY) {
  2678. *dir = -EOPNOTSUPP;
  2679. return NULL;
  2680. }
  2681. break;
  2682. #endif
  2683. default:
  2684. *dir = -EINVAL;
  2685. return NULL;
  2686. }
  2687. *dir = -EINVAL;
  2688. if (len < sizeof(struct sadb_x_policy) ||
  2689. pol->sadb_x_policy_len*8 > len ||
  2690. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2691. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2692. return NULL;
  2693. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2694. if (xp == NULL) {
  2695. *dir = -ENOBUFS;
  2696. return NULL;
  2697. }
  2698. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2699. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2700. xp->lft.soft_byte_limit = XFRM_INF;
  2701. xp->lft.hard_byte_limit = XFRM_INF;
  2702. xp->lft.soft_packet_limit = XFRM_INF;
  2703. xp->lft.hard_packet_limit = XFRM_INF;
  2704. xp->family = sk->sk_family;
  2705. xp->xfrm_nr = 0;
  2706. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2707. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2708. goto out;
  2709. /* security context too */
  2710. if (len >= (pol->sadb_x_policy_len*8 +
  2711. sizeof(struct sadb_x_sec_ctx))) {
  2712. char *p = (char *)pol;
  2713. struct xfrm_user_sec_ctx *uctx;
  2714. p += pol->sadb_x_policy_len*8;
  2715. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2716. if (len < pol->sadb_x_policy_len*8 +
  2717. sec_ctx->sadb_x_sec_len) {
  2718. *dir = -EINVAL;
  2719. goto out;
  2720. }
  2721. if ((*dir = verify_sec_ctx_len(p)))
  2722. goto out;
  2723. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2724. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2725. kfree(uctx);
  2726. if (*dir)
  2727. goto out;
  2728. }
  2729. *dir = pol->sadb_x_policy_dir-1;
  2730. return xp;
  2731. out:
  2732. xp->walk.dead = 1;
  2733. xfrm_policy_destroy(xp);
  2734. return NULL;
  2735. }
  2736. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2737. {
  2738. struct sk_buff *skb;
  2739. struct sadb_msg *hdr;
  2740. struct sadb_sa *sa;
  2741. struct sadb_address *addr;
  2742. struct sadb_x_nat_t_port *n_port;
  2743. int sockaddr_size;
  2744. int size;
  2745. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2746. struct xfrm_encap_tmpl *natt = NULL;
  2747. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2748. if (!sockaddr_size)
  2749. return -EINVAL;
  2750. if (!satype)
  2751. return -EINVAL;
  2752. if (!x->encap)
  2753. return -EINVAL;
  2754. natt = x->encap;
  2755. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2756. *
  2757. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2758. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2759. */
  2760. size = sizeof(struct sadb_msg) +
  2761. sizeof(struct sadb_sa) +
  2762. (sizeof(struct sadb_address) * 2) +
  2763. (sockaddr_size * 2) +
  2764. (sizeof(struct sadb_x_nat_t_port) * 2);
  2765. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2766. if (skb == NULL)
  2767. return -ENOMEM;
  2768. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2769. hdr->sadb_msg_version = PF_KEY_V2;
  2770. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2771. hdr->sadb_msg_satype = satype;
  2772. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2773. hdr->sadb_msg_errno = 0;
  2774. hdr->sadb_msg_reserved = 0;
  2775. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2776. hdr->sadb_msg_pid = 0;
  2777. /* SA */
  2778. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2779. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2780. sa->sadb_sa_exttype = SADB_EXT_SA;
  2781. sa->sadb_sa_spi = x->id.spi;
  2782. sa->sadb_sa_replay = 0;
  2783. sa->sadb_sa_state = 0;
  2784. sa->sadb_sa_auth = 0;
  2785. sa->sadb_sa_encrypt = 0;
  2786. sa->sadb_sa_flags = 0;
  2787. /* ADDRESS_SRC (old addr) */
  2788. addr = (struct sadb_address*)
  2789. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2790. addr->sadb_address_len =
  2791. (sizeof(struct sadb_address)+sockaddr_size)/
  2792. sizeof(uint64_t);
  2793. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2794. addr->sadb_address_proto = 0;
  2795. addr->sadb_address_reserved = 0;
  2796. addr->sadb_address_prefixlen =
  2797. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2798. (struct sockaddr *) (addr + 1),
  2799. x->props.family);
  2800. if (!addr->sadb_address_prefixlen)
  2801. BUG();
  2802. /* NAT_T_SPORT (old port) */
  2803. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2804. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2805. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2806. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2807. n_port->sadb_x_nat_t_port_reserved = 0;
  2808. /* ADDRESS_DST (new addr) */
  2809. addr = (struct sadb_address*)
  2810. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2811. addr->sadb_address_len =
  2812. (sizeof(struct sadb_address)+sockaddr_size)/
  2813. sizeof(uint64_t);
  2814. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2815. addr->sadb_address_proto = 0;
  2816. addr->sadb_address_reserved = 0;
  2817. addr->sadb_address_prefixlen =
  2818. pfkey_sockaddr_fill(ipaddr, 0,
  2819. (struct sockaddr *) (addr + 1),
  2820. x->props.family);
  2821. if (!addr->sadb_address_prefixlen)
  2822. BUG();
  2823. /* NAT_T_DPORT (new port) */
  2824. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2825. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2826. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2827. n_port->sadb_x_nat_t_port_port = sport;
  2828. n_port->sadb_x_nat_t_port_reserved = 0;
  2829. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2830. }
  2831. #ifdef CONFIG_NET_KEY_MIGRATE
  2832. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2833. struct xfrm_selector *sel)
  2834. {
  2835. struct sadb_address *addr;
  2836. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2837. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2838. addr->sadb_address_exttype = type;
  2839. addr->sadb_address_proto = sel->proto;
  2840. addr->sadb_address_reserved = 0;
  2841. switch (type) {
  2842. case SADB_EXT_ADDRESS_SRC:
  2843. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2844. pfkey_sockaddr_fill(&sel->saddr, 0,
  2845. (struct sockaddr *)(addr + 1),
  2846. sel->family);
  2847. break;
  2848. case SADB_EXT_ADDRESS_DST:
  2849. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2850. pfkey_sockaddr_fill(&sel->daddr, 0,
  2851. (struct sockaddr *)(addr + 1),
  2852. sel->family);
  2853. break;
  2854. default:
  2855. return -EINVAL;
  2856. }
  2857. return 0;
  2858. }
  2859. static int set_sadb_kmaddress(struct sk_buff *skb, struct xfrm_kmaddress *k)
  2860. {
  2861. struct sadb_x_kmaddress *kma;
  2862. u8 *sa;
  2863. int family = k->family;
  2864. int socklen = pfkey_sockaddr_len(family);
  2865. int size_req;
  2866. size_req = (sizeof(struct sadb_x_kmaddress) +
  2867. pfkey_sockaddr_pair_size(family));
  2868. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2869. memset(kma, 0, size_req);
  2870. kma->sadb_x_kmaddress_len = size_req / 8;
  2871. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2872. kma->sadb_x_kmaddress_reserved = k->reserved;
  2873. sa = (u8 *)(kma + 1);
  2874. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2875. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2876. return -EINVAL;
  2877. return 0;
  2878. }
  2879. static int set_ipsecrequest(struct sk_buff *skb,
  2880. uint8_t proto, uint8_t mode, int level,
  2881. uint32_t reqid, uint8_t family,
  2882. xfrm_address_t *src, xfrm_address_t *dst)
  2883. {
  2884. struct sadb_x_ipsecrequest *rq;
  2885. u8 *sa;
  2886. int socklen = pfkey_sockaddr_len(family);
  2887. int size_req;
  2888. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2889. pfkey_sockaddr_pair_size(family);
  2890. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2891. memset(rq, 0, size_req);
  2892. rq->sadb_x_ipsecrequest_len = size_req;
  2893. rq->sadb_x_ipsecrequest_proto = proto;
  2894. rq->sadb_x_ipsecrequest_mode = mode;
  2895. rq->sadb_x_ipsecrequest_level = level;
  2896. rq->sadb_x_ipsecrequest_reqid = reqid;
  2897. sa = (u8 *) (rq + 1);
  2898. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2899. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2900. return -EINVAL;
  2901. return 0;
  2902. }
  2903. #endif
  2904. #ifdef CONFIG_NET_KEY_MIGRATE
  2905. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2906. struct xfrm_migrate *m, int num_bundles,
  2907. struct xfrm_kmaddress *k)
  2908. {
  2909. int i;
  2910. int sasize_sel;
  2911. int size = 0;
  2912. int size_pol = 0;
  2913. struct sk_buff *skb;
  2914. struct sadb_msg *hdr;
  2915. struct sadb_x_policy *pol;
  2916. struct xfrm_migrate *mp;
  2917. if (type != XFRM_POLICY_TYPE_MAIN)
  2918. return 0;
  2919. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2920. return -EINVAL;
  2921. if (k != NULL) {
  2922. /* addresses for KM */
  2923. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2924. pfkey_sockaddr_pair_size(k->family));
  2925. }
  2926. /* selector */
  2927. sasize_sel = pfkey_sockaddr_size(sel->family);
  2928. if (!sasize_sel)
  2929. return -EINVAL;
  2930. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2931. /* policy info */
  2932. size_pol += sizeof(struct sadb_x_policy);
  2933. /* ipsecrequests */
  2934. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2935. /* old locator pair */
  2936. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2937. pfkey_sockaddr_pair_size(mp->old_family);
  2938. /* new locator pair */
  2939. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2940. pfkey_sockaddr_pair_size(mp->new_family);
  2941. }
  2942. size += sizeof(struct sadb_msg) + size_pol;
  2943. /* alloc buffer */
  2944. skb = alloc_skb(size, GFP_ATOMIC);
  2945. if (skb == NULL)
  2946. return -ENOMEM;
  2947. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2948. hdr->sadb_msg_version = PF_KEY_V2;
  2949. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2950. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2951. hdr->sadb_msg_len = size / 8;
  2952. hdr->sadb_msg_errno = 0;
  2953. hdr->sadb_msg_reserved = 0;
  2954. hdr->sadb_msg_seq = 0;
  2955. hdr->sadb_msg_pid = 0;
  2956. /* Addresses to be used by KM for negotiation, if ext is available */
  2957. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2958. return -EINVAL;
  2959. /* selector src */
  2960. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2961. /* selector dst */
  2962. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2963. /* policy information */
  2964. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2965. pol->sadb_x_policy_len = size_pol / 8;
  2966. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2967. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2968. pol->sadb_x_policy_dir = dir + 1;
  2969. pol->sadb_x_policy_id = 0;
  2970. pol->sadb_x_policy_priority = 0;
  2971. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2972. /* old ipsecrequest */
  2973. int mode = pfkey_mode_from_xfrm(mp->mode);
  2974. if (mode < 0)
  2975. goto err;
  2976. if (set_ipsecrequest(skb, mp->proto, mode,
  2977. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2978. mp->reqid, mp->old_family,
  2979. &mp->old_saddr, &mp->old_daddr) < 0)
  2980. goto err;
  2981. /* new ipsecrequest */
  2982. if (set_ipsecrequest(skb, mp->proto, mode,
  2983. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2984. mp->reqid, mp->new_family,
  2985. &mp->new_saddr, &mp->new_daddr) < 0)
  2986. goto err;
  2987. }
  2988. /* broadcast migrate message to sockets */
  2989. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  2990. return 0;
  2991. err:
  2992. kfree_skb(skb);
  2993. return -EINVAL;
  2994. }
  2995. #else
  2996. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2997. struct xfrm_migrate *m, int num_bundles,
  2998. struct xfrm_kmaddress *k)
  2999. {
  3000. return -ENOPROTOOPT;
  3001. }
  3002. #endif
  3003. static int pfkey_sendmsg(struct kiocb *kiocb,
  3004. struct socket *sock, struct msghdr *msg, size_t len)
  3005. {
  3006. struct sock *sk = sock->sk;
  3007. struct sk_buff *skb = NULL;
  3008. struct sadb_msg *hdr = NULL;
  3009. int err;
  3010. err = -EOPNOTSUPP;
  3011. if (msg->msg_flags & MSG_OOB)
  3012. goto out;
  3013. err = -EMSGSIZE;
  3014. if ((unsigned)len > sk->sk_sndbuf - 32)
  3015. goto out;
  3016. err = -ENOBUFS;
  3017. skb = alloc_skb(len, GFP_KERNEL);
  3018. if (skb == NULL)
  3019. goto out;
  3020. err = -EFAULT;
  3021. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3022. goto out;
  3023. hdr = pfkey_get_base_msg(skb, &err);
  3024. if (!hdr)
  3025. goto out;
  3026. mutex_lock(&xfrm_cfg_mutex);
  3027. err = pfkey_process(sk, skb, hdr);
  3028. mutex_unlock(&xfrm_cfg_mutex);
  3029. out:
  3030. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3031. err = 0;
  3032. kfree_skb(skb);
  3033. return err ? : len;
  3034. }
  3035. static int pfkey_recvmsg(struct kiocb *kiocb,
  3036. struct socket *sock, struct msghdr *msg, size_t len,
  3037. int flags)
  3038. {
  3039. struct sock *sk = sock->sk;
  3040. struct pfkey_sock *pfk = pfkey_sk(sk);
  3041. struct sk_buff *skb;
  3042. int copied, err;
  3043. err = -EINVAL;
  3044. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3045. goto out;
  3046. msg->msg_namelen = 0;
  3047. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3048. if (skb == NULL)
  3049. goto out;
  3050. copied = skb->len;
  3051. if (copied > len) {
  3052. msg->msg_flags |= MSG_TRUNC;
  3053. copied = len;
  3054. }
  3055. skb_reset_transport_header(skb);
  3056. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3057. if (err)
  3058. goto out_free;
  3059. sock_recv_ts_and_drops(msg, sk, skb);
  3060. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3061. if (pfk->dump.dump != NULL &&
  3062. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3063. pfkey_do_dump(pfk);
  3064. out_free:
  3065. skb_free_datagram(sk, skb);
  3066. out:
  3067. return err;
  3068. }
  3069. static const struct proto_ops pfkey_ops = {
  3070. .family = PF_KEY,
  3071. .owner = THIS_MODULE,
  3072. /* Operations that make no sense on pfkey sockets. */
  3073. .bind = sock_no_bind,
  3074. .connect = sock_no_connect,
  3075. .socketpair = sock_no_socketpair,
  3076. .accept = sock_no_accept,
  3077. .getname = sock_no_getname,
  3078. .ioctl = sock_no_ioctl,
  3079. .listen = sock_no_listen,
  3080. .shutdown = sock_no_shutdown,
  3081. .setsockopt = sock_no_setsockopt,
  3082. .getsockopt = sock_no_getsockopt,
  3083. .mmap = sock_no_mmap,
  3084. .sendpage = sock_no_sendpage,
  3085. /* Now the operations that really occur. */
  3086. .release = pfkey_release,
  3087. .poll = datagram_poll,
  3088. .sendmsg = pfkey_sendmsg,
  3089. .recvmsg = pfkey_recvmsg,
  3090. };
  3091. static const struct net_proto_family pfkey_family_ops = {
  3092. .family = PF_KEY,
  3093. .create = pfkey_create,
  3094. .owner = THIS_MODULE,
  3095. };
  3096. #ifdef CONFIG_PROC_FS
  3097. static int pfkey_seq_show(struct seq_file *f, void *v)
  3098. {
  3099. struct sock *s = sk_entry(v);
  3100. if (v == SEQ_START_TOKEN)
  3101. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3102. else
  3103. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3104. s,
  3105. atomic_read(&s->sk_refcnt),
  3106. sk_rmem_alloc_get(s),
  3107. sk_wmem_alloc_get(s),
  3108. sock_i_uid(s),
  3109. sock_i_ino(s)
  3110. );
  3111. return 0;
  3112. }
  3113. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3114. {
  3115. struct net *net = seq_file_net(f);
  3116. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3117. rcu_read_lock();
  3118. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3119. }
  3120. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3121. {
  3122. struct net *net = seq_file_net(f);
  3123. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3124. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3125. }
  3126. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3127. {
  3128. rcu_read_unlock();
  3129. }
  3130. static const struct seq_operations pfkey_seq_ops = {
  3131. .start = pfkey_seq_start,
  3132. .next = pfkey_seq_next,
  3133. .stop = pfkey_seq_stop,
  3134. .show = pfkey_seq_show,
  3135. };
  3136. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3137. {
  3138. return seq_open_net(inode, file, &pfkey_seq_ops,
  3139. sizeof(struct seq_net_private));
  3140. }
  3141. static const struct file_operations pfkey_proc_ops = {
  3142. .open = pfkey_seq_open,
  3143. .read = seq_read,
  3144. .llseek = seq_lseek,
  3145. .release = seq_release_net,
  3146. };
  3147. static int __net_init pfkey_init_proc(struct net *net)
  3148. {
  3149. struct proc_dir_entry *e;
  3150. e = proc_net_fops_create(net, "pfkey", 0, &pfkey_proc_ops);
  3151. if (e == NULL)
  3152. return -ENOMEM;
  3153. return 0;
  3154. }
  3155. static void __net_exit pfkey_exit_proc(struct net *net)
  3156. {
  3157. proc_net_remove(net, "pfkey");
  3158. }
  3159. #else
  3160. static inline int pfkey_init_proc(struct net *net)
  3161. {
  3162. return 0;
  3163. }
  3164. static inline void pfkey_exit_proc(struct net *net)
  3165. {
  3166. }
  3167. #endif
  3168. static struct xfrm_mgr pfkeyv2_mgr =
  3169. {
  3170. .id = "pfkeyv2",
  3171. .notify = pfkey_send_notify,
  3172. .acquire = pfkey_send_acquire,
  3173. .compile_policy = pfkey_compile_policy,
  3174. .new_mapping = pfkey_send_new_mapping,
  3175. .notify_policy = pfkey_send_policy_notify,
  3176. .migrate = pfkey_send_migrate,
  3177. };
  3178. static int __net_init pfkey_net_init(struct net *net)
  3179. {
  3180. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3181. int rv;
  3182. INIT_HLIST_HEAD(&net_pfkey->table);
  3183. atomic_set(&net_pfkey->socks_nr, 0);
  3184. rv = pfkey_init_proc(net);
  3185. return rv;
  3186. }
  3187. static void __net_exit pfkey_net_exit(struct net *net)
  3188. {
  3189. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3190. pfkey_exit_proc(net);
  3191. BUG_ON(!hlist_empty(&net_pfkey->table));
  3192. }
  3193. static struct pernet_operations pfkey_net_ops = {
  3194. .init = pfkey_net_init,
  3195. .exit = pfkey_net_exit,
  3196. .id = &pfkey_net_id,
  3197. .size = sizeof(struct netns_pfkey),
  3198. };
  3199. static void __exit ipsec_pfkey_exit(void)
  3200. {
  3201. xfrm_unregister_km(&pfkeyv2_mgr);
  3202. sock_unregister(PF_KEY);
  3203. unregister_pernet_subsys(&pfkey_net_ops);
  3204. proto_unregister(&key_proto);
  3205. }
  3206. static int __init ipsec_pfkey_init(void)
  3207. {
  3208. int err = proto_register(&key_proto, 0);
  3209. if (err != 0)
  3210. goto out;
  3211. err = register_pernet_subsys(&pfkey_net_ops);
  3212. if (err != 0)
  3213. goto out_unregister_key_proto;
  3214. err = sock_register(&pfkey_family_ops);
  3215. if (err != 0)
  3216. goto out_unregister_pernet;
  3217. err = xfrm_register_km(&pfkeyv2_mgr);
  3218. if (err != 0)
  3219. goto out_sock_unregister;
  3220. out:
  3221. return err;
  3222. out_sock_unregister:
  3223. sock_unregister(PF_KEY);
  3224. out_unregister_pernet:
  3225. unregister_pernet_subsys(&pfkey_net_ops);
  3226. out_unregister_key_proto:
  3227. proto_unregister(&key_proto);
  3228. goto out;
  3229. }
  3230. module_init(ipsec_pfkey_init);
  3231. module_exit(ipsec_pfkey_exit);
  3232. MODULE_LICENSE("GPL");
  3233. MODULE_ALIAS_NETPROTO(PF_KEY);