af_iucv.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/iucv.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.1"
  30. static char iucv_userid[80];
  31. static const struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. /* Call Back functions */
  80. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  81. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  82. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  83. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  84. u8 ipuser[16]);
  85. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  86. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  87. static struct iucv_sock_list iucv_sk_list = {
  88. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  89. .autobind_name = ATOMIC_INIT(0)
  90. };
  91. static struct iucv_handler af_iucv_handler = {
  92. .path_pending = iucv_callback_connreq,
  93. .path_complete = iucv_callback_connack,
  94. .path_severed = iucv_callback_connrej,
  95. .message_pending = iucv_callback_rx,
  96. .message_complete = iucv_callback_txdone,
  97. .path_quiesced = iucv_callback_shutdown,
  98. };
  99. static inline void high_nmcpy(unsigned char *dst, char *src)
  100. {
  101. memcpy(dst, src, 8);
  102. }
  103. static inline void low_nmcpy(unsigned char *dst, char *src)
  104. {
  105. memcpy(&dst[8], src, 8);
  106. }
  107. static int afiucv_pm_prepare(struct device *dev)
  108. {
  109. #ifdef CONFIG_PM_DEBUG
  110. printk(KERN_WARNING "afiucv_pm_prepare\n");
  111. #endif
  112. return 0;
  113. }
  114. static void afiucv_pm_complete(struct device *dev)
  115. {
  116. #ifdef CONFIG_PM_DEBUG
  117. printk(KERN_WARNING "afiucv_pm_complete\n");
  118. #endif
  119. }
  120. /**
  121. * afiucv_pm_freeze() - Freeze PM callback
  122. * @dev: AFIUCV dummy device
  123. *
  124. * Sever all established IUCV communication pathes
  125. */
  126. static int afiucv_pm_freeze(struct device *dev)
  127. {
  128. struct iucv_sock *iucv;
  129. struct sock *sk;
  130. struct hlist_node *node;
  131. int err = 0;
  132. #ifdef CONFIG_PM_DEBUG
  133. printk(KERN_WARNING "afiucv_pm_freeze\n");
  134. #endif
  135. read_lock(&iucv_sk_list.lock);
  136. sk_for_each(sk, node, &iucv_sk_list.head) {
  137. iucv = iucv_sk(sk);
  138. skb_queue_purge(&iucv->send_skb_q);
  139. skb_queue_purge(&iucv->backlog_skb_q);
  140. switch (sk->sk_state) {
  141. case IUCV_SEVERED:
  142. case IUCV_DISCONN:
  143. case IUCV_CLOSING:
  144. case IUCV_CONNECTED:
  145. if (iucv->path) {
  146. err = iucv_path_sever(iucv->path, NULL);
  147. iucv_path_free(iucv->path);
  148. iucv->path = NULL;
  149. }
  150. break;
  151. case IUCV_OPEN:
  152. case IUCV_BOUND:
  153. case IUCV_LISTEN:
  154. case IUCV_CLOSED:
  155. default:
  156. break;
  157. }
  158. }
  159. read_unlock(&iucv_sk_list.lock);
  160. return err;
  161. }
  162. /**
  163. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  164. * @dev: AFIUCV dummy device
  165. *
  166. * socket clean up after freeze
  167. */
  168. static int afiucv_pm_restore_thaw(struct device *dev)
  169. {
  170. struct iucv_sock *iucv;
  171. struct sock *sk;
  172. struct hlist_node *node;
  173. #ifdef CONFIG_PM_DEBUG
  174. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  175. #endif
  176. read_lock(&iucv_sk_list.lock);
  177. sk_for_each(sk, node, &iucv_sk_list.head) {
  178. iucv = iucv_sk(sk);
  179. switch (sk->sk_state) {
  180. case IUCV_CONNECTED:
  181. sk->sk_err = EPIPE;
  182. sk->sk_state = IUCV_DISCONN;
  183. sk->sk_state_change(sk);
  184. break;
  185. case IUCV_DISCONN:
  186. case IUCV_SEVERED:
  187. case IUCV_CLOSING:
  188. case IUCV_LISTEN:
  189. case IUCV_BOUND:
  190. case IUCV_OPEN:
  191. default:
  192. break;
  193. }
  194. }
  195. read_unlock(&iucv_sk_list.lock);
  196. return 0;
  197. }
  198. static const struct dev_pm_ops afiucv_pm_ops = {
  199. .prepare = afiucv_pm_prepare,
  200. .complete = afiucv_pm_complete,
  201. .freeze = afiucv_pm_freeze,
  202. .thaw = afiucv_pm_restore_thaw,
  203. .restore = afiucv_pm_restore_thaw,
  204. };
  205. static struct device_driver af_iucv_driver = {
  206. .owner = THIS_MODULE,
  207. .name = "afiucv",
  208. .bus = &iucv_bus,
  209. .pm = &afiucv_pm_ops,
  210. };
  211. /* dummy device used as trigger for PM functions */
  212. static struct device *af_iucv_dev;
  213. /**
  214. * iucv_msg_length() - Returns the length of an iucv message.
  215. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  216. *
  217. * The function returns the length of the specified iucv message @msg of data
  218. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  219. *
  220. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  221. * data:
  222. * PRMDATA[0..6] socket data (max 7 bytes);
  223. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  224. *
  225. * The socket data length is computed by substracting the socket data length
  226. * value from 0xFF.
  227. * If the socket data len is greater 7, then PRMDATA can be used for special
  228. * notifications (see iucv_sock_shutdown); and further,
  229. * if the socket data len is > 7, the function returns 8.
  230. *
  231. * Use this function to allocate socket buffers to store iucv message data.
  232. */
  233. static inline size_t iucv_msg_length(struct iucv_message *msg)
  234. {
  235. size_t datalen;
  236. if (msg->flags & IUCV_IPRMDATA) {
  237. datalen = 0xff - msg->rmmsg[7];
  238. return (datalen < 8) ? datalen : 8;
  239. }
  240. return msg->length;
  241. }
  242. /**
  243. * iucv_sock_in_state() - check for specific states
  244. * @sk: sock structure
  245. * @state: first iucv sk state
  246. * @state: second iucv sk state
  247. *
  248. * Returns true if the socket in either in the first or second state.
  249. */
  250. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  251. {
  252. return (sk->sk_state == state || sk->sk_state == state2);
  253. }
  254. /**
  255. * iucv_below_msglim() - function to check if messages can be sent
  256. * @sk: sock structure
  257. *
  258. * Returns true if the send queue length is lower than the message limit.
  259. * Always returns true if the socket is not connected (no iucv path for
  260. * checking the message limit).
  261. */
  262. static inline int iucv_below_msglim(struct sock *sk)
  263. {
  264. struct iucv_sock *iucv = iucv_sk(sk);
  265. if (sk->sk_state != IUCV_CONNECTED)
  266. return 1;
  267. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  268. }
  269. /**
  270. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  271. */
  272. static void iucv_sock_wake_msglim(struct sock *sk)
  273. {
  274. struct socket_wq *wq;
  275. rcu_read_lock();
  276. wq = rcu_dereference(sk->sk_wq);
  277. if (wq_has_sleeper(wq))
  278. wake_up_interruptible_all(&wq->wait);
  279. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  280. rcu_read_unlock();
  281. }
  282. /* Timers */
  283. static void iucv_sock_timeout(unsigned long arg)
  284. {
  285. struct sock *sk = (struct sock *)arg;
  286. bh_lock_sock(sk);
  287. sk->sk_err = ETIMEDOUT;
  288. sk->sk_state_change(sk);
  289. bh_unlock_sock(sk);
  290. iucv_sock_kill(sk);
  291. sock_put(sk);
  292. }
  293. static void iucv_sock_clear_timer(struct sock *sk)
  294. {
  295. sk_stop_timer(sk, &sk->sk_timer);
  296. }
  297. static struct sock *__iucv_get_sock_by_name(char *nm)
  298. {
  299. struct sock *sk;
  300. struct hlist_node *node;
  301. sk_for_each(sk, node, &iucv_sk_list.head)
  302. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  303. return sk;
  304. return NULL;
  305. }
  306. static void iucv_sock_destruct(struct sock *sk)
  307. {
  308. skb_queue_purge(&sk->sk_receive_queue);
  309. skb_queue_purge(&sk->sk_write_queue);
  310. }
  311. /* Cleanup Listen */
  312. static void iucv_sock_cleanup_listen(struct sock *parent)
  313. {
  314. struct sock *sk;
  315. /* Close non-accepted connections */
  316. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  317. iucv_sock_close(sk);
  318. iucv_sock_kill(sk);
  319. }
  320. parent->sk_state = IUCV_CLOSED;
  321. }
  322. /* Kill socket (only if zapped and orphaned) */
  323. static void iucv_sock_kill(struct sock *sk)
  324. {
  325. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  326. return;
  327. iucv_sock_unlink(&iucv_sk_list, sk);
  328. sock_set_flag(sk, SOCK_DEAD);
  329. sock_put(sk);
  330. }
  331. /* Close an IUCV socket */
  332. static void iucv_sock_close(struct sock *sk)
  333. {
  334. unsigned char user_data[16];
  335. struct iucv_sock *iucv = iucv_sk(sk);
  336. int err;
  337. unsigned long timeo;
  338. iucv_sock_clear_timer(sk);
  339. lock_sock(sk);
  340. switch (sk->sk_state) {
  341. case IUCV_LISTEN:
  342. iucv_sock_cleanup_listen(sk);
  343. break;
  344. case IUCV_CONNECTED:
  345. case IUCV_DISCONN:
  346. err = 0;
  347. sk->sk_state = IUCV_CLOSING;
  348. sk->sk_state_change(sk);
  349. if (!skb_queue_empty(&iucv->send_skb_q)) {
  350. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  351. timeo = sk->sk_lingertime;
  352. else
  353. timeo = IUCV_DISCONN_TIMEOUT;
  354. err = iucv_sock_wait(sk,
  355. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  356. timeo);
  357. }
  358. case IUCV_CLOSING: /* fall through */
  359. sk->sk_state = IUCV_CLOSED;
  360. sk->sk_state_change(sk);
  361. if (iucv->path) {
  362. low_nmcpy(user_data, iucv->src_name);
  363. high_nmcpy(user_data, iucv->dst_name);
  364. ASCEBC(user_data, sizeof(user_data));
  365. err = iucv_path_sever(iucv->path, user_data);
  366. iucv_path_free(iucv->path);
  367. iucv->path = NULL;
  368. }
  369. sk->sk_err = ECONNRESET;
  370. sk->sk_state_change(sk);
  371. skb_queue_purge(&iucv->send_skb_q);
  372. skb_queue_purge(&iucv->backlog_skb_q);
  373. break;
  374. default:
  375. /* nothing to do here */
  376. break;
  377. }
  378. /* mark socket for deletion by iucv_sock_kill() */
  379. sock_set_flag(sk, SOCK_ZAPPED);
  380. release_sock(sk);
  381. }
  382. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  383. {
  384. if (parent)
  385. sk->sk_type = parent->sk_type;
  386. }
  387. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  388. {
  389. struct sock *sk;
  390. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  391. if (!sk)
  392. return NULL;
  393. sock_init_data(sock, sk);
  394. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  395. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  396. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  397. INIT_LIST_HEAD(&iucv_sk(sk)->message_q.list);
  398. spin_lock_init(&iucv_sk(sk)->message_q.lock);
  399. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  400. iucv_sk(sk)->send_tag = 0;
  401. iucv_sk(sk)->flags = 0;
  402. iucv_sk(sk)->msglimit = IUCV_QUEUELEN_DEFAULT;
  403. iucv_sk(sk)->path = NULL;
  404. memset(&iucv_sk(sk)->src_user_id , 0, 32);
  405. sk->sk_destruct = iucv_sock_destruct;
  406. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  407. sk->sk_allocation = GFP_DMA;
  408. sock_reset_flag(sk, SOCK_ZAPPED);
  409. sk->sk_protocol = proto;
  410. sk->sk_state = IUCV_OPEN;
  411. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  412. iucv_sock_link(&iucv_sk_list, sk);
  413. return sk;
  414. }
  415. /* Create an IUCV socket */
  416. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  417. int kern)
  418. {
  419. struct sock *sk;
  420. if (protocol && protocol != PF_IUCV)
  421. return -EPROTONOSUPPORT;
  422. sock->state = SS_UNCONNECTED;
  423. switch (sock->type) {
  424. case SOCK_STREAM:
  425. sock->ops = &iucv_sock_ops;
  426. break;
  427. case SOCK_SEQPACKET:
  428. /* currently, proto ops can handle both sk types */
  429. sock->ops = &iucv_sock_ops;
  430. break;
  431. default:
  432. return -ESOCKTNOSUPPORT;
  433. }
  434. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  435. if (!sk)
  436. return -ENOMEM;
  437. iucv_sock_init(sk, NULL);
  438. return 0;
  439. }
  440. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  441. {
  442. write_lock_bh(&l->lock);
  443. sk_add_node(sk, &l->head);
  444. write_unlock_bh(&l->lock);
  445. }
  446. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  447. {
  448. write_lock_bh(&l->lock);
  449. sk_del_node_init(sk);
  450. write_unlock_bh(&l->lock);
  451. }
  452. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  453. {
  454. unsigned long flags;
  455. struct iucv_sock *par = iucv_sk(parent);
  456. sock_hold(sk);
  457. spin_lock_irqsave(&par->accept_q_lock, flags);
  458. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  459. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  460. iucv_sk(sk)->parent = parent;
  461. sk_acceptq_added(parent);
  462. }
  463. void iucv_accept_unlink(struct sock *sk)
  464. {
  465. unsigned long flags;
  466. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  467. spin_lock_irqsave(&par->accept_q_lock, flags);
  468. list_del_init(&iucv_sk(sk)->accept_q);
  469. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  470. sk_acceptq_removed(iucv_sk(sk)->parent);
  471. iucv_sk(sk)->parent = NULL;
  472. sock_put(sk);
  473. }
  474. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  475. {
  476. struct iucv_sock *isk, *n;
  477. struct sock *sk;
  478. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  479. sk = (struct sock *) isk;
  480. lock_sock(sk);
  481. if (sk->sk_state == IUCV_CLOSED) {
  482. iucv_accept_unlink(sk);
  483. release_sock(sk);
  484. continue;
  485. }
  486. if (sk->sk_state == IUCV_CONNECTED ||
  487. sk->sk_state == IUCV_SEVERED ||
  488. sk->sk_state == IUCV_DISCONN || /* due to PM restore */
  489. !newsock) {
  490. iucv_accept_unlink(sk);
  491. if (newsock)
  492. sock_graft(sk, newsock);
  493. if (sk->sk_state == IUCV_SEVERED)
  494. sk->sk_state = IUCV_DISCONN;
  495. release_sock(sk);
  496. return sk;
  497. }
  498. release_sock(sk);
  499. }
  500. return NULL;
  501. }
  502. /* Bind an unbound socket */
  503. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  504. int addr_len)
  505. {
  506. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  507. struct sock *sk = sock->sk;
  508. struct iucv_sock *iucv;
  509. int err;
  510. /* Verify the input sockaddr */
  511. if (!addr || addr->sa_family != AF_IUCV)
  512. return -EINVAL;
  513. lock_sock(sk);
  514. if (sk->sk_state != IUCV_OPEN) {
  515. err = -EBADFD;
  516. goto done;
  517. }
  518. write_lock_bh(&iucv_sk_list.lock);
  519. iucv = iucv_sk(sk);
  520. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  521. err = -EADDRINUSE;
  522. goto done_unlock;
  523. }
  524. if (iucv->path) {
  525. err = 0;
  526. goto done_unlock;
  527. }
  528. /* Bind the socket */
  529. memcpy(iucv->src_name, sa->siucv_name, 8);
  530. /* Copy the user id */
  531. memcpy(iucv->src_user_id, iucv_userid, 8);
  532. sk->sk_state = IUCV_BOUND;
  533. err = 0;
  534. done_unlock:
  535. /* Release the socket list lock */
  536. write_unlock_bh(&iucv_sk_list.lock);
  537. done:
  538. release_sock(sk);
  539. return err;
  540. }
  541. /* Automatically bind an unbound socket */
  542. static int iucv_sock_autobind(struct sock *sk)
  543. {
  544. struct iucv_sock *iucv = iucv_sk(sk);
  545. char query_buffer[80];
  546. char name[12];
  547. int err = 0;
  548. /* Set the userid and name */
  549. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  550. if (unlikely(err))
  551. return -EPROTO;
  552. memcpy(iucv->src_user_id, query_buffer, 8);
  553. write_lock_bh(&iucv_sk_list.lock);
  554. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  555. while (__iucv_get_sock_by_name(name)) {
  556. sprintf(name, "%08x",
  557. atomic_inc_return(&iucv_sk_list.autobind_name));
  558. }
  559. write_unlock_bh(&iucv_sk_list.lock);
  560. memcpy(&iucv->src_name, name, 8);
  561. return err;
  562. }
  563. /* Connect an unconnected socket */
  564. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  565. int alen, int flags)
  566. {
  567. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  568. struct sock *sk = sock->sk;
  569. struct iucv_sock *iucv;
  570. unsigned char user_data[16];
  571. int err;
  572. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  573. return -EINVAL;
  574. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  575. return -EBADFD;
  576. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  577. return -EINVAL;
  578. if (sk->sk_state == IUCV_OPEN) {
  579. err = iucv_sock_autobind(sk);
  580. if (unlikely(err))
  581. return err;
  582. }
  583. lock_sock(sk);
  584. /* Set the destination information */
  585. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  586. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  587. high_nmcpy(user_data, sa->siucv_name);
  588. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  589. ASCEBC(user_data, sizeof(user_data));
  590. iucv = iucv_sk(sk);
  591. /* Create path. */
  592. iucv->path = iucv_path_alloc(iucv->msglimit,
  593. IUCV_IPRMDATA, GFP_KERNEL);
  594. if (!iucv->path) {
  595. err = -ENOMEM;
  596. goto done;
  597. }
  598. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  599. sa->siucv_user_id, NULL, user_data, sk);
  600. if (err) {
  601. iucv_path_free(iucv->path);
  602. iucv->path = NULL;
  603. switch (err) {
  604. case 0x0b: /* Target communicator is not logged on */
  605. err = -ENETUNREACH;
  606. break;
  607. case 0x0d: /* Max connections for this guest exceeded */
  608. case 0x0e: /* Max connections for target guest exceeded */
  609. err = -EAGAIN;
  610. break;
  611. case 0x0f: /* Missing IUCV authorization */
  612. err = -EACCES;
  613. break;
  614. default:
  615. err = -ECONNREFUSED;
  616. break;
  617. }
  618. goto done;
  619. }
  620. if (sk->sk_state != IUCV_CONNECTED) {
  621. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  622. IUCV_DISCONN),
  623. sock_sndtimeo(sk, flags & O_NONBLOCK));
  624. }
  625. if (sk->sk_state == IUCV_DISCONN) {
  626. err = -ECONNREFUSED;
  627. }
  628. if (err) {
  629. iucv_path_sever(iucv->path, NULL);
  630. iucv_path_free(iucv->path);
  631. iucv->path = NULL;
  632. }
  633. done:
  634. release_sock(sk);
  635. return err;
  636. }
  637. /* Move a socket into listening state. */
  638. static int iucv_sock_listen(struct socket *sock, int backlog)
  639. {
  640. struct sock *sk = sock->sk;
  641. int err;
  642. lock_sock(sk);
  643. err = -EINVAL;
  644. if (sk->sk_state != IUCV_BOUND)
  645. goto done;
  646. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  647. goto done;
  648. sk->sk_max_ack_backlog = backlog;
  649. sk->sk_ack_backlog = 0;
  650. sk->sk_state = IUCV_LISTEN;
  651. err = 0;
  652. done:
  653. release_sock(sk);
  654. return err;
  655. }
  656. /* Accept a pending connection */
  657. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  658. int flags)
  659. {
  660. DECLARE_WAITQUEUE(wait, current);
  661. struct sock *sk = sock->sk, *nsk;
  662. long timeo;
  663. int err = 0;
  664. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  665. if (sk->sk_state != IUCV_LISTEN) {
  666. err = -EBADFD;
  667. goto done;
  668. }
  669. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  670. /* Wait for an incoming connection */
  671. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  672. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  673. set_current_state(TASK_INTERRUPTIBLE);
  674. if (!timeo) {
  675. err = -EAGAIN;
  676. break;
  677. }
  678. release_sock(sk);
  679. timeo = schedule_timeout(timeo);
  680. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  681. if (sk->sk_state != IUCV_LISTEN) {
  682. err = -EBADFD;
  683. break;
  684. }
  685. if (signal_pending(current)) {
  686. err = sock_intr_errno(timeo);
  687. break;
  688. }
  689. }
  690. set_current_state(TASK_RUNNING);
  691. remove_wait_queue(sk_sleep(sk), &wait);
  692. if (err)
  693. goto done;
  694. newsock->state = SS_CONNECTED;
  695. done:
  696. release_sock(sk);
  697. return err;
  698. }
  699. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  700. int *len, int peer)
  701. {
  702. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  703. struct sock *sk = sock->sk;
  704. addr->sa_family = AF_IUCV;
  705. *len = sizeof(struct sockaddr_iucv);
  706. if (peer) {
  707. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  708. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  709. } else {
  710. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  711. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  712. }
  713. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  714. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  715. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  716. return 0;
  717. }
  718. /**
  719. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  720. * @path: IUCV path
  721. * @msg: Pointer to a struct iucv_message
  722. * @skb: The socket data to send, skb->len MUST BE <= 7
  723. *
  724. * Send the socket data in the parameter list in the iucv message
  725. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  726. * list and the socket data len at index 7 (last byte).
  727. * See also iucv_msg_length().
  728. *
  729. * Returns the error code from the iucv_message_send() call.
  730. */
  731. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  732. struct sk_buff *skb)
  733. {
  734. u8 prmdata[8];
  735. memcpy(prmdata, (void *) skb->data, skb->len);
  736. prmdata[7] = 0xff - (u8) skb->len;
  737. return iucv_message_send(path, msg, IUCV_IPRMDATA, 0,
  738. (void *) prmdata, 8);
  739. }
  740. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  741. struct msghdr *msg, size_t len)
  742. {
  743. struct sock *sk = sock->sk;
  744. struct iucv_sock *iucv = iucv_sk(sk);
  745. struct sk_buff *skb;
  746. struct iucv_message txmsg;
  747. struct cmsghdr *cmsg;
  748. int cmsg_done;
  749. long timeo;
  750. char user_id[9];
  751. char appl_id[9];
  752. int err;
  753. int noblock = msg->msg_flags & MSG_DONTWAIT;
  754. err = sock_error(sk);
  755. if (err)
  756. return err;
  757. if (msg->msg_flags & MSG_OOB)
  758. return -EOPNOTSUPP;
  759. /* SOCK_SEQPACKET: we do not support segmented records */
  760. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  761. return -EOPNOTSUPP;
  762. lock_sock(sk);
  763. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  764. err = -EPIPE;
  765. goto out;
  766. }
  767. /* Return if the socket is not in connected state */
  768. if (sk->sk_state != IUCV_CONNECTED) {
  769. err = -ENOTCONN;
  770. goto out;
  771. }
  772. /* initialize defaults */
  773. cmsg_done = 0; /* check for duplicate headers */
  774. txmsg.class = 0;
  775. /* iterate over control messages */
  776. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  777. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  778. if (!CMSG_OK(msg, cmsg)) {
  779. err = -EINVAL;
  780. goto out;
  781. }
  782. if (cmsg->cmsg_level != SOL_IUCV)
  783. continue;
  784. if (cmsg->cmsg_type & cmsg_done) {
  785. err = -EINVAL;
  786. goto out;
  787. }
  788. cmsg_done |= cmsg->cmsg_type;
  789. switch (cmsg->cmsg_type) {
  790. case SCM_IUCV_TRGCLS:
  791. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  792. err = -EINVAL;
  793. goto out;
  794. }
  795. /* set iucv message target class */
  796. memcpy(&txmsg.class,
  797. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  798. break;
  799. default:
  800. err = -EINVAL;
  801. goto out;
  802. break;
  803. }
  804. }
  805. /* allocate one skb for each iucv message:
  806. * this is fine for SOCK_SEQPACKET (unless we want to support
  807. * segmented records using the MSG_EOR flag), but
  808. * for SOCK_STREAM we might want to improve it in future */
  809. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  810. if (!skb)
  811. goto out;
  812. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  813. err = -EFAULT;
  814. goto fail;
  815. }
  816. /* wait if outstanding messages for iucv path has reached */
  817. timeo = sock_sndtimeo(sk, noblock);
  818. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  819. if (err)
  820. goto fail;
  821. /* return -ECONNRESET if the socket is no longer connected */
  822. if (sk->sk_state != IUCV_CONNECTED) {
  823. err = -ECONNRESET;
  824. goto fail;
  825. }
  826. /* increment and save iucv message tag for msg_completion cbk */
  827. txmsg.tag = iucv->send_tag++;
  828. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  829. skb_queue_tail(&iucv->send_skb_q, skb);
  830. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  831. && skb->len <= 7) {
  832. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  833. /* on success: there is no message_complete callback
  834. * for an IPRMDATA msg; remove skb from send queue */
  835. if (err == 0) {
  836. skb_unlink(skb, &iucv->send_skb_q);
  837. kfree_skb(skb);
  838. }
  839. /* this error should never happen since the
  840. * IUCV_IPRMDATA path flag is set... sever path */
  841. if (err == 0x15) {
  842. iucv_path_sever(iucv->path, NULL);
  843. skb_unlink(skb, &iucv->send_skb_q);
  844. err = -EPIPE;
  845. goto fail;
  846. }
  847. } else
  848. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  849. (void *) skb->data, skb->len);
  850. if (err) {
  851. if (err == 3) {
  852. user_id[8] = 0;
  853. memcpy(user_id, iucv->dst_user_id, 8);
  854. appl_id[8] = 0;
  855. memcpy(appl_id, iucv->dst_name, 8);
  856. pr_err("Application %s on z/VM guest %s"
  857. " exceeds message limit\n",
  858. appl_id, user_id);
  859. err = -EAGAIN;
  860. } else
  861. err = -EPIPE;
  862. skb_unlink(skb, &iucv->send_skb_q);
  863. goto fail;
  864. }
  865. release_sock(sk);
  866. return len;
  867. fail:
  868. kfree_skb(skb);
  869. out:
  870. release_sock(sk);
  871. return err;
  872. }
  873. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  874. *
  875. * Locking: must be called with message_q.lock held
  876. */
  877. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  878. {
  879. int dataleft, size, copied = 0;
  880. struct sk_buff *nskb;
  881. dataleft = len;
  882. while (dataleft) {
  883. if (dataleft >= sk->sk_rcvbuf / 4)
  884. size = sk->sk_rcvbuf / 4;
  885. else
  886. size = dataleft;
  887. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  888. if (!nskb)
  889. return -ENOMEM;
  890. /* copy target class to control buffer of new skb */
  891. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  892. /* copy data fragment */
  893. memcpy(nskb->data, skb->data + copied, size);
  894. copied += size;
  895. dataleft -= size;
  896. skb_reset_transport_header(nskb);
  897. skb_reset_network_header(nskb);
  898. nskb->len = size;
  899. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  900. }
  901. return 0;
  902. }
  903. /* iucv_process_message() - Receive a single outstanding IUCV message
  904. *
  905. * Locking: must be called with message_q.lock held
  906. */
  907. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  908. struct iucv_path *path,
  909. struct iucv_message *msg)
  910. {
  911. int rc;
  912. unsigned int len;
  913. len = iucv_msg_length(msg);
  914. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  915. /* Note: the first 4 bytes are reserved for msg tag */
  916. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  917. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  918. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  919. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  920. skb->data = NULL;
  921. skb->len = 0;
  922. }
  923. } else {
  924. rc = iucv_message_receive(path, msg, msg->flags & IUCV_IPRMDATA,
  925. skb->data, len, NULL);
  926. if (rc) {
  927. kfree_skb(skb);
  928. return;
  929. }
  930. /* we need to fragment iucv messages for SOCK_STREAM only;
  931. * for SOCK_SEQPACKET, it is only relevant if we support
  932. * record segmentation using MSG_EOR (see also recvmsg()) */
  933. if (sk->sk_type == SOCK_STREAM &&
  934. skb->truesize >= sk->sk_rcvbuf / 4) {
  935. rc = iucv_fragment_skb(sk, skb, len);
  936. kfree_skb(skb);
  937. skb = NULL;
  938. if (rc) {
  939. iucv_path_sever(path, NULL);
  940. return;
  941. }
  942. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  943. } else {
  944. skb_reset_transport_header(skb);
  945. skb_reset_network_header(skb);
  946. skb->len = len;
  947. }
  948. }
  949. if (sock_queue_rcv_skb(sk, skb))
  950. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  951. }
  952. /* iucv_process_message_q() - Process outstanding IUCV messages
  953. *
  954. * Locking: must be called with message_q.lock held
  955. */
  956. static void iucv_process_message_q(struct sock *sk)
  957. {
  958. struct iucv_sock *iucv = iucv_sk(sk);
  959. struct sk_buff *skb;
  960. struct sock_msg_q *p, *n;
  961. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  962. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  963. if (!skb)
  964. break;
  965. iucv_process_message(sk, skb, p->path, &p->msg);
  966. list_del(&p->list);
  967. kfree(p);
  968. if (!skb_queue_empty(&iucv->backlog_skb_q))
  969. break;
  970. }
  971. }
  972. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  973. struct msghdr *msg, size_t len, int flags)
  974. {
  975. int noblock = flags & MSG_DONTWAIT;
  976. struct sock *sk = sock->sk;
  977. struct iucv_sock *iucv = iucv_sk(sk);
  978. unsigned int copied, rlen;
  979. struct sk_buff *skb, *rskb, *cskb;
  980. int err = 0;
  981. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  982. skb_queue_empty(&iucv->backlog_skb_q) &&
  983. skb_queue_empty(&sk->sk_receive_queue) &&
  984. list_empty(&iucv->message_q.list))
  985. return 0;
  986. if (flags & (MSG_OOB))
  987. return -EOPNOTSUPP;
  988. /* receive/dequeue next skb:
  989. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  990. skb = skb_recv_datagram(sk, flags, noblock, &err);
  991. if (!skb) {
  992. if (sk->sk_shutdown & RCV_SHUTDOWN)
  993. return 0;
  994. return err;
  995. }
  996. rlen = skb->len; /* real length of skb */
  997. copied = min_t(unsigned int, rlen, len);
  998. cskb = skb;
  999. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  1000. if (!(flags & MSG_PEEK))
  1001. skb_queue_head(&sk->sk_receive_queue, skb);
  1002. return -EFAULT;
  1003. }
  1004. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1005. if (sk->sk_type == SOCK_SEQPACKET) {
  1006. if (copied < rlen)
  1007. msg->msg_flags |= MSG_TRUNC;
  1008. /* each iucv message contains a complete record */
  1009. msg->msg_flags |= MSG_EOR;
  1010. }
  1011. /* create control message to store iucv msg target class:
  1012. * get the trgcls from the control buffer of the skb due to
  1013. * fragmentation of original iucv message. */
  1014. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1015. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1016. if (err) {
  1017. if (!(flags & MSG_PEEK))
  1018. skb_queue_head(&sk->sk_receive_queue, skb);
  1019. return err;
  1020. }
  1021. /* Mark read part of skb as used */
  1022. if (!(flags & MSG_PEEK)) {
  1023. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1024. if (sk->sk_type == SOCK_STREAM) {
  1025. skb_pull(skb, copied);
  1026. if (skb->len) {
  1027. skb_queue_head(&sk->sk_receive_queue, skb);
  1028. goto done;
  1029. }
  1030. }
  1031. kfree_skb(skb);
  1032. /* Queue backlog skbs */
  1033. spin_lock_bh(&iucv->message_q.lock);
  1034. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1035. while (rskb) {
  1036. if (sock_queue_rcv_skb(sk, rskb)) {
  1037. skb_queue_head(&iucv->backlog_skb_q,
  1038. rskb);
  1039. break;
  1040. } else {
  1041. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1042. }
  1043. }
  1044. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1045. if (!list_empty(&iucv->message_q.list))
  1046. iucv_process_message_q(sk);
  1047. }
  1048. spin_unlock_bh(&iucv->message_q.lock);
  1049. }
  1050. done:
  1051. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1052. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1053. copied = rlen;
  1054. return copied;
  1055. }
  1056. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1057. {
  1058. struct iucv_sock *isk, *n;
  1059. struct sock *sk;
  1060. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1061. sk = (struct sock *) isk;
  1062. if (sk->sk_state == IUCV_CONNECTED)
  1063. return POLLIN | POLLRDNORM;
  1064. }
  1065. return 0;
  1066. }
  1067. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1068. poll_table *wait)
  1069. {
  1070. struct sock *sk = sock->sk;
  1071. unsigned int mask = 0;
  1072. sock_poll_wait(file, sk_sleep(sk), wait);
  1073. if (sk->sk_state == IUCV_LISTEN)
  1074. return iucv_accept_poll(sk);
  1075. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1076. mask |= POLLERR;
  1077. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1078. mask |= POLLRDHUP;
  1079. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1080. mask |= POLLHUP;
  1081. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1082. (sk->sk_shutdown & RCV_SHUTDOWN))
  1083. mask |= POLLIN | POLLRDNORM;
  1084. if (sk->sk_state == IUCV_CLOSED)
  1085. mask |= POLLHUP;
  1086. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1087. mask |= POLLIN;
  1088. if (sock_writeable(sk))
  1089. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1090. else
  1091. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1092. return mask;
  1093. }
  1094. static int iucv_sock_shutdown(struct socket *sock, int how)
  1095. {
  1096. struct sock *sk = sock->sk;
  1097. struct iucv_sock *iucv = iucv_sk(sk);
  1098. struct iucv_message txmsg;
  1099. int err = 0;
  1100. how++;
  1101. if ((how & ~SHUTDOWN_MASK) || !how)
  1102. return -EINVAL;
  1103. lock_sock(sk);
  1104. switch (sk->sk_state) {
  1105. case IUCV_DISCONN:
  1106. case IUCV_CLOSING:
  1107. case IUCV_SEVERED:
  1108. case IUCV_CLOSED:
  1109. err = -ENOTCONN;
  1110. goto fail;
  1111. default:
  1112. sk->sk_shutdown |= how;
  1113. break;
  1114. }
  1115. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1116. txmsg.class = 0;
  1117. txmsg.tag = 0;
  1118. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  1119. (void *) iprm_shutdown, 8);
  1120. if (err) {
  1121. switch (err) {
  1122. case 1:
  1123. err = -ENOTCONN;
  1124. break;
  1125. case 2:
  1126. err = -ECONNRESET;
  1127. break;
  1128. default:
  1129. err = -ENOTCONN;
  1130. break;
  1131. }
  1132. }
  1133. }
  1134. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1135. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  1136. if (err)
  1137. err = -ENOTCONN;
  1138. skb_queue_purge(&sk->sk_receive_queue);
  1139. }
  1140. /* Wake up anyone sleeping in poll */
  1141. sk->sk_state_change(sk);
  1142. fail:
  1143. release_sock(sk);
  1144. return err;
  1145. }
  1146. static int iucv_sock_release(struct socket *sock)
  1147. {
  1148. struct sock *sk = sock->sk;
  1149. int err = 0;
  1150. if (!sk)
  1151. return 0;
  1152. iucv_sock_close(sk);
  1153. /* Unregister with IUCV base support */
  1154. if (iucv_sk(sk)->path) {
  1155. iucv_path_sever(iucv_sk(sk)->path, NULL);
  1156. iucv_path_free(iucv_sk(sk)->path);
  1157. iucv_sk(sk)->path = NULL;
  1158. }
  1159. sock_orphan(sk);
  1160. iucv_sock_kill(sk);
  1161. return err;
  1162. }
  1163. /* getsockopt and setsockopt */
  1164. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1165. char __user *optval, unsigned int optlen)
  1166. {
  1167. struct sock *sk = sock->sk;
  1168. struct iucv_sock *iucv = iucv_sk(sk);
  1169. int val;
  1170. int rc;
  1171. if (level != SOL_IUCV)
  1172. return -ENOPROTOOPT;
  1173. if (optlen < sizeof(int))
  1174. return -EINVAL;
  1175. if (get_user(val, (int __user *) optval))
  1176. return -EFAULT;
  1177. rc = 0;
  1178. lock_sock(sk);
  1179. switch (optname) {
  1180. case SO_IPRMDATA_MSG:
  1181. if (val)
  1182. iucv->flags |= IUCV_IPRMDATA;
  1183. else
  1184. iucv->flags &= ~IUCV_IPRMDATA;
  1185. break;
  1186. case SO_MSGLIMIT:
  1187. switch (sk->sk_state) {
  1188. case IUCV_OPEN:
  1189. case IUCV_BOUND:
  1190. if (val < 1 || val > (u16)(~0))
  1191. rc = -EINVAL;
  1192. else
  1193. iucv->msglimit = val;
  1194. break;
  1195. default:
  1196. rc = -EINVAL;
  1197. break;
  1198. }
  1199. break;
  1200. default:
  1201. rc = -ENOPROTOOPT;
  1202. break;
  1203. }
  1204. release_sock(sk);
  1205. return rc;
  1206. }
  1207. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1208. char __user *optval, int __user *optlen)
  1209. {
  1210. struct sock *sk = sock->sk;
  1211. struct iucv_sock *iucv = iucv_sk(sk);
  1212. int val, len;
  1213. if (level != SOL_IUCV)
  1214. return -ENOPROTOOPT;
  1215. if (get_user(len, optlen))
  1216. return -EFAULT;
  1217. if (len < 0)
  1218. return -EINVAL;
  1219. len = min_t(unsigned int, len, sizeof(int));
  1220. switch (optname) {
  1221. case SO_IPRMDATA_MSG:
  1222. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1223. break;
  1224. case SO_MSGLIMIT:
  1225. lock_sock(sk);
  1226. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1227. : iucv->msglimit; /* default */
  1228. release_sock(sk);
  1229. break;
  1230. default:
  1231. return -ENOPROTOOPT;
  1232. }
  1233. if (put_user(len, optlen))
  1234. return -EFAULT;
  1235. if (copy_to_user(optval, &val, len))
  1236. return -EFAULT;
  1237. return 0;
  1238. }
  1239. /* Callback wrappers - called from iucv base support */
  1240. static int iucv_callback_connreq(struct iucv_path *path,
  1241. u8 ipvmid[8], u8 ipuser[16])
  1242. {
  1243. unsigned char user_data[16];
  1244. unsigned char nuser_data[16];
  1245. unsigned char src_name[8];
  1246. struct hlist_node *node;
  1247. struct sock *sk, *nsk;
  1248. struct iucv_sock *iucv, *niucv;
  1249. int err;
  1250. memcpy(src_name, ipuser, 8);
  1251. EBCASC(src_name, 8);
  1252. /* Find out if this path belongs to af_iucv. */
  1253. read_lock(&iucv_sk_list.lock);
  1254. iucv = NULL;
  1255. sk = NULL;
  1256. sk_for_each(sk, node, &iucv_sk_list.head)
  1257. if (sk->sk_state == IUCV_LISTEN &&
  1258. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1259. /*
  1260. * Found a listening socket with
  1261. * src_name == ipuser[0-7].
  1262. */
  1263. iucv = iucv_sk(sk);
  1264. break;
  1265. }
  1266. read_unlock(&iucv_sk_list.lock);
  1267. if (!iucv)
  1268. /* No socket found, not one of our paths. */
  1269. return -EINVAL;
  1270. bh_lock_sock(sk);
  1271. /* Check if parent socket is listening */
  1272. low_nmcpy(user_data, iucv->src_name);
  1273. high_nmcpy(user_data, iucv->dst_name);
  1274. ASCEBC(user_data, sizeof(user_data));
  1275. if (sk->sk_state != IUCV_LISTEN) {
  1276. err = iucv_path_sever(path, user_data);
  1277. iucv_path_free(path);
  1278. goto fail;
  1279. }
  1280. /* Check for backlog size */
  1281. if (sk_acceptq_is_full(sk)) {
  1282. err = iucv_path_sever(path, user_data);
  1283. iucv_path_free(path);
  1284. goto fail;
  1285. }
  1286. /* Create the new socket */
  1287. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1288. if (!nsk) {
  1289. err = iucv_path_sever(path, user_data);
  1290. iucv_path_free(path);
  1291. goto fail;
  1292. }
  1293. niucv = iucv_sk(nsk);
  1294. iucv_sock_init(nsk, sk);
  1295. /* Set the new iucv_sock */
  1296. memcpy(niucv->dst_name, ipuser + 8, 8);
  1297. EBCASC(niucv->dst_name, 8);
  1298. memcpy(niucv->dst_user_id, ipvmid, 8);
  1299. memcpy(niucv->src_name, iucv->src_name, 8);
  1300. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1301. niucv->path = path;
  1302. /* Call iucv_accept */
  1303. high_nmcpy(nuser_data, ipuser + 8);
  1304. memcpy(nuser_data + 8, niucv->src_name, 8);
  1305. ASCEBC(nuser_data + 8, 8);
  1306. /* set message limit for path based on msglimit of accepting socket */
  1307. niucv->msglimit = iucv->msglimit;
  1308. path->msglim = iucv->msglimit;
  1309. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1310. if (err) {
  1311. err = iucv_path_sever(path, user_data);
  1312. iucv_path_free(path);
  1313. iucv_sock_kill(nsk);
  1314. goto fail;
  1315. }
  1316. iucv_accept_enqueue(sk, nsk);
  1317. /* Wake up accept */
  1318. nsk->sk_state = IUCV_CONNECTED;
  1319. sk->sk_data_ready(sk, 1);
  1320. err = 0;
  1321. fail:
  1322. bh_unlock_sock(sk);
  1323. return 0;
  1324. }
  1325. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1326. {
  1327. struct sock *sk = path->private;
  1328. sk->sk_state = IUCV_CONNECTED;
  1329. sk->sk_state_change(sk);
  1330. }
  1331. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1332. {
  1333. struct sock *sk = path->private;
  1334. struct iucv_sock *iucv = iucv_sk(sk);
  1335. struct sk_buff *skb;
  1336. struct sock_msg_q *save_msg;
  1337. int len;
  1338. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1339. iucv_message_reject(path, msg);
  1340. return;
  1341. }
  1342. spin_lock(&iucv->message_q.lock);
  1343. if (!list_empty(&iucv->message_q.list) ||
  1344. !skb_queue_empty(&iucv->backlog_skb_q))
  1345. goto save_message;
  1346. len = atomic_read(&sk->sk_rmem_alloc);
  1347. len += iucv_msg_length(msg) + sizeof(struct sk_buff);
  1348. if (len > sk->sk_rcvbuf)
  1349. goto save_message;
  1350. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1351. if (!skb)
  1352. goto save_message;
  1353. iucv_process_message(sk, skb, path, msg);
  1354. goto out_unlock;
  1355. save_message:
  1356. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1357. if (!save_msg)
  1358. goto out_unlock;
  1359. save_msg->path = path;
  1360. save_msg->msg = *msg;
  1361. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1362. out_unlock:
  1363. spin_unlock(&iucv->message_q.lock);
  1364. }
  1365. static void iucv_callback_txdone(struct iucv_path *path,
  1366. struct iucv_message *msg)
  1367. {
  1368. struct sock *sk = path->private;
  1369. struct sk_buff *this = NULL;
  1370. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1371. struct sk_buff *list_skb = list->next;
  1372. unsigned long flags;
  1373. if (!skb_queue_empty(list)) {
  1374. spin_lock_irqsave(&list->lock, flags);
  1375. while (list_skb != (struct sk_buff *)list) {
  1376. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1377. this = list_skb;
  1378. break;
  1379. }
  1380. list_skb = list_skb->next;
  1381. }
  1382. if (this)
  1383. __skb_unlink(this, list);
  1384. spin_unlock_irqrestore(&list->lock, flags);
  1385. if (this) {
  1386. kfree_skb(this);
  1387. /* wake up any process waiting for sending */
  1388. iucv_sock_wake_msglim(sk);
  1389. }
  1390. }
  1391. BUG_ON(!this);
  1392. if (sk->sk_state == IUCV_CLOSING) {
  1393. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1394. sk->sk_state = IUCV_CLOSED;
  1395. sk->sk_state_change(sk);
  1396. }
  1397. }
  1398. }
  1399. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1400. {
  1401. struct sock *sk = path->private;
  1402. if (!list_empty(&iucv_sk(sk)->accept_q))
  1403. sk->sk_state = IUCV_SEVERED;
  1404. else
  1405. sk->sk_state = IUCV_DISCONN;
  1406. sk->sk_state_change(sk);
  1407. }
  1408. /* called if the other communication side shuts down its RECV direction;
  1409. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1410. */
  1411. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1412. {
  1413. struct sock *sk = path->private;
  1414. bh_lock_sock(sk);
  1415. if (sk->sk_state != IUCV_CLOSED) {
  1416. sk->sk_shutdown |= SEND_SHUTDOWN;
  1417. sk->sk_state_change(sk);
  1418. }
  1419. bh_unlock_sock(sk);
  1420. }
  1421. static const struct proto_ops iucv_sock_ops = {
  1422. .family = PF_IUCV,
  1423. .owner = THIS_MODULE,
  1424. .release = iucv_sock_release,
  1425. .bind = iucv_sock_bind,
  1426. .connect = iucv_sock_connect,
  1427. .listen = iucv_sock_listen,
  1428. .accept = iucv_sock_accept,
  1429. .getname = iucv_sock_getname,
  1430. .sendmsg = iucv_sock_sendmsg,
  1431. .recvmsg = iucv_sock_recvmsg,
  1432. .poll = iucv_sock_poll,
  1433. .ioctl = sock_no_ioctl,
  1434. .mmap = sock_no_mmap,
  1435. .socketpair = sock_no_socketpair,
  1436. .shutdown = iucv_sock_shutdown,
  1437. .setsockopt = iucv_sock_setsockopt,
  1438. .getsockopt = iucv_sock_getsockopt,
  1439. };
  1440. static const struct net_proto_family iucv_sock_family_ops = {
  1441. .family = AF_IUCV,
  1442. .owner = THIS_MODULE,
  1443. .create = iucv_sock_create,
  1444. };
  1445. static int __init afiucv_init(void)
  1446. {
  1447. int err;
  1448. if (!MACHINE_IS_VM) {
  1449. pr_err("The af_iucv module cannot be loaded"
  1450. " without z/VM\n");
  1451. err = -EPROTONOSUPPORT;
  1452. goto out;
  1453. }
  1454. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  1455. if (unlikely(err)) {
  1456. WARN_ON(err);
  1457. err = -EPROTONOSUPPORT;
  1458. goto out;
  1459. }
  1460. err = iucv_register(&af_iucv_handler, 0);
  1461. if (err)
  1462. goto out;
  1463. err = proto_register(&iucv_proto, 0);
  1464. if (err)
  1465. goto out_iucv;
  1466. err = sock_register(&iucv_sock_family_ops);
  1467. if (err)
  1468. goto out_proto;
  1469. /* establish dummy device */
  1470. err = driver_register(&af_iucv_driver);
  1471. if (err)
  1472. goto out_sock;
  1473. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  1474. if (!af_iucv_dev) {
  1475. err = -ENOMEM;
  1476. goto out_driver;
  1477. }
  1478. dev_set_name(af_iucv_dev, "af_iucv");
  1479. af_iucv_dev->bus = &iucv_bus;
  1480. af_iucv_dev->parent = iucv_root;
  1481. af_iucv_dev->release = (void (*)(struct device *))kfree;
  1482. af_iucv_dev->driver = &af_iucv_driver;
  1483. err = device_register(af_iucv_dev);
  1484. if (err)
  1485. goto out_driver;
  1486. return 0;
  1487. out_driver:
  1488. driver_unregister(&af_iucv_driver);
  1489. out_sock:
  1490. sock_unregister(PF_IUCV);
  1491. out_proto:
  1492. proto_unregister(&iucv_proto);
  1493. out_iucv:
  1494. iucv_unregister(&af_iucv_handler, 0);
  1495. out:
  1496. return err;
  1497. }
  1498. static void __exit afiucv_exit(void)
  1499. {
  1500. device_unregister(af_iucv_dev);
  1501. driver_unregister(&af_iucv_driver);
  1502. sock_unregister(PF_IUCV);
  1503. proto_unregister(&iucv_proto);
  1504. iucv_unregister(&af_iucv_handler, 0);
  1505. }
  1506. module_init(afiucv_init);
  1507. module_exit(afiucv_exit);
  1508. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  1509. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  1510. MODULE_VERSION(VERSION);
  1511. MODULE_LICENSE("GPL");
  1512. MODULE_ALIAS_NETPROTO(PF_IUCV);