ipmr.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <asm/system.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/types.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/timer.h>
  34. #include <linux/mm.h>
  35. #include <linux/kernel.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/stat.h>
  38. #include <linux/socket.h>
  39. #include <linux/in.h>
  40. #include <linux/inet.h>
  41. #include <linux/netdevice.h>
  42. #include <linux/inetdevice.h>
  43. #include <linux/igmp.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/mroute.h>
  47. #include <linux/init.h>
  48. #include <linux/if_ether.h>
  49. #include <linux/slab.h>
  50. #include <net/net_namespace.h>
  51. #include <net/ip.h>
  52. #include <net/protocol.h>
  53. #include <linux/skbuff.h>
  54. #include <net/route.h>
  55. #include <net/sock.h>
  56. #include <net/icmp.h>
  57. #include <net/udp.h>
  58. #include <net/raw.h>
  59. #include <linux/notifier.h>
  60. #include <linux/if_arp.h>
  61. #include <linux/netfilter_ipv4.h>
  62. #include <net/ipip.h>
  63. #include <net/checksum.h>
  64. #include <net/netlink.h>
  65. #include <net/fib_rules.h>
  66. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  67. #define CONFIG_IP_PIMSM 1
  68. #endif
  69. struct mr_table {
  70. struct list_head list;
  71. #ifdef CONFIG_NET_NS
  72. struct net *net;
  73. #endif
  74. u32 id;
  75. struct sock *mroute_sk;
  76. struct timer_list ipmr_expire_timer;
  77. struct list_head mfc_unres_queue;
  78. struct list_head mfc_cache_array[MFC_LINES];
  79. struct vif_device vif_table[MAXVIFS];
  80. int maxvif;
  81. atomic_t cache_resolve_queue_len;
  82. int mroute_do_assert;
  83. int mroute_do_pim;
  84. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  85. int mroute_reg_vif_num;
  86. #endif
  87. };
  88. struct ipmr_rule {
  89. struct fib_rule common;
  90. };
  91. struct ipmr_result {
  92. struct mr_table *mrt;
  93. };
  94. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  95. Note that the changes are semaphored via rtnl_lock.
  96. */
  97. static DEFINE_RWLOCK(mrt_lock);
  98. /*
  99. * Multicast router control variables
  100. */
  101. #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
  102. /* Special spinlock for queue of unresolved entries */
  103. static DEFINE_SPINLOCK(mfc_unres_lock);
  104. /* We return to original Alan's scheme. Hash table of resolved
  105. entries is changed only in process context and protected
  106. with weak lock mrt_lock. Queue of unresolved entries is protected
  107. with strong spinlock mfc_unres_lock.
  108. In this case data path is free of exclusive locks at all.
  109. */
  110. static struct kmem_cache *mrt_cachep __read_mostly;
  111. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  112. static int ip_mr_forward(struct net *net, struct mr_table *mrt,
  113. struct sk_buff *skb, struct mfc_cache *cache,
  114. int local);
  115. static int ipmr_cache_report(struct mr_table *mrt,
  116. struct sk_buff *pkt, vifi_t vifi, int assert);
  117. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  118. struct mfc_cache *c, struct rtmsg *rtm);
  119. static void ipmr_expire_process(unsigned long arg);
  120. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  121. #define ipmr_for_each_table(mrt, net) \
  122. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  123. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  124. {
  125. struct mr_table *mrt;
  126. ipmr_for_each_table(mrt, net) {
  127. if (mrt->id == id)
  128. return mrt;
  129. }
  130. return NULL;
  131. }
  132. static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
  133. struct mr_table **mrt)
  134. {
  135. struct ipmr_result res;
  136. struct fib_lookup_arg arg = { .result = &res, };
  137. int err;
  138. err = fib_rules_lookup(net->ipv4.mr_rules_ops, flp, 0, &arg);
  139. if (err < 0)
  140. return err;
  141. *mrt = res.mrt;
  142. return 0;
  143. }
  144. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  145. int flags, struct fib_lookup_arg *arg)
  146. {
  147. struct ipmr_result *res = arg->result;
  148. struct mr_table *mrt;
  149. switch (rule->action) {
  150. case FR_ACT_TO_TBL:
  151. break;
  152. case FR_ACT_UNREACHABLE:
  153. return -ENETUNREACH;
  154. case FR_ACT_PROHIBIT:
  155. return -EACCES;
  156. case FR_ACT_BLACKHOLE:
  157. default:
  158. return -EINVAL;
  159. }
  160. mrt = ipmr_get_table(rule->fr_net, rule->table);
  161. if (mrt == NULL)
  162. return -EAGAIN;
  163. res->mrt = mrt;
  164. return 0;
  165. }
  166. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  167. {
  168. return 1;
  169. }
  170. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  171. FRA_GENERIC_POLICY,
  172. };
  173. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  174. struct fib_rule_hdr *frh, struct nlattr **tb)
  175. {
  176. return 0;
  177. }
  178. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  179. struct nlattr **tb)
  180. {
  181. return 1;
  182. }
  183. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  184. struct fib_rule_hdr *frh)
  185. {
  186. frh->dst_len = 0;
  187. frh->src_len = 0;
  188. frh->tos = 0;
  189. return 0;
  190. }
  191. static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
  192. .family = RTNL_FAMILY_IPMR,
  193. .rule_size = sizeof(struct ipmr_rule),
  194. .addr_size = sizeof(u32),
  195. .action = ipmr_rule_action,
  196. .match = ipmr_rule_match,
  197. .configure = ipmr_rule_configure,
  198. .compare = ipmr_rule_compare,
  199. .default_pref = fib_default_rule_pref,
  200. .fill = ipmr_rule_fill,
  201. .nlgroup = RTNLGRP_IPV4_RULE,
  202. .policy = ipmr_rule_policy,
  203. .owner = THIS_MODULE,
  204. };
  205. static int __net_init ipmr_rules_init(struct net *net)
  206. {
  207. struct fib_rules_ops *ops;
  208. struct mr_table *mrt;
  209. int err;
  210. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  211. if (IS_ERR(ops))
  212. return PTR_ERR(ops);
  213. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  214. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  215. if (mrt == NULL) {
  216. err = -ENOMEM;
  217. goto err1;
  218. }
  219. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  220. if (err < 0)
  221. goto err2;
  222. net->ipv4.mr_rules_ops = ops;
  223. return 0;
  224. err2:
  225. kfree(mrt);
  226. err1:
  227. fib_rules_unregister(ops);
  228. return err;
  229. }
  230. static void __net_exit ipmr_rules_exit(struct net *net)
  231. {
  232. struct mr_table *mrt, *next;
  233. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  234. list_del(&mrt->list);
  235. kfree(mrt);
  236. }
  237. fib_rules_unregister(net->ipv4.mr_rules_ops);
  238. }
  239. #else
  240. #define ipmr_for_each_table(mrt, net) \
  241. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  242. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  243. {
  244. return net->ipv4.mrt;
  245. }
  246. static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
  247. struct mr_table **mrt)
  248. {
  249. *mrt = net->ipv4.mrt;
  250. return 0;
  251. }
  252. static int __net_init ipmr_rules_init(struct net *net)
  253. {
  254. net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  255. return net->ipv4.mrt ? 0 : -ENOMEM;
  256. }
  257. static void __net_exit ipmr_rules_exit(struct net *net)
  258. {
  259. kfree(net->ipv4.mrt);
  260. }
  261. #endif
  262. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  263. {
  264. struct mr_table *mrt;
  265. unsigned int i;
  266. mrt = ipmr_get_table(net, id);
  267. if (mrt != NULL)
  268. return mrt;
  269. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  270. if (mrt == NULL)
  271. return NULL;
  272. write_pnet(&mrt->net, net);
  273. mrt->id = id;
  274. /* Forwarding cache */
  275. for (i = 0; i < MFC_LINES; i++)
  276. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  277. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  278. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  279. (unsigned long)mrt);
  280. #ifdef CONFIG_IP_PIMSM
  281. mrt->mroute_reg_vif_num = -1;
  282. #endif
  283. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  284. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  285. #endif
  286. return mrt;
  287. }
  288. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  289. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  290. {
  291. struct net *net = dev_net(dev);
  292. dev_close(dev);
  293. dev = __dev_get_by_name(net, "tunl0");
  294. if (dev) {
  295. const struct net_device_ops *ops = dev->netdev_ops;
  296. struct ifreq ifr;
  297. struct ip_tunnel_parm p;
  298. memset(&p, 0, sizeof(p));
  299. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  300. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  301. p.iph.version = 4;
  302. p.iph.ihl = 5;
  303. p.iph.protocol = IPPROTO_IPIP;
  304. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  305. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  306. if (ops->ndo_do_ioctl) {
  307. mm_segment_t oldfs = get_fs();
  308. set_fs(KERNEL_DS);
  309. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  310. set_fs(oldfs);
  311. }
  312. }
  313. }
  314. static
  315. struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  316. {
  317. struct net_device *dev;
  318. dev = __dev_get_by_name(net, "tunl0");
  319. if (dev) {
  320. const struct net_device_ops *ops = dev->netdev_ops;
  321. int err;
  322. struct ifreq ifr;
  323. struct ip_tunnel_parm p;
  324. struct in_device *in_dev;
  325. memset(&p, 0, sizeof(p));
  326. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  327. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  328. p.iph.version = 4;
  329. p.iph.ihl = 5;
  330. p.iph.protocol = IPPROTO_IPIP;
  331. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  332. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  333. if (ops->ndo_do_ioctl) {
  334. mm_segment_t oldfs = get_fs();
  335. set_fs(KERNEL_DS);
  336. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  337. set_fs(oldfs);
  338. } else
  339. err = -EOPNOTSUPP;
  340. dev = NULL;
  341. if (err == 0 &&
  342. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  343. dev->flags |= IFF_MULTICAST;
  344. in_dev = __in_dev_get_rtnl(dev);
  345. if (in_dev == NULL)
  346. goto failure;
  347. ipv4_devconf_setall(in_dev);
  348. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  349. if (dev_open(dev))
  350. goto failure;
  351. dev_hold(dev);
  352. }
  353. }
  354. return dev;
  355. failure:
  356. /* allow the register to be completed before unregistering. */
  357. rtnl_unlock();
  358. rtnl_lock();
  359. unregister_netdevice(dev);
  360. return NULL;
  361. }
  362. #ifdef CONFIG_IP_PIMSM
  363. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  364. {
  365. struct net *net = dev_net(dev);
  366. struct mr_table *mrt;
  367. struct flowi fl = {
  368. .oif = dev->ifindex,
  369. .iif = skb->skb_iif,
  370. .mark = skb->mark,
  371. };
  372. int err;
  373. err = ipmr_fib_lookup(net, &fl, &mrt);
  374. if (err < 0) {
  375. kfree_skb(skb);
  376. return err;
  377. }
  378. read_lock(&mrt_lock);
  379. dev->stats.tx_bytes += skb->len;
  380. dev->stats.tx_packets++;
  381. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  382. read_unlock(&mrt_lock);
  383. kfree_skb(skb);
  384. return NETDEV_TX_OK;
  385. }
  386. static const struct net_device_ops reg_vif_netdev_ops = {
  387. .ndo_start_xmit = reg_vif_xmit,
  388. };
  389. static void reg_vif_setup(struct net_device *dev)
  390. {
  391. dev->type = ARPHRD_PIMREG;
  392. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  393. dev->flags = IFF_NOARP;
  394. dev->netdev_ops = &reg_vif_netdev_ops,
  395. dev->destructor = free_netdev;
  396. dev->features |= NETIF_F_NETNS_LOCAL;
  397. }
  398. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  399. {
  400. struct net_device *dev;
  401. struct in_device *in_dev;
  402. char name[IFNAMSIZ];
  403. if (mrt->id == RT_TABLE_DEFAULT)
  404. sprintf(name, "pimreg");
  405. else
  406. sprintf(name, "pimreg%u", mrt->id);
  407. dev = alloc_netdev(0, name, reg_vif_setup);
  408. if (dev == NULL)
  409. return NULL;
  410. dev_net_set(dev, net);
  411. if (register_netdevice(dev)) {
  412. free_netdev(dev);
  413. return NULL;
  414. }
  415. dev->iflink = 0;
  416. rcu_read_lock();
  417. if ((in_dev = __in_dev_get_rcu(dev)) == NULL) {
  418. rcu_read_unlock();
  419. goto failure;
  420. }
  421. ipv4_devconf_setall(in_dev);
  422. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  423. rcu_read_unlock();
  424. if (dev_open(dev))
  425. goto failure;
  426. dev_hold(dev);
  427. return dev;
  428. failure:
  429. /* allow the register to be completed before unregistering. */
  430. rtnl_unlock();
  431. rtnl_lock();
  432. unregister_netdevice(dev);
  433. return NULL;
  434. }
  435. #endif
  436. /*
  437. * Delete a VIF entry
  438. * @notify: Set to 1, if the caller is a notifier_call
  439. */
  440. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  441. struct list_head *head)
  442. {
  443. struct vif_device *v;
  444. struct net_device *dev;
  445. struct in_device *in_dev;
  446. if (vifi < 0 || vifi >= mrt->maxvif)
  447. return -EADDRNOTAVAIL;
  448. v = &mrt->vif_table[vifi];
  449. write_lock_bh(&mrt_lock);
  450. dev = v->dev;
  451. v->dev = NULL;
  452. if (!dev) {
  453. write_unlock_bh(&mrt_lock);
  454. return -EADDRNOTAVAIL;
  455. }
  456. #ifdef CONFIG_IP_PIMSM
  457. if (vifi == mrt->mroute_reg_vif_num)
  458. mrt->mroute_reg_vif_num = -1;
  459. #endif
  460. if (vifi+1 == mrt->maxvif) {
  461. int tmp;
  462. for (tmp=vifi-1; tmp>=0; tmp--) {
  463. if (VIF_EXISTS(mrt, tmp))
  464. break;
  465. }
  466. mrt->maxvif = tmp+1;
  467. }
  468. write_unlock_bh(&mrt_lock);
  469. dev_set_allmulti(dev, -1);
  470. if ((in_dev = __in_dev_get_rtnl(dev)) != NULL) {
  471. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  472. ip_rt_multicast_event(in_dev);
  473. }
  474. if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER) && !notify)
  475. unregister_netdevice_queue(dev, head);
  476. dev_put(dev);
  477. return 0;
  478. }
  479. static inline void ipmr_cache_free(struct mfc_cache *c)
  480. {
  481. kmem_cache_free(mrt_cachep, c);
  482. }
  483. /* Destroy an unresolved cache entry, killing queued skbs
  484. and reporting error to netlink readers.
  485. */
  486. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  487. {
  488. struct net *net = read_pnet(&mrt->net);
  489. struct sk_buff *skb;
  490. struct nlmsgerr *e;
  491. atomic_dec(&mrt->cache_resolve_queue_len);
  492. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  493. if (ip_hdr(skb)->version == 0) {
  494. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  495. nlh->nlmsg_type = NLMSG_ERROR;
  496. nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
  497. skb_trim(skb, nlh->nlmsg_len);
  498. e = NLMSG_DATA(nlh);
  499. e->error = -ETIMEDOUT;
  500. memset(&e->msg, 0, sizeof(e->msg));
  501. rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
  502. } else
  503. kfree_skb(skb);
  504. }
  505. ipmr_cache_free(c);
  506. }
  507. /* Timer process for the unresolved queue. */
  508. static void ipmr_expire_process(unsigned long arg)
  509. {
  510. struct mr_table *mrt = (struct mr_table *)arg;
  511. unsigned long now;
  512. unsigned long expires;
  513. struct mfc_cache *c, *next;
  514. if (!spin_trylock(&mfc_unres_lock)) {
  515. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  516. return;
  517. }
  518. if (list_empty(&mrt->mfc_unres_queue))
  519. goto out;
  520. now = jiffies;
  521. expires = 10*HZ;
  522. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  523. if (time_after(c->mfc_un.unres.expires, now)) {
  524. unsigned long interval = c->mfc_un.unres.expires - now;
  525. if (interval < expires)
  526. expires = interval;
  527. continue;
  528. }
  529. list_del(&c->list);
  530. ipmr_destroy_unres(mrt, c);
  531. }
  532. if (!list_empty(&mrt->mfc_unres_queue))
  533. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  534. out:
  535. spin_unlock(&mfc_unres_lock);
  536. }
  537. /* Fill oifs list. It is called under write locked mrt_lock. */
  538. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  539. unsigned char *ttls)
  540. {
  541. int vifi;
  542. cache->mfc_un.res.minvif = MAXVIFS;
  543. cache->mfc_un.res.maxvif = 0;
  544. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  545. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  546. if (VIF_EXISTS(mrt, vifi) &&
  547. ttls[vifi] && ttls[vifi] < 255) {
  548. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  549. if (cache->mfc_un.res.minvif > vifi)
  550. cache->mfc_un.res.minvif = vifi;
  551. if (cache->mfc_un.res.maxvif <= vifi)
  552. cache->mfc_un.res.maxvif = vifi + 1;
  553. }
  554. }
  555. }
  556. static int vif_add(struct net *net, struct mr_table *mrt,
  557. struct vifctl *vifc, int mrtsock)
  558. {
  559. int vifi = vifc->vifc_vifi;
  560. struct vif_device *v = &mrt->vif_table[vifi];
  561. struct net_device *dev;
  562. struct in_device *in_dev;
  563. int err;
  564. /* Is vif busy ? */
  565. if (VIF_EXISTS(mrt, vifi))
  566. return -EADDRINUSE;
  567. switch (vifc->vifc_flags) {
  568. #ifdef CONFIG_IP_PIMSM
  569. case VIFF_REGISTER:
  570. /*
  571. * Special Purpose VIF in PIM
  572. * All the packets will be sent to the daemon
  573. */
  574. if (mrt->mroute_reg_vif_num >= 0)
  575. return -EADDRINUSE;
  576. dev = ipmr_reg_vif(net, mrt);
  577. if (!dev)
  578. return -ENOBUFS;
  579. err = dev_set_allmulti(dev, 1);
  580. if (err) {
  581. unregister_netdevice(dev);
  582. dev_put(dev);
  583. return err;
  584. }
  585. break;
  586. #endif
  587. case VIFF_TUNNEL:
  588. dev = ipmr_new_tunnel(net, vifc);
  589. if (!dev)
  590. return -ENOBUFS;
  591. err = dev_set_allmulti(dev, 1);
  592. if (err) {
  593. ipmr_del_tunnel(dev, vifc);
  594. dev_put(dev);
  595. return err;
  596. }
  597. break;
  598. case VIFF_USE_IFINDEX:
  599. case 0:
  600. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  601. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  602. if (dev && dev->ip_ptr == NULL) {
  603. dev_put(dev);
  604. return -EADDRNOTAVAIL;
  605. }
  606. } else
  607. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  608. if (!dev)
  609. return -EADDRNOTAVAIL;
  610. err = dev_set_allmulti(dev, 1);
  611. if (err) {
  612. dev_put(dev);
  613. return err;
  614. }
  615. break;
  616. default:
  617. return -EINVAL;
  618. }
  619. if ((in_dev = __in_dev_get_rtnl(dev)) == NULL) {
  620. dev_put(dev);
  621. return -EADDRNOTAVAIL;
  622. }
  623. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  624. ip_rt_multicast_event(in_dev);
  625. /*
  626. * Fill in the VIF structures
  627. */
  628. v->rate_limit = vifc->vifc_rate_limit;
  629. v->local = vifc->vifc_lcl_addr.s_addr;
  630. v->remote = vifc->vifc_rmt_addr.s_addr;
  631. v->flags = vifc->vifc_flags;
  632. if (!mrtsock)
  633. v->flags |= VIFF_STATIC;
  634. v->threshold = vifc->vifc_threshold;
  635. v->bytes_in = 0;
  636. v->bytes_out = 0;
  637. v->pkt_in = 0;
  638. v->pkt_out = 0;
  639. v->link = dev->ifindex;
  640. if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER))
  641. v->link = dev->iflink;
  642. /* And finish update writing critical data */
  643. write_lock_bh(&mrt_lock);
  644. v->dev = dev;
  645. #ifdef CONFIG_IP_PIMSM
  646. if (v->flags&VIFF_REGISTER)
  647. mrt->mroute_reg_vif_num = vifi;
  648. #endif
  649. if (vifi+1 > mrt->maxvif)
  650. mrt->maxvif = vifi+1;
  651. write_unlock_bh(&mrt_lock);
  652. return 0;
  653. }
  654. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  655. __be32 origin,
  656. __be32 mcastgrp)
  657. {
  658. int line = MFC_HASH(mcastgrp, origin);
  659. struct mfc_cache *c;
  660. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  661. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  662. return c;
  663. }
  664. return NULL;
  665. }
  666. /*
  667. * Allocate a multicast cache entry
  668. */
  669. static struct mfc_cache *ipmr_cache_alloc(void)
  670. {
  671. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  672. if (c == NULL)
  673. return NULL;
  674. c->mfc_un.res.minvif = MAXVIFS;
  675. return c;
  676. }
  677. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  678. {
  679. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  680. if (c == NULL)
  681. return NULL;
  682. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  683. c->mfc_un.unres.expires = jiffies + 10*HZ;
  684. return c;
  685. }
  686. /*
  687. * A cache entry has gone into a resolved state from queued
  688. */
  689. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  690. struct mfc_cache *uc, struct mfc_cache *c)
  691. {
  692. struct sk_buff *skb;
  693. struct nlmsgerr *e;
  694. /*
  695. * Play the pending entries through our router
  696. */
  697. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  698. if (ip_hdr(skb)->version == 0) {
  699. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  700. if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
  701. nlh->nlmsg_len = (skb_tail_pointer(skb) -
  702. (u8 *)nlh);
  703. } else {
  704. nlh->nlmsg_type = NLMSG_ERROR;
  705. nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
  706. skb_trim(skb, nlh->nlmsg_len);
  707. e = NLMSG_DATA(nlh);
  708. e->error = -EMSGSIZE;
  709. memset(&e->msg, 0, sizeof(e->msg));
  710. }
  711. rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
  712. } else
  713. ip_mr_forward(net, mrt, skb, c, 0);
  714. }
  715. }
  716. /*
  717. * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  718. * expects the following bizarre scheme.
  719. *
  720. * Called under mrt_lock.
  721. */
  722. static int ipmr_cache_report(struct mr_table *mrt,
  723. struct sk_buff *pkt, vifi_t vifi, int assert)
  724. {
  725. struct sk_buff *skb;
  726. const int ihl = ip_hdrlen(pkt);
  727. struct igmphdr *igmp;
  728. struct igmpmsg *msg;
  729. int ret;
  730. #ifdef CONFIG_IP_PIMSM
  731. if (assert == IGMPMSG_WHOLEPKT)
  732. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  733. else
  734. #endif
  735. skb = alloc_skb(128, GFP_ATOMIC);
  736. if (!skb)
  737. return -ENOBUFS;
  738. #ifdef CONFIG_IP_PIMSM
  739. if (assert == IGMPMSG_WHOLEPKT) {
  740. /* Ugly, but we have no choice with this interface.
  741. Duplicate old header, fix ihl, length etc.
  742. And all this only to mangle msg->im_msgtype and
  743. to set msg->im_mbz to "mbz" :-)
  744. */
  745. skb_push(skb, sizeof(struct iphdr));
  746. skb_reset_network_header(skb);
  747. skb_reset_transport_header(skb);
  748. msg = (struct igmpmsg *)skb_network_header(skb);
  749. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  750. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  751. msg->im_mbz = 0;
  752. msg->im_vif = mrt->mroute_reg_vif_num;
  753. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  754. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  755. sizeof(struct iphdr));
  756. } else
  757. #endif
  758. {
  759. /*
  760. * Copy the IP header
  761. */
  762. skb->network_header = skb->tail;
  763. skb_put(skb, ihl);
  764. skb_copy_to_linear_data(skb, pkt->data, ihl);
  765. ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
  766. msg = (struct igmpmsg *)skb_network_header(skb);
  767. msg->im_vif = vifi;
  768. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  769. /*
  770. * Add our header
  771. */
  772. igmp=(struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  773. igmp->type =
  774. msg->im_msgtype = assert;
  775. igmp->code = 0;
  776. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  777. skb->transport_header = skb->network_header;
  778. }
  779. if (mrt->mroute_sk == NULL) {
  780. kfree_skb(skb);
  781. return -EINVAL;
  782. }
  783. /*
  784. * Deliver to mrouted
  785. */
  786. ret = sock_queue_rcv_skb(mrt->mroute_sk, skb);
  787. if (ret < 0) {
  788. if (net_ratelimit())
  789. printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
  790. kfree_skb(skb);
  791. }
  792. return ret;
  793. }
  794. /*
  795. * Queue a packet for resolution. It gets locked cache entry!
  796. */
  797. static int
  798. ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
  799. {
  800. bool found = false;
  801. int err;
  802. struct mfc_cache *c;
  803. const struct iphdr *iph = ip_hdr(skb);
  804. spin_lock_bh(&mfc_unres_lock);
  805. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  806. if (c->mfc_mcastgrp == iph->daddr &&
  807. c->mfc_origin == iph->saddr) {
  808. found = true;
  809. break;
  810. }
  811. }
  812. if (!found) {
  813. /*
  814. * Create a new entry if allowable
  815. */
  816. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  817. (c = ipmr_cache_alloc_unres()) == NULL) {
  818. spin_unlock_bh(&mfc_unres_lock);
  819. kfree_skb(skb);
  820. return -ENOBUFS;
  821. }
  822. /*
  823. * Fill in the new cache entry
  824. */
  825. c->mfc_parent = -1;
  826. c->mfc_origin = iph->saddr;
  827. c->mfc_mcastgrp = iph->daddr;
  828. /*
  829. * Reflect first query at mrouted.
  830. */
  831. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  832. if (err < 0) {
  833. /* If the report failed throw the cache entry
  834. out - Brad Parker
  835. */
  836. spin_unlock_bh(&mfc_unres_lock);
  837. ipmr_cache_free(c);
  838. kfree_skb(skb);
  839. return err;
  840. }
  841. atomic_inc(&mrt->cache_resolve_queue_len);
  842. list_add(&c->list, &mrt->mfc_unres_queue);
  843. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  844. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  845. }
  846. /*
  847. * See if we can append the packet
  848. */
  849. if (c->mfc_un.unres.unresolved.qlen>3) {
  850. kfree_skb(skb);
  851. err = -ENOBUFS;
  852. } else {
  853. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  854. err = 0;
  855. }
  856. spin_unlock_bh(&mfc_unres_lock);
  857. return err;
  858. }
  859. /*
  860. * MFC cache manipulation by user space mroute daemon
  861. */
  862. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
  863. {
  864. int line;
  865. struct mfc_cache *c, *next;
  866. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  867. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  868. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  869. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
  870. write_lock_bh(&mrt_lock);
  871. list_del(&c->list);
  872. write_unlock_bh(&mrt_lock);
  873. ipmr_cache_free(c);
  874. return 0;
  875. }
  876. }
  877. return -ENOENT;
  878. }
  879. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  880. struct mfcctl *mfc, int mrtsock)
  881. {
  882. bool found = false;
  883. int line;
  884. struct mfc_cache *uc, *c;
  885. if (mfc->mfcc_parent >= MAXVIFS)
  886. return -ENFILE;
  887. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  888. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  889. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  890. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
  891. found = true;
  892. break;
  893. }
  894. }
  895. if (found) {
  896. write_lock_bh(&mrt_lock);
  897. c->mfc_parent = mfc->mfcc_parent;
  898. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  899. if (!mrtsock)
  900. c->mfc_flags |= MFC_STATIC;
  901. write_unlock_bh(&mrt_lock);
  902. return 0;
  903. }
  904. if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  905. return -EINVAL;
  906. c = ipmr_cache_alloc();
  907. if (c == NULL)
  908. return -ENOMEM;
  909. c->mfc_origin = mfc->mfcc_origin.s_addr;
  910. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  911. c->mfc_parent = mfc->mfcc_parent;
  912. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  913. if (!mrtsock)
  914. c->mfc_flags |= MFC_STATIC;
  915. write_lock_bh(&mrt_lock);
  916. list_add(&c->list, &mrt->mfc_cache_array[line]);
  917. write_unlock_bh(&mrt_lock);
  918. /*
  919. * Check to see if we resolved a queued list. If so we
  920. * need to send on the frames and tidy up.
  921. */
  922. found = false;
  923. spin_lock_bh(&mfc_unres_lock);
  924. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  925. if (uc->mfc_origin == c->mfc_origin &&
  926. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  927. list_del(&uc->list);
  928. atomic_dec(&mrt->cache_resolve_queue_len);
  929. found = true;
  930. break;
  931. }
  932. }
  933. if (list_empty(&mrt->mfc_unres_queue))
  934. del_timer(&mrt->ipmr_expire_timer);
  935. spin_unlock_bh(&mfc_unres_lock);
  936. if (found) {
  937. ipmr_cache_resolve(net, mrt, uc, c);
  938. ipmr_cache_free(uc);
  939. }
  940. return 0;
  941. }
  942. /*
  943. * Close the multicast socket, and clear the vif tables etc
  944. */
  945. static void mroute_clean_tables(struct mr_table *mrt)
  946. {
  947. int i;
  948. LIST_HEAD(list);
  949. struct mfc_cache *c, *next;
  950. /*
  951. * Shut down all active vif entries
  952. */
  953. for (i = 0; i < mrt->maxvif; i++) {
  954. if (!(mrt->vif_table[i].flags&VIFF_STATIC))
  955. vif_delete(mrt, i, 0, &list);
  956. }
  957. unregister_netdevice_many(&list);
  958. /*
  959. * Wipe the cache
  960. */
  961. for (i = 0; i < MFC_LINES; i++) {
  962. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  963. if (c->mfc_flags&MFC_STATIC)
  964. continue;
  965. write_lock_bh(&mrt_lock);
  966. list_del(&c->list);
  967. write_unlock_bh(&mrt_lock);
  968. ipmr_cache_free(c);
  969. }
  970. }
  971. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  972. spin_lock_bh(&mfc_unres_lock);
  973. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  974. list_del(&c->list);
  975. ipmr_destroy_unres(mrt, c);
  976. }
  977. spin_unlock_bh(&mfc_unres_lock);
  978. }
  979. }
  980. static void mrtsock_destruct(struct sock *sk)
  981. {
  982. struct net *net = sock_net(sk);
  983. struct mr_table *mrt;
  984. rtnl_lock();
  985. ipmr_for_each_table(mrt, net) {
  986. if (sk == mrt->mroute_sk) {
  987. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  988. write_lock_bh(&mrt_lock);
  989. mrt->mroute_sk = NULL;
  990. write_unlock_bh(&mrt_lock);
  991. mroute_clean_tables(mrt);
  992. }
  993. }
  994. rtnl_unlock();
  995. }
  996. /*
  997. * Socket options and virtual interface manipulation. The whole
  998. * virtual interface system is a complete heap, but unfortunately
  999. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1000. * MOSPF/PIM router set up we can clean this up.
  1001. */
  1002. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
  1003. {
  1004. int ret;
  1005. struct vifctl vif;
  1006. struct mfcctl mfc;
  1007. struct net *net = sock_net(sk);
  1008. struct mr_table *mrt;
  1009. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1010. if (mrt == NULL)
  1011. return -ENOENT;
  1012. if (optname != MRT_INIT) {
  1013. if (sk != mrt->mroute_sk && !capable(CAP_NET_ADMIN))
  1014. return -EACCES;
  1015. }
  1016. switch (optname) {
  1017. case MRT_INIT:
  1018. if (sk->sk_type != SOCK_RAW ||
  1019. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1020. return -EOPNOTSUPP;
  1021. if (optlen != sizeof(int))
  1022. return -ENOPROTOOPT;
  1023. rtnl_lock();
  1024. if (mrt->mroute_sk) {
  1025. rtnl_unlock();
  1026. return -EADDRINUSE;
  1027. }
  1028. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1029. if (ret == 0) {
  1030. write_lock_bh(&mrt_lock);
  1031. mrt->mroute_sk = sk;
  1032. write_unlock_bh(&mrt_lock);
  1033. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1034. }
  1035. rtnl_unlock();
  1036. return ret;
  1037. case MRT_DONE:
  1038. if (sk != mrt->mroute_sk)
  1039. return -EACCES;
  1040. return ip_ra_control(sk, 0, NULL);
  1041. case MRT_ADD_VIF:
  1042. case MRT_DEL_VIF:
  1043. if (optlen != sizeof(vif))
  1044. return -EINVAL;
  1045. if (copy_from_user(&vif, optval, sizeof(vif)))
  1046. return -EFAULT;
  1047. if (vif.vifc_vifi >= MAXVIFS)
  1048. return -ENFILE;
  1049. rtnl_lock();
  1050. if (optname == MRT_ADD_VIF) {
  1051. ret = vif_add(net, mrt, &vif, sk == mrt->mroute_sk);
  1052. } else {
  1053. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1054. }
  1055. rtnl_unlock();
  1056. return ret;
  1057. /*
  1058. * Manipulate the forwarding caches. These live
  1059. * in a sort of kernel/user symbiosis.
  1060. */
  1061. case MRT_ADD_MFC:
  1062. case MRT_DEL_MFC:
  1063. if (optlen != sizeof(mfc))
  1064. return -EINVAL;
  1065. if (copy_from_user(&mfc, optval, sizeof(mfc)))
  1066. return -EFAULT;
  1067. rtnl_lock();
  1068. if (optname == MRT_DEL_MFC)
  1069. ret = ipmr_mfc_delete(mrt, &mfc);
  1070. else
  1071. ret = ipmr_mfc_add(net, mrt, &mfc, sk == mrt->mroute_sk);
  1072. rtnl_unlock();
  1073. return ret;
  1074. /*
  1075. * Control PIM assert.
  1076. */
  1077. case MRT_ASSERT:
  1078. {
  1079. int v;
  1080. if (get_user(v,(int __user *)optval))
  1081. return -EFAULT;
  1082. mrt->mroute_do_assert = (v) ? 1 : 0;
  1083. return 0;
  1084. }
  1085. #ifdef CONFIG_IP_PIMSM
  1086. case MRT_PIM:
  1087. {
  1088. int v;
  1089. if (get_user(v,(int __user *)optval))
  1090. return -EFAULT;
  1091. v = (v) ? 1 : 0;
  1092. rtnl_lock();
  1093. ret = 0;
  1094. if (v != mrt->mroute_do_pim) {
  1095. mrt->mroute_do_pim = v;
  1096. mrt->mroute_do_assert = v;
  1097. }
  1098. rtnl_unlock();
  1099. return ret;
  1100. }
  1101. #endif
  1102. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  1103. case MRT_TABLE:
  1104. {
  1105. u32 v;
  1106. if (optlen != sizeof(u32))
  1107. return -EINVAL;
  1108. if (get_user(v, (u32 __user *)optval))
  1109. return -EFAULT;
  1110. if (sk == mrt->mroute_sk)
  1111. return -EBUSY;
  1112. rtnl_lock();
  1113. ret = 0;
  1114. if (!ipmr_new_table(net, v))
  1115. ret = -ENOMEM;
  1116. raw_sk(sk)->ipmr_table = v;
  1117. rtnl_unlock();
  1118. return ret;
  1119. }
  1120. #endif
  1121. /*
  1122. * Spurious command, or MRT_VERSION which you cannot
  1123. * set.
  1124. */
  1125. default:
  1126. return -ENOPROTOOPT;
  1127. }
  1128. }
  1129. /*
  1130. * Getsock opt support for the multicast routing system.
  1131. */
  1132. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1133. {
  1134. int olr;
  1135. int val;
  1136. struct net *net = sock_net(sk);
  1137. struct mr_table *mrt;
  1138. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1139. if (mrt == NULL)
  1140. return -ENOENT;
  1141. if (optname != MRT_VERSION &&
  1142. #ifdef CONFIG_IP_PIMSM
  1143. optname!=MRT_PIM &&
  1144. #endif
  1145. optname!=MRT_ASSERT)
  1146. return -ENOPROTOOPT;
  1147. if (get_user(olr, optlen))
  1148. return -EFAULT;
  1149. olr = min_t(unsigned int, olr, sizeof(int));
  1150. if (olr < 0)
  1151. return -EINVAL;
  1152. if (put_user(olr, optlen))
  1153. return -EFAULT;
  1154. if (optname == MRT_VERSION)
  1155. val = 0x0305;
  1156. #ifdef CONFIG_IP_PIMSM
  1157. else if (optname == MRT_PIM)
  1158. val = mrt->mroute_do_pim;
  1159. #endif
  1160. else
  1161. val = mrt->mroute_do_assert;
  1162. if (copy_to_user(optval, &val, olr))
  1163. return -EFAULT;
  1164. return 0;
  1165. }
  1166. /*
  1167. * The IP multicast ioctl support routines.
  1168. */
  1169. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1170. {
  1171. struct sioc_sg_req sr;
  1172. struct sioc_vif_req vr;
  1173. struct vif_device *vif;
  1174. struct mfc_cache *c;
  1175. struct net *net = sock_net(sk);
  1176. struct mr_table *mrt;
  1177. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1178. if (mrt == NULL)
  1179. return -ENOENT;
  1180. switch (cmd) {
  1181. case SIOCGETVIFCNT:
  1182. if (copy_from_user(&vr, arg, sizeof(vr)))
  1183. return -EFAULT;
  1184. if (vr.vifi >= mrt->maxvif)
  1185. return -EINVAL;
  1186. read_lock(&mrt_lock);
  1187. vif = &mrt->vif_table[vr.vifi];
  1188. if (VIF_EXISTS(mrt, vr.vifi)) {
  1189. vr.icount = vif->pkt_in;
  1190. vr.ocount = vif->pkt_out;
  1191. vr.ibytes = vif->bytes_in;
  1192. vr.obytes = vif->bytes_out;
  1193. read_unlock(&mrt_lock);
  1194. if (copy_to_user(arg, &vr, sizeof(vr)))
  1195. return -EFAULT;
  1196. return 0;
  1197. }
  1198. read_unlock(&mrt_lock);
  1199. return -EADDRNOTAVAIL;
  1200. case SIOCGETSGCNT:
  1201. if (copy_from_user(&sr, arg, sizeof(sr)))
  1202. return -EFAULT;
  1203. read_lock(&mrt_lock);
  1204. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1205. if (c) {
  1206. sr.pktcnt = c->mfc_un.res.pkt;
  1207. sr.bytecnt = c->mfc_un.res.bytes;
  1208. sr.wrong_if = c->mfc_un.res.wrong_if;
  1209. read_unlock(&mrt_lock);
  1210. if (copy_to_user(arg, &sr, sizeof(sr)))
  1211. return -EFAULT;
  1212. return 0;
  1213. }
  1214. read_unlock(&mrt_lock);
  1215. return -EADDRNOTAVAIL;
  1216. default:
  1217. return -ENOIOCTLCMD;
  1218. }
  1219. }
  1220. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1221. {
  1222. struct net_device *dev = ptr;
  1223. struct net *net = dev_net(dev);
  1224. struct mr_table *mrt;
  1225. struct vif_device *v;
  1226. int ct;
  1227. LIST_HEAD(list);
  1228. if (event != NETDEV_UNREGISTER)
  1229. return NOTIFY_DONE;
  1230. ipmr_for_each_table(mrt, net) {
  1231. v = &mrt->vif_table[0];
  1232. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1233. if (v->dev == dev)
  1234. vif_delete(mrt, ct, 1, &list);
  1235. }
  1236. }
  1237. unregister_netdevice_many(&list);
  1238. return NOTIFY_DONE;
  1239. }
  1240. static struct notifier_block ip_mr_notifier = {
  1241. .notifier_call = ipmr_device_event,
  1242. };
  1243. /*
  1244. * Encapsulate a packet by attaching a valid IPIP header to it.
  1245. * This avoids tunnel drivers and other mess and gives us the speed so
  1246. * important for multicast video.
  1247. */
  1248. static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
  1249. {
  1250. struct iphdr *iph;
  1251. struct iphdr *old_iph = ip_hdr(skb);
  1252. skb_push(skb, sizeof(struct iphdr));
  1253. skb->transport_header = skb->network_header;
  1254. skb_reset_network_header(skb);
  1255. iph = ip_hdr(skb);
  1256. iph->version = 4;
  1257. iph->tos = old_iph->tos;
  1258. iph->ttl = old_iph->ttl;
  1259. iph->frag_off = 0;
  1260. iph->daddr = daddr;
  1261. iph->saddr = saddr;
  1262. iph->protocol = IPPROTO_IPIP;
  1263. iph->ihl = 5;
  1264. iph->tot_len = htons(skb->len);
  1265. ip_select_ident(iph, skb_dst(skb), NULL);
  1266. ip_send_check(iph);
  1267. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1268. nf_reset(skb);
  1269. }
  1270. static inline int ipmr_forward_finish(struct sk_buff *skb)
  1271. {
  1272. struct ip_options * opt = &(IPCB(skb)->opt);
  1273. IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
  1274. if (unlikely(opt->optlen))
  1275. ip_forward_options(skb);
  1276. return dst_output(skb);
  1277. }
  1278. /*
  1279. * Processing handlers for ipmr_forward
  1280. */
  1281. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1282. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1283. {
  1284. const struct iphdr *iph = ip_hdr(skb);
  1285. struct vif_device *vif = &mrt->vif_table[vifi];
  1286. struct net_device *dev;
  1287. struct rtable *rt;
  1288. int encap = 0;
  1289. if (vif->dev == NULL)
  1290. goto out_free;
  1291. #ifdef CONFIG_IP_PIMSM
  1292. if (vif->flags & VIFF_REGISTER) {
  1293. vif->pkt_out++;
  1294. vif->bytes_out += skb->len;
  1295. vif->dev->stats.tx_bytes += skb->len;
  1296. vif->dev->stats.tx_packets++;
  1297. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1298. goto out_free;
  1299. }
  1300. #endif
  1301. if (vif->flags&VIFF_TUNNEL) {
  1302. struct flowi fl = { .oif = vif->link,
  1303. .nl_u = { .ip4_u =
  1304. { .daddr = vif->remote,
  1305. .saddr = vif->local,
  1306. .tos = RT_TOS(iph->tos) } },
  1307. .proto = IPPROTO_IPIP };
  1308. if (ip_route_output_key(net, &rt, &fl))
  1309. goto out_free;
  1310. encap = sizeof(struct iphdr);
  1311. } else {
  1312. struct flowi fl = { .oif = vif->link,
  1313. .nl_u = { .ip4_u =
  1314. { .daddr = iph->daddr,
  1315. .tos = RT_TOS(iph->tos) } },
  1316. .proto = IPPROTO_IPIP };
  1317. if (ip_route_output_key(net, &rt, &fl))
  1318. goto out_free;
  1319. }
  1320. dev = rt->dst.dev;
  1321. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1322. /* Do not fragment multicasts. Alas, IPv4 does not
  1323. allow to send ICMP, so that packets will disappear
  1324. to blackhole.
  1325. */
  1326. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
  1327. ip_rt_put(rt);
  1328. goto out_free;
  1329. }
  1330. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1331. if (skb_cow(skb, encap)) {
  1332. ip_rt_put(rt);
  1333. goto out_free;
  1334. }
  1335. vif->pkt_out++;
  1336. vif->bytes_out += skb->len;
  1337. skb_dst_drop(skb);
  1338. skb_dst_set(skb, &rt->dst);
  1339. ip_decrease_ttl(ip_hdr(skb));
  1340. /* FIXME: forward and output firewalls used to be called here.
  1341. * What do we do with netfilter? -- RR */
  1342. if (vif->flags & VIFF_TUNNEL) {
  1343. ip_encap(skb, vif->local, vif->remote);
  1344. /* FIXME: extra output firewall step used to be here. --RR */
  1345. vif->dev->stats.tx_packets++;
  1346. vif->dev->stats.tx_bytes += skb->len;
  1347. }
  1348. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1349. /*
  1350. * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1351. * not only before forwarding, but after forwarding on all output
  1352. * interfaces. It is clear, if mrouter runs a multicasting
  1353. * program, it should receive packets not depending to what interface
  1354. * program is joined.
  1355. * If we will not make it, the program will have to join on all
  1356. * interfaces. On the other hand, multihoming host (or router, but
  1357. * not mrouter) cannot join to more than one interface - it will
  1358. * result in receiving multiple packets.
  1359. */
  1360. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
  1361. ipmr_forward_finish);
  1362. return;
  1363. out_free:
  1364. kfree_skb(skb);
  1365. }
  1366. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1367. {
  1368. int ct;
  1369. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1370. if (mrt->vif_table[ct].dev == dev)
  1371. break;
  1372. }
  1373. return ct;
  1374. }
  1375. /* "local" means that we should preserve one skb (for local delivery) */
  1376. static int ip_mr_forward(struct net *net, struct mr_table *mrt,
  1377. struct sk_buff *skb, struct mfc_cache *cache,
  1378. int local)
  1379. {
  1380. int psend = -1;
  1381. int vif, ct;
  1382. vif = cache->mfc_parent;
  1383. cache->mfc_un.res.pkt++;
  1384. cache->mfc_un.res.bytes += skb->len;
  1385. /*
  1386. * Wrong interface: drop packet and (maybe) send PIM assert.
  1387. */
  1388. if (mrt->vif_table[vif].dev != skb->dev) {
  1389. int true_vifi;
  1390. if (skb_rtable(skb)->fl.iif == 0) {
  1391. /* It is our own packet, looped back.
  1392. Very complicated situation...
  1393. The best workaround until routing daemons will be
  1394. fixed is not to redistribute packet, if it was
  1395. send through wrong interface. It means, that
  1396. multicast applications WILL NOT work for
  1397. (S,G), which have default multicast route pointing
  1398. to wrong oif. In any case, it is not a good
  1399. idea to use multicasting applications on router.
  1400. */
  1401. goto dont_forward;
  1402. }
  1403. cache->mfc_un.res.wrong_if++;
  1404. true_vifi = ipmr_find_vif(mrt, skb->dev);
  1405. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1406. /* pimsm uses asserts, when switching from RPT to SPT,
  1407. so that we cannot check that packet arrived on an oif.
  1408. It is bad, but otherwise we would need to move pretty
  1409. large chunk of pimd to kernel. Ough... --ANK
  1410. */
  1411. (mrt->mroute_do_pim ||
  1412. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1413. time_after(jiffies,
  1414. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1415. cache->mfc_un.res.last_assert = jiffies;
  1416. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1417. }
  1418. goto dont_forward;
  1419. }
  1420. mrt->vif_table[vif].pkt_in++;
  1421. mrt->vif_table[vif].bytes_in += skb->len;
  1422. /*
  1423. * Forward the frame
  1424. */
  1425. for (ct = cache->mfc_un.res.maxvif-1; ct >= cache->mfc_un.res.minvif; ct--) {
  1426. if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1427. if (psend != -1) {
  1428. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1429. if (skb2)
  1430. ipmr_queue_xmit(net, mrt, skb2, cache,
  1431. psend);
  1432. }
  1433. psend = ct;
  1434. }
  1435. }
  1436. if (psend != -1) {
  1437. if (local) {
  1438. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1439. if (skb2)
  1440. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1441. } else {
  1442. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1443. return 0;
  1444. }
  1445. }
  1446. dont_forward:
  1447. if (!local)
  1448. kfree_skb(skb);
  1449. return 0;
  1450. }
  1451. /*
  1452. * Multicast packets for forwarding arrive here
  1453. */
  1454. int ip_mr_input(struct sk_buff *skb)
  1455. {
  1456. struct mfc_cache *cache;
  1457. struct net *net = dev_net(skb->dev);
  1458. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1459. struct mr_table *mrt;
  1460. int err;
  1461. /* Packet is looped back after forward, it should not be
  1462. forwarded second time, but still can be delivered locally.
  1463. */
  1464. if (IPCB(skb)->flags&IPSKB_FORWARDED)
  1465. goto dont_forward;
  1466. err = ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt);
  1467. if (err < 0) {
  1468. kfree_skb(skb);
  1469. return err;
  1470. }
  1471. if (!local) {
  1472. if (IPCB(skb)->opt.router_alert) {
  1473. if (ip_call_ra_chain(skb))
  1474. return 0;
  1475. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP){
  1476. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1477. Cisco IOS <= 11.2(8)) do not put router alert
  1478. option to IGMP packets destined to routable
  1479. groups. It is very bad, because it means
  1480. that we can forward NO IGMP messages.
  1481. */
  1482. read_lock(&mrt_lock);
  1483. if (mrt->mroute_sk) {
  1484. nf_reset(skb);
  1485. raw_rcv(mrt->mroute_sk, skb);
  1486. read_unlock(&mrt_lock);
  1487. return 0;
  1488. }
  1489. read_unlock(&mrt_lock);
  1490. }
  1491. }
  1492. read_lock(&mrt_lock);
  1493. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1494. /*
  1495. * No usable cache entry
  1496. */
  1497. if (cache == NULL) {
  1498. int vif;
  1499. if (local) {
  1500. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1501. ip_local_deliver(skb);
  1502. if (skb2 == NULL) {
  1503. read_unlock(&mrt_lock);
  1504. return -ENOBUFS;
  1505. }
  1506. skb = skb2;
  1507. }
  1508. vif = ipmr_find_vif(mrt, skb->dev);
  1509. if (vif >= 0) {
  1510. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1511. read_unlock(&mrt_lock);
  1512. return err2;
  1513. }
  1514. read_unlock(&mrt_lock);
  1515. kfree_skb(skb);
  1516. return -ENODEV;
  1517. }
  1518. ip_mr_forward(net, mrt, skb, cache, local);
  1519. read_unlock(&mrt_lock);
  1520. if (local)
  1521. return ip_local_deliver(skb);
  1522. return 0;
  1523. dont_forward:
  1524. if (local)
  1525. return ip_local_deliver(skb);
  1526. kfree_skb(skb);
  1527. return 0;
  1528. }
  1529. #ifdef CONFIG_IP_PIMSM
  1530. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  1531. unsigned int pimlen)
  1532. {
  1533. struct net_device *reg_dev = NULL;
  1534. struct iphdr *encap;
  1535. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  1536. /*
  1537. Check that:
  1538. a. packet is really destinted to a multicast group
  1539. b. packet is not a NULL-REGISTER
  1540. c. packet is not truncated
  1541. */
  1542. if (!ipv4_is_multicast(encap->daddr) ||
  1543. encap->tot_len == 0 ||
  1544. ntohs(encap->tot_len) + pimlen > skb->len)
  1545. return 1;
  1546. read_lock(&mrt_lock);
  1547. if (mrt->mroute_reg_vif_num >= 0)
  1548. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  1549. if (reg_dev)
  1550. dev_hold(reg_dev);
  1551. read_unlock(&mrt_lock);
  1552. if (reg_dev == NULL)
  1553. return 1;
  1554. skb->mac_header = skb->network_header;
  1555. skb_pull(skb, (u8*)encap - skb->data);
  1556. skb_reset_network_header(skb);
  1557. skb->protocol = htons(ETH_P_IP);
  1558. skb->ip_summed = 0;
  1559. skb->pkt_type = PACKET_HOST;
  1560. skb_tunnel_rx(skb, reg_dev);
  1561. netif_rx(skb);
  1562. dev_put(reg_dev);
  1563. return 0;
  1564. }
  1565. #endif
  1566. #ifdef CONFIG_IP_PIMSM_V1
  1567. /*
  1568. * Handle IGMP messages of PIMv1
  1569. */
  1570. int pim_rcv_v1(struct sk_buff * skb)
  1571. {
  1572. struct igmphdr *pim;
  1573. struct net *net = dev_net(skb->dev);
  1574. struct mr_table *mrt;
  1575. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1576. goto drop;
  1577. pim = igmp_hdr(skb);
  1578. if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
  1579. goto drop;
  1580. if (!mrt->mroute_do_pim ||
  1581. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1582. goto drop;
  1583. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1584. drop:
  1585. kfree_skb(skb);
  1586. }
  1587. return 0;
  1588. }
  1589. #endif
  1590. #ifdef CONFIG_IP_PIMSM_V2
  1591. static int pim_rcv(struct sk_buff * skb)
  1592. {
  1593. struct pimreghdr *pim;
  1594. struct net *net = dev_net(skb->dev);
  1595. struct mr_table *mrt;
  1596. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1597. goto drop;
  1598. pim = (struct pimreghdr *)skb_transport_header(skb);
  1599. if (pim->type != ((PIM_VERSION<<4)|(PIM_REGISTER)) ||
  1600. (pim->flags&PIM_NULL_REGISTER) ||
  1601. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1602. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1603. goto drop;
  1604. if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
  1605. goto drop;
  1606. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1607. drop:
  1608. kfree_skb(skb);
  1609. }
  1610. return 0;
  1611. }
  1612. #endif
  1613. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1614. struct mfc_cache *c, struct rtmsg *rtm)
  1615. {
  1616. int ct;
  1617. struct rtnexthop *nhp;
  1618. u8 *b = skb_tail_pointer(skb);
  1619. struct rtattr *mp_head;
  1620. /* If cache is unresolved, don't try to parse IIF and OIF */
  1621. if (c->mfc_parent >= MAXVIFS)
  1622. return -ENOENT;
  1623. if (VIF_EXISTS(mrt, c->mfc_parent))
  1624. RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
  1625. mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
  1626. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1627. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1628. if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
  1629. goto rtattr_failure;
  1630. nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
  1631. nhp->rtnh_flags = 0;
  1632. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1633. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1634. nhp->rtnh_len = sizeof(*nhp);
  1635. }
  1636. }
  1637. mp_head->rta_type = RTA_MULTIPATH;
  1638. mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
  1639. rtm->rtm_type = RTN_MULTICAST;
  1640. return 1;
  1641. rtattr_failure:
  1642. nlmsg_trim(skb, b);
  1643. return -EMSGSIZE;
  1644. }
  1645. int ipmr_get_route(struct net *net,
  1646. struct sk_buff *skb, struct rtmsg *rtm, int nowait)
  1647. {
  1648. int err;
  1649. struct mr_table *mrt;
  1650. struct mfc_cache *cache;
  1651. struct rtable *rt = skb_rtable(skb);
  1652. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1653. if (mrt == NULL)
  1654. return -ENOENT;
  1655. read_lock(&mrt_lock);
  1656. cache = ipmr_cache_find(mrt, rt->rt_src, rt->rt_dst);
  1657. if (cache == NULL) {
  1658. struct sk_buff *skb2;
  1659. struct iphdr *iph;
  1660. struct net_device *dev;
  1661. int vif;
  1662. if (nowait) {
  1663. read_unlock(&mrt_lock);
  1664. return -EAGAIN;
  1665. }
  1666. dev = skb->dev;
  1667. if (dev == NULL || (vif = ipmr_find_vif(mrt, dev)) < 0) {
  1668. read_unlock(&mrt_lock);
  1669. return -ENODEV;
  1670. }
  1671. skb2 = skb_clone(skb, GFP_ATOMIC);
  1672. if (!skb2) {
  1673. read_unlock(&mrt_lock);
  1674. return -ENOMEM;
  1675. }
  1676. skb_push(skb2, sizeof(struct iphdr));
  1677. skb_reset_network_header(skb2);
  1678. iph = ip_hdr(skb2);
  1679. iph->ihl = sizeof(struct iphdr) >> 2;
  1680. iph->saddr = rt->rt_src;
  1681. iph->daddr = rt->rt_dst;
  1682. iph->version = 0;
  1683. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1684. read_unlock(&mrt_lock);
  1685. return err;
  1686. }
  1687. if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
  1688. cache->mfc_flags |= MFC_NOTIFY;
  1689. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1690. read_unlock(&mrt_lock);
  1691. return err;
  1692. }
  1693. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1694. u32 pid, u32 seq, struct mfc_cache *c)
  1695. {
  1696. struct nlmsghdr *nlh;
  1697. struct rtmsg *rtm;
  1698. nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
  1699. if (nlh == NULL)
  1700. return -EMSGSIZE;
  1701. rtm = nlmsg_data(nlh);
  1702. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1703. rtm->rtm_dst_len = 32;
  1704. rtm->rtm_src_len = 32;
  1705. rtm->rtm_tos = 0;
  1706. rtm->rtm_table = mrt->id;
  1707. NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
  1708. rtm->rtm_type = RTN_MULTICAST;
  1709. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1710. rtm->rtm_protocol = RTPROT_UNSPEC;
  1711. rtm->rtm_flags = 0;
  1712. NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
  1713. NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
  1714. if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
  1715. goto nla_put_failure;
  1716. return nlmsg_end(skb, nlh);
  1717. nla_put_failure:
  1718. nlmsg_cancel(skb, nlh);
  1719. return -EMSGSIZE;
  1720. }
  1721. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  1722. {
  1723. struct net *net = sock_net(skb->sk);
  1724. struct mr_table *mrt;
  1725. struct mfc_cache *mfc;
  1726. unsigned int t = 0, s_t;
  1727. unsigned int h = 0, s_h;
  1728. unsigned int e = 0, s_e;
  1729. s_t = cb->args[0];
  1730. s_h = cb->args[1];
  1731. s_e = cb->args[2];
  1732. read_lock(&mrt_lock);
  1733. ipmr_for_each_table(mrt, net) {
  1734. if (t < s_t)
  1735. goto next_table;
  1736. if (t > s_t)
  1737. s_h = 0;
  1738. for (h = s_h; h < MFC_LINES; h++) {
  1739. list_for_each_entry(mfc, &mrt->mfc_cache_array[h], list) {
  1740. if (e < s_e)
  1741. goto next_entry;
  1742. if (ipmr_fill_mroute(mrt, skb,
  1743. NETLINK_CB(cb->skb).pid,
  1744. cb->nlh->nlmsg_seq,
  1745. mfc) < 0)
  1746. goto done;
  1747. next_entry:
  1748. e++;
  1749. }
  1750. e = s_e = 0;
  1751. }
  1752. s_h = 0;
  1753. next_table:
  1754. t++;
  1755. }
  1756. done:
  1757. read_unlock(&mrt_lock);
  1758. cb->args[2] = e;
  1759. cb->args[1] = h;
  1760. cb->args[0] = t;
  1761. return skb->len;
  1762. }
  1763. #ifdef CONFIG_PROC_FS
  1764. /*
  1765. * The /proc interfaces to multicast routing /proc/ip_mr_cache /proc/ip_mr_vif
  1766. */
  1767. struct ipmr_vif_iter {
  1768. struct seq_net_private p;
  1769. struct mr_table *mrt;
  1770. int ct;
  1771. };
  1772. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  1773. struct ipmr_vif_iter *iter,
  1774. loff_t pos)
  1775. {
  1776. struct mr_table *mrt = iter->mrt;
  1777. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  1778. if (!VIF_EXISTS(mrt, iter->ct))
  1779. continue;
  1780. if (pos-- == 0)
  1781. return &mrt->vif_table[iter->ct];
  1782. }
  1783. return NULL;
  1784. }
  1785. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  1786. __acquires(mrt_lock)
  1787. {
  1788. struct ipmr_vif_iter *iter = seq->private;
  1789. struct net *net = seq_file_net(seq);
  1790. struct mr_table *mrt;
  1791. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1792. if (mrt == NULL)
  1793. return ERR_PTR(-ENOENT);
  1794. iter->mrt = mrt;
  1795. read_lock(&mrt_lock);
  1796. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  1797. : SEQ_START_TOKEN;
  1798. }
  1799. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1800. {
  1801. struct ipmr_vif_iter *iter = seq->private;
  1802. struct net *net = seq_file_net(seq);
  1803. struct mr_table *mrt = iter->mrt;
  1804. ++*pos;
  1805. if (v == SEQ_START_TOKEN)
  1806. return ipmr_vif_seq_idx(net, iter, 0);
  1807. while (++iter->ct < mrt->maxvif) {
  1808. if (!VIF_EXISTS(mrt, iter->ct))
  1809. continue;
  1810. return &mrt->vif_table[iter->ct];
  1811. }
  1812. return NULL;
  1813. }
  1814. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  1815. __releases(mrt_lock)
  1816. {
  1817. read_unlock(&mrt_lock);
  1818. }
  1819. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  1820. {
  1821. struct ipmr_vif_iter *iter = seq->private;
  1822. struct mr_table *mrt = iter->mrt;
  1823. if (v == SEQ_START_TOKEN) {
  1824. seq_puts(seq,
  1825. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  1826. } else {
  1827. const struct vif_device *vif = v;
  1828. const char *name = vif->dev ? vif->dev->name : "none";
  1829. seq_printf(seq,
  1830. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  1831. vif - mrt->vif_table,
  1832. name, vif->bytes_in, vif->pkt_in,
  1833. vif->bytes_out, vif->pkt_out,
  1834. vif->flags, vif->local, vif->remote);
  1835. }
  1836. return 0;
  1837. }
  1838. static const struct seq_operations ipmr_vif_seq_ops = {
  1839. .start = ipmr_vif_seq_start,
  1840. .next = ipmr_vif_seq_next,
  1841. .stop = ipmr_vif_seq_stop,
  1842. .show = ipmr_vif_seq_show,
  1843. };
  1844. static int ipmr_vif_open(struct inode *inode, struct file *file)
  1845. {
  1846. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  1847. sizeof(struct ipmr_vif_iter));
  1848. }
  1849. static const struct file_operations ipmr_vif_fops = {
  1850. .owner = THIS_MODULE,
  1851. .open = ipmr_vif_open,
  1852. .read = seq_read,
  1853. .llseek = seq_lseek,
  1854. .release = seq_release_net,
  1855. };
  1856. struct ipmr_mfc_iter {
  1857. struct seq_net_private p;
  1858. struct mr_table *mrt;
  1859. struct list_head *cache;
  1860. int ct;
  1861. };
  1862. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  1863. struct ipmr_mfc_iter *it, loff_t pos)
  1864. {
  1865. struct mr_table *mrt = it->mrt;
  1866. struct mfc_cache *mfc;
  1867. read_lock(&mrt_lock);
  1868. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  1869. it->cache = &mrt->mfc_cache_array[it->ct];
  1870. list_for_each_entry(mfc, it->cache, list)
  1871. if (pos-- == 0)
  1872. return mfc;
  1873. }
  1874. read_unlock(&mrt_lock);
  1875. spin_lock_bh(&mfc_unres_lock);
  1876. it->cache = &mrt->mfc_unres_queue;
  1877. list_for_each_entry(mfc, it->cache, list)
  1878. if (pos-- == 0)
  1879. return mfc;
  1880. spin_unlock_bh(&mfc_unres_lock);
  1881. it->cache = NULL;
  1882. return NULL;
  1883. }
  1884. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  1885. {
  1886. struct ipmr_mfc_iter *it = seq->private;
  1887. struct net *net = seq_file_net(seq);
  1888. struct mr_table *mrt;
  1889. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1890. if (mrt == NULL)
  1891. return ERR_PTR(-ENOENT);
  1892. it->mrt = mrt;
  1893. it->cache = NULL;
  1894. it->ct = 0;
  1895. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  1896. : SEQ_START_TOKEN;
  1897. }
  1898. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1899. {
  1900. struct mfc_cache *mfc = v;
  1901. struct ipmr_mfc_iter *it = seq->private;
  1902. struct net *net = seq_file_net(seq);
  1903. struct mr_table *mrt = it->mrt;
  1904. ++*pos;
  1905. if (v == SEQ_START_TOKEN)
  1906. return ipmr_mfc_seq_idx(net, seq->private, 0);
  1907. if (mfc->list.next != it->cache)
  1908. return list_entry(mfc->list.next, struct mfc_cache, list);
  1909. if (it->cache == &mrt->mfc_unres_queue)
  1910. goto end_of_list;
  1911. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  1912. while (++it->ct < MFC_LINES) {
  1913. it->cache = &mrt->mfc_cache_array[it->ct];
  1914. if (list_empty(it->cache))
  1915. continue;
  1916. return list_first_entry(it->cache, struct mfc_cache, list);
  1917. }
  1918. /* exhausted cache_array, show unresolved */
  1919. read_unlock(&mrt_lock);
  1920. it->cache = &mrt->mfc_unres_queue;
  1921. it->ct = 0;
  1922. spin_lock_bh(&mfc_unres_lock);
  1923. if (!list_empty(it->cache))
  1924. return list_first_entry(it->cache, struct mfc_cache, list);
  1925. end_of_list:
  1926. spin_unlock_bh(&mfc_unres_lock);
  1927. it->cache = NULL;
  1928. return NULL;
  1929. }
  1930. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  1931. {
  1932. struct ipmr_mfc_iter *it = seq->private;
  1933. struct mr_table *mrt = it->mrt;
  1934. if (it->cache == &mrt->mfc_unres_queue)
  1935. spin_unlock_bh(&mfc_unres_lock);
  1936. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  1937. read_unlock(&mrt_lock);
  1938. }
  1939. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  1940. {
  1941. int n;
  1942. if (v == SEQ_START_TOKEN) {
  1943. seq_puts(seq,
  1944. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  1945. } else {
  1946. const struct mfc_cache *mfc = v;
  1947. const struct ipmr_mfc_iter *it = seq->private;
  1948. const struct mr_table *mrt = it->mrt;
  1949. seq_printf(seq, "%08X %08X %-3hd",
  1950. (__force u32) mfc->mfc_mcastgrp,
  1951. (__force u32) mfc->mfc_origin,
  1952. mfc->mfc_parent);
  1953. if (it->cache != &mrt->mfc_unres_queue) {
  1954. seq_printf(seq, " %8lu %8lu %8lu",
  1955. mfc->mfc_un.res.pkt,
  1956. mfc->mfc_un.res.bytes,
  1957. mfc->mfc_un.res.wrong_if);
  1958. for (n = mfc->mfc_un.res.minvif;
  1959. n < mfc->mfc_un.res.maxvif; n++ ) {
  1960. if (VIF_EXISTS(mrt, n) &&
  1961. mfc->mfc_un.res.ttls[n] < 255)
  1962. seq_printf(seq,
  1963. " %2d:%-3d",
  1964. n, mfc->mfc_un.res.ttls[n]);
  1965. }
  1966. } else {
  1967. /* unresolved mfc_caches don't contain
  1968. * pkt, bytes and wrong_if values
  1969. */
  1970. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  1971. }
  1972. seq_putc(seq, '\n');
  1973. }
  1974. return 0;
  1975. }
  1976. static const struct seq_operations ipmr_mfc_seq_ops = {
  1977. .start = ipmr_mfc_seq_start,
  1978. .next = ipmr_mfc_seq_next,
  1979. .stop = ipmr_mfc_seq_stop,
  1980. .show = ipmr_mfc_seq_show,
  1981. };
  1982. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  1983. {
  1984. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  1985. sizeof(struct ipmr_mfc_iter));
  1986. }
  1987. static const struct file_operations ipmr_mfc_fops = {
  1988. .owner = THIS_MODULE,
  1989. .open = ipmr_mfc_open,
  1990. .read = seq_read,
  1991. .llseek = seq_lseek,
  1992. .release = seq_release_net,
  1993. };
  1994. #endif
  1995. #ifdef CONFIG_IP_PIMSM_V2
  1996. static const struct net_protocol pim_protocol = {
  1997. .handler = pim_rcv,
  1998. .netns_ok = 1,
  1999. };
  2000. #endif
  2001. /*
  2002. * Setup for IP multicast routing
  2003. */
  2004. static int __net_init ipmr_net_init(struct net *net)
  2005. {
  2006. int err;
  2007. err = ipmr_rules_init(net);
  2008. if (err < 0)
  2009. goto fail;
  2010. #ifdef CONFIG_PROC_FS
  2011. err = -ENOMEM;
  2012. if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
  2013. goto proc_vif_fail;
  2014. if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
  2015. goto proc_cache_fail;
  2016. #endif
  2017. return 0;
  2018. #ifdef CONFIG_PROC_FS
  2019. proc_cache_fail:
  2020. proc_net_remove(net, "ip_mr_vif");
  2021. proc_vif_fail:
  2022. ipmr_rules_exit(net);
  2023. #endif
  2024. fail:
  2025. return err;
  2026. }
  2027. static void __net_exit ipmr_net_exit(struct net *net)
  2028. {
  2029. #ifdef CONFIG_PROC_FS
  2030. proc_net_remove(net, "ip_mr_cache");
  2031. proc_net_remove(net, "ip_mr_vif");
  2032. #endif
  2033. ipmr_rules_exit(net);
  2034. }
  2035. static struct pernet_operations ipmr_net_ops = {
  2036. .init = ipmr_net_init,
  2037. .exit = ipmr_net_exit,
  2038. };
  2039. int __init ip_mr_init(void)
  2040. {
  2041. int err;
  2042. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2043. sizeof(struct mfc_cache),
  2044. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2045. NULL);
  2046. if (!mrt_cachep)
  2047. return -ENOMEM;
  2048. err = register_pernet_subsys(&ipmr_net_ops);
  2049. if (err)
  2050. goto reg_pernet_fail;
  2051. err = register_netdevice_notifier(&ip_mr_notifier);
  2052. if (err)
  2053. goto reg_notif_fail;
  2054. #ifdef CONFIG_IP_PIMSM_V2
  2055. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2056. printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
  2057. err = -EAGAIN;
  2058. goto add_proto_fail;
  2059. }
  2060. #endif
  2061. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute);
  2062. return 0;
  2063. #ifdef CONFIG_IP_PIMSM_V2
  2064. add_proto_fail:
  2065. unregister_netdevice_notifier(&ip_mr_notifier);
  2066. #endif
  2067. reg_notif_fail:
  2068. unregister_pernet_subsys(&ipmr_net_ops);
  2069. reg_pernet_fail:
  2070. kmem_cache_destroy(mrt_cachep);
  2071. return err;
  2072. }