dn_neigh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Neighbour Functions (Adjacency Database and
  7. * On-Ethernet Cache)
  8. *
  9. * Author: Steve Whitehouse <SteveW@ACM.org>
  10. *
  11. *
  12. * Changes:
  13. * Steve Whitehouse : Fixed router listing routine
  14. * Steve Whitehouse : Added error_report functions
  15. * Steve Whitehouse : Added default router detection
  16. * Steve Whitehouse : Hop counts in outgoing messages
  17. * Steve Whitehouse : Fixed src/dst in outgoing messages so
  18. * forwarding now stands a good chance of
  19. * working.
  20. * Steve Whitehouse : Fixed neighbour states (for now anyway).
  21. * Steve Whitehouse : Made error_report functions dummies. This
  22. * is not the right place to return skbs.
  23. * Steve Whitehouse : Convert to seq_file
  24. *
  25. */
  26. #include <linux/net.h>
  27. #include <linux/module.h>
  28. #include <linux/socket.h>
  29. #include <linux/if_arp.h>
  30. #include <linux/slab.h>
  31. #include <linux/if_ether.h>
  32. #include <linux/init.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/string.h>
  35. #include <linux/netfilter_decnet.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/rcupdate.h>
  39. #include <linux/jhash.h>
  40. #include <asm/atomic.h>
  41. #include <net/net_namespace.h>
  42. #include <net/neighbour.h>
  43. #include <net/dst.h>
  44. #include <net/flow.h>
  45. #include <net/dn.h>
  46. #include <net/dn_dev.h>
  47. #include <net/dn_neigh.h>
  48. #include <net/dn_route.h>
  49. static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);
  50. static int dn_neigh_construct(struct neighbour *);
  51. static void dn_long_error_report(struct neighbour *, struct sk_buff *);
  52. static void dn_short_error_report(struct neighbour *, struct sk_buff *);
  53. static int dn_long_output(struct sk_buff *);
  54. static int dn_short_output(struct sk_buff *);
  55. static int dn_phase3_output(struct sk_buff *);
  56. /*
  57. * For talking to broadcast devices: Ethernet & PPP
  58. */
  59. static const struct neigh_ops dn_long_ops = {
  60. .family = AF_DECnet,
  61. .error_report = dn_long_error_report,
  62. .output = dn_long_output,
  63. .connected_output = dn_long_output,
  64. .hh_output = dev_queue_xmit,
  65. .queue_xmit = dev_queue_xmit,
  66. };
  67. /*
  68. * For talking to pointopoint and multidrop devices: DDCMP and X.25
  69. */
  70. static const struct neigh_ops dn_short_ops = {
  71. .family = AF_DECnet,
  72. .error_report = dn_short_error_report,
  73. .output = dn_short_output,
  74. .connected_output = dn_short_output,
  75. .hh_output = dev_queue_xmit,
  76. .queue_xmit = dev_queue_xmit,
  77. };
  78. /*
  79. * For talking to DECnet phase III nodes
  80. */
  81. static const struct neigh_ops dn_phase3_ops = {
  82. .family = AF_DECnet,
  83. .error_report = dn_short_error_report, /* Can use short version here */
  84. .output = dn_phase3_output,
  85. .connected_output = dn_phase3_output,
  86. .hh_output = dev_queue_xmit,
  87. .queue_xmit = dev_queue_xmit
  88. };
  89. struct neigh_table dn_neigh_table = {
  90. .family = PF_DECnet,
  91. .entry_size = sizeof(struct dn_neigh),
  92. .key_len = sizeof(__le16),
  93. .hash = dn_neigh_hash,
  94. .constructor = dn_neigh_construct,
  95. .id = "dn_neigh_cache",
  96. .parms ={
  97. .tbl = &dn_neigh_table,
  98. .base_reachable_time = 30 * HZ,
  99. .retrans_time = 1 * HZ,
  100. .gc_staletime = 60 * HZ,
  101. .reachable_time = 30 * HZ,
  102. .delay_probe_time = 5 * HZ,
  103. .queue_len = 3,
  104. .ucast_probes = 0,
  105. .app_probes = 0,
  106. .mcast_probes = 0,
  107. .anycast_delay = 0,
  108. .proxy_delay = 0,
  109. .proxy_qlen = 0,
  110. .locktime = 1 * HZ,
  111. },
  112. .gc_interval = 30 * HZ,
  113. .gc_thresh1 = 128,
  114. .gc_thresh2 = 512,
  115. .gc_thresh3 = 1024,
  116. };
  117. static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev)
  118. {
  119. return jhash_2words(*(__u16 *)pkey, 0, dn_neigh_table.hash_rnd);
  120. }
  121. static int dn_neigh_construct(struct neighbour *neigh)
  122. {
  123. struct net_device *dev = neigh->dev;
  124. struct dn_neigh *dn = (struct dn_neigh *)neigh;
  125. struct dn_dev *dn_db;
  126. struct neigh_parms *parms;
  127. rcu_read_lock();
  128. dn_db = rcu_dereference(dev->dn_ptr);
  129. if (dn_db == NULL) {
  130. rcu_read_unlock();
  131. return -EINVAL;
  132. }
  133. parms = dn_db->neigh_parms;
  134. if (!parms) {
  135. rcu_read_unlock();
  136. return -EINVAL;
  137. }
  138. __neigh_parms_put(neigh->parms);
  139. neigh->parms = neigh_parms_clone(parms);
  140. if (dn_db->use_long)
  141. neigh->ops = &dn_long_ops;
  142. else
  143. neigh->ops = &dn_short_ops;
  144. rcu_read_unlock();
  145. if (dn->flags & DN_NDFLAG_P3)
  146. neigh->ops = &dn_phase3_ops;
  147. neigh->nud_state = NUD_NOARP;
  148. neigh->output = neigh->ops->connected_output;
  149. if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
  150. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  151. else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
  152. dn_dn2eth(neigh->ha, dn->addr);
  153. else {
  154. if (net_ratelimit())
  155. printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
  156. return -EINVAL;
  157. }
  158. /*
  159. * Make an estimate of the remote block size by assuming that its
  160. * two less then the device mtu, which it true for ethernet (and
  161. * other things which support long format headers) since there is
  162. * an extra length field (of 16 bits) which isn't part of the
  163. * ethernet headers and which the DECnet specs won't admit is part
  164. * of the DECnet routing headers either.
  165. *
  166. * If we over estimate here its no big deal, the NSP negotiations
  167. * will prevent us from sending packets which are too large for the
  168. * remote node to handle. In any case this figure is normally updated
  169. * by a hello message in most cases.
  170. */
  171. dn->blksize = dev->mtu - 2;
  172. return 0;
  173. }
  174. static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
  175. {
  176. printk(KERN_DEBUG "dn_long_error_report: called\n");
  177. kfree_skb(skb);
  178. }
  179. static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
  180. {
  181. printk(KERN_DEBUG "dn_short_error_report: called\n");
  182. kfree_skb(skb);
  183. }
  184. static int dn_neigh_output_packet(struct sk_buff *skb)
  185. {
  186. struct dst_entry *dst = skb_dst(skb);
  187. struct dn_route *rt = (struct dn_route *)dst;
  188. struct neighbour *neigh = dst->neighbour;
  189. struct net_device *dev = neigh->dev;
  190. char mac_addr[ETH_ALEN];
  191. dn_dn2eth(mac_addr, rt->rt_local_src);
  192. if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
  193. mac_addr, skb->len) >= 0)
  194. return neigh->ops->queue_xmit(skb);
  195. if (net_ratelimit())
  196. printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
  197. kfree_skb(skb);
  198. return -EINVAL;
  199. }
  200. static int dn_long_output(struct sk_buff *skb)
  201. {
  202. struct dst_entry *dst = skb_dst(skb);
  203. struct neighbour *neigh = dst->neighbour;
  204. struct net_device *dev = neigh->dev;
  205. int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
  206. unsigned char *data;
  207. struct dn_long_packet *lp;
  208. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  209. if (skb_headroom(skb) < headroom) {
  210. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  211. if (skb2 == NULL) {
  212. if (net_ratelimit())
  213. printk(KERN_CRIT "dn_long_output: no memory\n");
  214. kfree_skb(skb);
  215. return -ENOBUFS;
  216. }
  217. kfree_skb(skb);
  218. skb = skb2;
  219. if (net_ratelimit())
  220. printk(KERN_INFO "dn_long_output: Increasing headroom\n");
  221. }
  222. data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
  223. lp = (struct dn_long_packet *)(data+3);
  224. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  225. *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
  226. lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
  227. lp->d_area = lp->d_subarea = 0;
  228. dn_dn2eth(lp->d_id, cb->dst);
  229. lp->s_area = lp->s_subarea = 0;
  230. dn_dn2eth(lp->s_id, cb->src);
  231. lp->nl2 = 0;
  232. lp->visit_ct = cb->hops & 0x3f;
  233. lp->s_class = 0;
  234. lp->pt = 0;
  235. skb_reset_network_header(skb);
  236. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  237. neigh->dev, dn_neigh_output_packet);
  238. }
  239. static int dn_short_output(struct sk_buff *skb)
  240. {
  241. struct dst_entry *dst = skb_dst(skb);
  242. struct neighbour *neigh = dst->neighbour;
  243. struct net_device *dev = neigh->dev;
  244. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  245. struct dn_short_packet *sp;
  246. unsigned char *data;
  247. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  248. if (skb_headroom(skb) < headroom) {
  249. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  250. if (skb2 == NULL) {
  251. if (net_ratelimit())
  252. printk(KERN_CRIT "dn_short_output: no memory\n");
  253. kfree_skb(skb);
  254. return -ENOBUFS;
  255. }
  256. kfree_skb(skb);
  257. skb = skb2;
  258. if (net_ratelimit())
  259. printk(KERN_INFO "dn_short_output: Increasing headroom\n");
  260. }
  261. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  262. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  263. sp = (struct dn_short_packet *)(data+2);
  264. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  265. sp->dstnode = cb->dst;
  266. sp->srcnode = cb->src;
  267. sp->forward = cb->hops & 0x3f;
  268. skb_reset_network_header(skb);
  269. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  270. neigh->dev, dn_neigh_output_packet);
  271. }
  272. /*
  273. * Phase 3 output is the same is short output, execpt that
  274. * it clears the area bits before transmission.
  275. */
  276. static int dn_phase3_output(struct sk_buff *skb)
  277. {
  278. struct dst_entry *dst = skb_dst(skb);
  279. struct neighbour *neigh = dst->neighbour;
  280. struct net_device *dev = neigh->dev;
  281. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  282. struct dn_short_packet *sp;
  283. unsigned char *data;
  284. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  285. if (skb_headroom(skb) < headroom) {
  286. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  287. if (skb2 == NULL) {
  288. if (net_ratelimit())
  289. printk(KERN_CRIT "dn_phase3_output: no memory\n");
  290. kfree_skb(skb);
  291. return -ENOBUFS;
  292. }
  293. kfree_skb(skb);
  294. skb = skb2;
  295. if (net_ratelimit())
  296. printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
  297. }
  298. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  299. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  300. sp = (struct dn_short_packet *)(data + 2);
  301. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  302. sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
  303. sp->srcnode = cb->src & cpu_to_le16(0x03ff);
  304. sp->forward = cb->hops & 0x3f;
  305. skb_reset_network_header(skb);
  306. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  307. neigh->dev, dn_neigh_output_packet);
  308. }
  309. /*
  310. * Unfortunately, the neighbour code uses the device in its hash
  311. * function, so we don't get any advantage from it. This function
  312. * basically does a neigh_lookup(), but without comparing the device
  313. * field. This is required for the On-Ethernet cache
  314. */
  315. /*
  316. * Pointopoint link receives a hello message
  317. */
  318. void dn_neigh_pointopoint_hello(struct sk_buff *skb)
  319. {
  320. kfree_skb(skb);
  321. }
  322. /*
  323. * Ethernet router hello message received
  324. */
  325. int dn_neigh_router_hello(struct sk_buff *skb)
  326. {
  327. struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
  328. struct neighbour *neigh;
  329. struct dn_neigh *dn;
  330. struct dn_dev *dn_db;
  331. __le16 src;
  332. src = dn_eth2dn(msg->id);
  333. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  334. dn = (struct dn_neigh *)neigh;
  335. if (neigh) {
  336. write_lock(&neigh->lock);
  337. neigh->used = jiffies;
  338. dn_db = (struct dn_dev *)neigh->dev->dn_ptr;
  339. if (!(neigh->nud_state & NUD_PERMANENT)) {
  340. neigh->updated = jiffies;
  341. if (neigh->dev->type == ARPHRD_ETHER)
  342. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  343. dn->blksize = le16_to_cpu(msg->blksize);
  344. dn->priority = msg->priority;
  345. dn->flags &= ~DN_NDFLAG_P3;
  346. switch(msg->iinfo & DN_RT_INFO_TYPE) {
  347. case DN_RT_INFO_L1RT:
  348. dn->flags &=~DN_NDFLAG_R2;
  349. dn->flags |= DN_NDFLAG_R1;
  350. break;
  351. case DN_RT_INFO_L2RT:
  352. dn->flags |= DN_NDFLAG_R2;
  353. }
  354. }
  355. /* Only use routers in our area */
  356. if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
  357. if (!dn_db->router) {
  358. dn_db->router = neigh_clone(neigh);
  359. } else {
  360. if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
  361. neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
  362. }
  363. }
  364. write_unlock(&neigh->lock);
  365. neigh_release(neigh);
  366. }
  367. kfree_skb(skb);
  368. return 0;
  369. }
  370. /*
  371. * Endnode hello message received
  372. */
  373. int dn_neigh_endnode_hello(struct sk_buff *skb)
  374. {
  375. struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
  376. struct neighbour *neigh;
  377. struct dn_neigh *dn;
  378. __le16 src;
  379. src = dn_eth2dn(msg->id);
  380. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  381. dn = (struct dn_neigh *)neigh;
  382. if (neigh) {
  383. write_lock(&neigh->lock);
  384. neigh->used = jiffies;
  385. if (!(neigh->nud_state & NUD_PERMANENT)) {
  386. neigh->updated = jiffies;
  387. if (neigh->dev->type == ARPHRD_ETHER)
  388. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  389. dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
  390. dn->blksize = le16_to_cpu(msg->blksize);
  391. dn->priority = 0;
  392. }
  393. write_unlock(&neigh->lock);
  394. neigh_release(neigh);
  395. }
  396. kfree_skb(skb);
  397. return 0;
  398. }
  399. static char *dn_find_slot(char *base, int max, int priority)
  400. {
  401. int i;
  402. unsigned char *min = NULL;
  403. base += 6; /* skip first id */
  404. for(i = 0; i < max; i++) {
  405. if (!min || (*base < *min))
  406. min = base;
  407. base += 7; /* find next priority */
  408. }
  409. if (!min)
  410. return NULL;
  411. return (*min < priority) ? (min - 6) : NULL;
  412. }
  413. struct elist_cb_state {
  414. struct net_device *dev;
  415. unsigned char *ptr;
  416. unsigned char *rs;
  417. int t, n;
  418. };
  419. static void neigh_elist_cb(struct neighbour *neigh, void *_info)
  420. {
  421. struct elist_cb_state *s = _info;
  422. struct dn_neigh *dn;
  423. if (neigh->dev != s->dev)
  424. return;
  425. dn = (struct dn_neigh *) neigh;
  426. if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
  427. return;
  428. if (s->t == s->n)
  429. s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
  430. else
  431. s->t++;
  432. if (s->rs == NULL)
  433. return;
  434. dn_dn2eth(s->rs, dn->addr);
  435. s->rs += 6;
  436. *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
  437. *(s->rs) |= dn->priority;
  438. s->rs++;
  439. }
  440. int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
  441. {
  442. struct elist_cb_state state;
  443. state.dev = dev;
  444. state.t = 0;
  445. state.n = n;
  446. state.ptr = ptr;
  447. state.rs = ptr;
  448. neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
  449. return state.t;
  450. }
  451. #ifdef CONFIG_PROC_FS
  452. static inline void dn_neigh_format_entry(struct seq_file *seq,
  453. struct neighbour *n)
  454. {
  455. struct dn_neigh *dn = (struct dn_neigh *) n;
  456. char buf[DN_ASCBUF_LEN];
  457. read_lock(&n->lock);
  458. seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
  459. dn_addr2asc(le16_to_cpu(dn->addr), buf),
  460. (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
  461. (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
  462. (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
  463. dn->n.nud_state,
  464. atomic_read(&dn->n.refcnt),
  465. dn->blksize,
  466. (dn->n.dev) ? dn->n.dev->name : "?");
  467. read_unlock(&n->lock);
  468. }
  469. static int dn_neigh_seq_show(struct seq_file *seq, void *v)
  470. {
  471. if (v == SEQ_START_TOKEN) {
  472. seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
  473. } else {
  474. dn_neigh_format_entry(seq, v);
  475. }
  476. return 0;
  477. }
  478. static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
  479. {
  480. return neigh_seq_start(seq, pos, &dn_neigh_table,
  481. NEIGH_SEQ_NEIGH_ONLY);
  482. }
  483. static const struct seq_operations dn_neigh_seq_ops = {
  484. .start = dn_neigh_seq_start,
  485. .next = neigh_seq_next,
  486. .stop = neigh_seq_stop,
  487. .show = dn_neigh_seq_show,
  488. };
  489. static int dn_neigh_seq_open(struct inode *inode, struct file *file)
  490. {
  491. return seq_open_net(inode, file, &dn_neigh_seq_ops,
  492. sizeof(struct neigh_seq_state));
  493. }
  494. static const struct file_operations dn_neigh_seq_fops = {
  495. .owner = THIS_MODULE,
  496. .open = dn_neigh_seq_open,
  497. .read = seq_read,
  498. .llseek = seq_lseek,
  499. .release = seq_release_net,
  500. };
  501. #endif
  502. void __init dn_neigh_init(void)
  503. {
  504. neigh_table_init(&dn_neigh_table);
  505. proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
  506. }
  507. void __exit dn_neigh_cleanup(void)
  508. {
  509. proc_net_remove(&init_net, "decnet_neigh");
  510. neigh_table_clear(&dn_neigh_table);
  511. }