swapfile.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512
  1. /*
  2. * linux/mm/swapfile.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/hugetlb.h>
  9. #include <linux/mman.h>
  10. #include <linux/slab.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/namei.h>
  16. #include <linux/shm.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/random.h>
  19. #include <linux/writeback.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/ksm.h>
  25. #include <linux/rmap.h>
  26. #include <linux/security.h>
  27. #include <linux/backing-dev.h>
  28. #include <linux/mutex.h>
  29. #include <linux/capability.h>
  30. #include <linux/syscalls.h>
  31. #include <linux/memcontrol.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/tlbflush.h>
  34. #include <linux/swapops.h>
  35. #include <linux/page_cgroup.h>
  36. static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  37. unsigned char);
  38. static void free_swap_count_continuations(struct swap_info_struct *);
  39. static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  40. static DEFINE_SPINLOCK(swap_lock);
  41. static unsigned int nr_swapfiles;
  42. long nr_swap_pages;
  43. long total_swap_pages;
  44. static int least_priority;
  45. static const char Bad_file[] = "Bad swap file entry ";
  46. static const char Unused_file[] = "Unused swap file entry ";
  47. static const char Bad_offset[] = "Bad swap offset entry ";
  48. static const char Unused_offset[] = "Unused swap offset entry ";
  49. static struct swap_list_t swap_list = {-1, -1};
  50. static struct swap_info_struct *swap_info[MAX_SWAPFILES];
  51. static DEFINE_MUTEX(swapon_mutex);
  52. static inline unsigned char swap_count(unsigned char ent)
  53. {
  54. return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
  55. }
  56. /* returns 1 if swap entry is freed */
  57. static int
  58. __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  59. {
  60. swp_entry_t entry = swp_entry(si->type, offset);
  61. struct page *page;
  62. int ret = 0;
  63. page = find_get_page(&swapper_space, entry.val);
  64. if (!page)
  65. return 0;
  66. /*
  67. * This function is called from scan_swap_map() and it's called
  68. * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  69. * We have to use trylock for avoiding deadlock. This is a special
  70. * case and you should use try_to_free_swap() with explicit lock_page()
  71. * in usual operations.
  72. */
  73. if (trylock_page(page)) {
  74. ret = try_to_free_swap(page);
  75. unlock_page(page);
  76. }
  77. page_cache_release(page);
  78. return ret;
  79. }
  80. /*
  81. * We need this because the bdev->unplug_fn can sleep and we cannot
  82. * hold swap_lock while calling the unplug_fn. And swap_lock
  83. * cannot be turned into a mutex.
  84. */
  85. static DECLARE_RWSEM(swap_unplug_sem);
  86. void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
  87. {
  88. swp_entry_t entry;
  89. down_read(&swap_unplug_sem);
  90. entry.val = page_private(page);
  91. if (PageSwapCache(page)) {
  92. struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
  93. struct backing_dev_info *bdi;
  94. /*
  95. * If the page is removed from swapcache from under us (with a
  96. * racy try_to_unuse/swapoff) we need an additional reference
  97. * count to avoid reading garbage from page_private(page) above.
  98. * If the WARN_ON triggers during a swapoff it maybe the race
  99. * condition and it's harmless. However if it triggers without
  100. * swapoff it signals a problem.
  101. */
  102. WARN_ON(page_count(page) <= 1);
  103. bdi = bdev->bd_inode->i_mapping->backing_dev_info;
  104. blk_run_backing_dev(bdi, page);
  105. }
  106. up_read(&swap_unplug_sem);
  107. }
  108. /*
  109. * swapon tell device that all the old swap contents can be discarded,
  110. * to allow the swap device to optimize its wear-levelling.
  111. */
  112. static int discard_swap(struct swap_info_struct *si)
  113. {
  114. struct swap_extent *se;
  115. sector_t start_block;
  116. sector_t nr_blocks;
  117. int err = 0;
  118. /* Do not discard the swap header page! */
  119. se = &si->first_swap_extent;
  120. start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
  121. nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
  122. if (nr_blocks) {
  123. err = blkdev_issue_discard(si->bdev, start_block,
  124. nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT);
  125. if (err)
  126. return err;
  127. cond_resched();
  128. }
  129. list_for_each_entry(se, &si->first_swap_extent.list, list) {
  130. start_block = se->start_block << (PAGE_SHIFT - 9);
  131. nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
  132. err = blkdev_issue_discard(si->bdev, start_block,
  133. nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT);
  134. if (err)
  135. break;
  136. cond_resched();
  137. }
  138. return err; /* That will often be -EOPNOTSUPP */
  139. }
  140. /*
  141. * swap allocation tell device that a cluster of swap can now be discarded,
  142. * to allow the swap device to optimize its wear-levelling.
  143. */
  144. static void discard_swap_cluster(struct swap_info_struct *si,
  145. pgoff_t start_page, pgoff_t nr_pages)
  146. {
  147. struct swap_extent *se = si->curr_swap_extent;
  148. int found_extent = 0;
  149. while (nr_pages) {
  150. struct list_head *lh;
  151. if (se->start_page <= start_page &&
  152. start_page < se->start_page + se->nr_pages) {
  153. pgoff_t offset = start_page - se->start_page;
  154. sector_t start_block = se->start_block + offset;
  155. sector_t nr_blocks = se->nr_pages - offset;
  156. if (nr_blocks > nr_pages)
  157. nr_blocks = nr_pages;
  158. start_page += nr_blocks;
  159. nr_pages -= nr_blocks;
  160. if (!found_extent++)
  161. si->curr_swap_extent = se;
  162. start_block <<= PAGE_SHIFT - 9;
  163. nr_blocks <<= PAGE_SHIFT - 9;
  164. if (blkdev_issue_discard(si->bdev, start_block,
  165. nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT))
  166. break;
  167. }
  168. lh = se->list.next;
  169. se = list_entry(lh, struct swap_extent, list);
  170. }
  171. }
  172. static int wait_for_discard(void *word)
  173. {
  174. schedule();
  175. return 0;
  176. }
  177. #define SWAPFILE_CLUSTER 256
  178. #define LATENCY_LIMIT 256
  179. static inline unsigned long scan_swap_map(struct swap_info_struct *si,
  180. unsigned char usage)
  181. {
  182. unsigned long offset;
  183. unsigned long scan_base;
  184. unsigned long last_in_cluster = 0;
  185. int latency_ration = LATENCY_LIMIT;
  186. int found_free_cluster = 0;
  187. /*
  188. * We try to cluster swap pages by allocating them sequentially
  189. * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
  190. * way, however, we resort to first-free allocation, starting
  191. * a new cluster. This prevents us from scattering swap pages
  192. * all over the entire swap partition, so that we reduce
  193. * overall disk seek times between swap pages. -- sct
  194. * But we do now try to find an empty cluster. -Andrea
  195. * And we let swap pages go all over an SSD partition. Hugh
  196. */
  197. si->flags += SWP_SCANNING;
  198. scan_base = offset = si->cluster_next;
  199. if (unlikely(!si->cluster_nr--)) {
  200. if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
  201. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  202. goto checks;
  203. }
  204. if (si->flags & SWP_DISCARDABLE) {
  205. /*
  206. * Start range check on racing allocations, in case
  207. * they overlap the cluster we eventually decide on
  208. * (we scan without swap_lock to allow preemption).
  209. * It's hardly conceivable that cluster_nr could be
  210. * wrapped during our scan, but don't depend on it.
  211. */
  212. if (si->lowest_alloc)
  213. goto checks;
  214. si->lowest_alloc = si->max;
  215. si->highest_alloc = 0;
  216. }
  217. spin_unlock(&swap_lock);
  218. /*
  219. * If seek is expensive, start searching for new cluster from
  220. * start of partition, to minimize the span of allocated swap.
  221. * But if seek is cheap, search from our current position, so
  222. * that swap is allocated from all over the partition: if the
  223. * Flash Translation Layer only remaps within limited zones,
  224. * we don't want to wear out the first zone too quickly.
  225. */
  226. if (!(si->flags & SWP_SOLIDSTATE))
  227. scan_base = offset = si->lowest_bit;
  228. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  229. /* Locate the first empty (unaligned) cluster */
  230. for (; last_in_cluster <= si->highest_bit; offset++) {
  231. if (si->swap_map[offset])
  232. last_in_cluster = offset + SWAPFILE_CLUSTER;
  233. else if (offset == last_in_cluster) {
  234. spin_lock(&swap_lock);
  235. offset -= SWAPFILE_CLUSTER - 1;
  236. si->cluster_next = offset;
  237. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  238. found_free_cluster = 1;
  239. goto checks;
  240. }
  241. if (unlikely(--latency_ration < 0)) {
  242. cond_resched();
  243. latency_ration = LATENCY_LIMIT;
  244. }
  245. }
  246. offset = si->lowest_bit;
  247. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  248. /* Locate the first empty (unaligned) cluster */
  249. for (; last_in_cluster < scan_base; offset++) {
  250. if (si->swap_map[offset])
  251. last_in_cluster = offset + SWAPFILE_CLUSTER;
  252. else if (offset == last_in_cluster) {
  253. spin_lock(&swap_lock);
  254. offset -= SWAPFILE_CLUSTER - 1;
  255. si->cluster_next = offset;
  256. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  257. found_free_cluster = 1;
  258. goto checks;
  259. }
  260. if (unlikely(--latency_ration < 0)) {
  261. cond_resched();
  262. latency_ration = LATENCY_LIMIT;
  263. }
  264. }
  265. offset = scan_base;
  266. spin_lock(&swap_lock);
  267. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  268. si->lowest_alloc = 0;
  269. }
  270. checks:
  271. if (!(si->flags & SWP_WRITEOK))
  272. goto no_page;
  273. if (!si->highest_bit)
  274. goto no_page;
  275. if (offset > si->highest_bit)
  276. scan_base = offset = si->lowest_bit;
  277. /* reuse swap entry of cache-only swap if not busy. */
  278. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  279. int swap_was_freed;
  280. spin_unlock(&swap_lock);
  281. swap_was_freed = __try_to_reclaim_swap(si, offset);
  282. spin_lock(&swap_lock);
  283. /* entry was freed successfully, try to use this again */
  284. if (swap_was_freed)
  285. goto checks;
  286. goto scan; /* check next one */
  287. }
  288. if (si->swap_map[offset])
  289. goto scan;
  290. if (offset == si->lowest_bit)
  291. si->lowest_bit++;
  292. if (offset == si->highest_bit)
  293. si->highest_bit--;
  294. si->inuse_pages++;
  295. if (si->inuse_pages == si->pages) {
  296. si->lowest_bit = si->max;
  297. si->highest_bit = 0;
  298. }
  299. si->swap_map[offset] = usage;
  300. si->cluster_next = offset + 1;
  301. si->flags -= SWP_SCANNING;
  302. if (si->lowest_alloc) {
  303. /*
  304. * Only set when SWP_DISCARDABLE, and there's a scan
  305. * for a free cluster in progress or just completed.
  306. */
  307. if (found_free_cluster) {
  308. /*
  309. * To optimize wear-levelling, discard the
  310. * old data of the cluster, taking care not to
  311. * discard any of its pages that have already
  312. * been allocated by racing tasks (offset has
  313. * already stepped over any at the beginning).
  314. */
  315. if (offset < si->highest_alloc &&
  316. si->lowest_alloc <= last_in_cluster)
  317. last_in_cluster = si->lowest_alloc - 1;
  318. si->flags |= SWP_DISCARDING;
  319. spin_unlock(&swap_lock);
  320. if (offset < last_in_cluster)
  321. discard_swap_cluster(si, offset,
  322. last_in_cluster - offset + 1);
  323. spin_lock(&swap_lock);
  324. si->lowest_alloc = 0;
  325. si->flags &= ~SWP_DISCARDING;
  326. smp_mb(); /* wake_up_bit advises this */
  327. wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
  328. } else if (si->flags & SWP_DISCARDING) {
  329. /*
  330. * Delay using pages allocated by racing tasks
  331. * until the whole discard has been issued. We
  332. * could defer that delay until swap_writepage,
  333. * but it's easier to keep this self-contained.
  334. */
  335. spin_unlock(&swap_lock);
  336. wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
  337. wait_for_discard, TASK_UNINTERRUPTIBLE);
  338. spin_lock(&swap_lock);
  339. } else {
  340. /*
  341. * Note pages allocated by racing tasks while
  342. * scan for a free cluster is in progress, so
  343. * that its final discard can exclude them.
  344. */
  345. if (offset < si->lowest_alloc)
  346. si->lowest_alloc = offset;
  347. if (offset > si->highest_alloc)
  348. si->highest_alloc = offset;
  349. }
  350. }
  351. return offset;
  352. scan:
  353. spin_unlock(&swap_lock);
  354. while (++offset <= si->highest_bit) {
  355. if (!si->swap_map[offset]) {
  356. spin_lock(&swap_lock);
  357. goto checks;
  358. }
  359. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  360. spin_lock(&swap_lock);
  361. goto checks;
  362. }
  363. if (unlikely(--latency_ration < 0)) {
  364. cond_resched();
  365. latency_ration = LATENCY_LIMIT;
  366. }
  367. }
  368. offset = si->lowest_bit;
  369. while (++offset < scan_base) {
  370. if (!si->swap_map[offset]) {
  371. spin_lock(&swap_lock);
  372. goto checks;
  373. }
  374. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  375. spin_lock(&swap_lock);
  376. goto checks;
  377. }
  378. if (unlikely(--latency_ration < 0)) {
  379. cond_resched();
  380. latency_ration = LATENCY_LIMIT;
  381. }
  382. }
  383. spin_lock(&swap_lock);
  384. no_page:
  385. si->flags -= SWP_SCANNING;
  386. return 0;
  387. }
  388. swp_entry_t get_swap_page(void)
  389. {
  390. struct swap_info_struct *si;
  391. pgoff_t offset;
  392. int type, next;
  393. int wrapped = 0;
  394. spin_lock(&swap_lock);
  395. if (nr_swap_pages <= 0)
  396. goto noswap;
  397. nr_swap_pages--;
  398. for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
  399. si = swap_info[type];
  400. next = si->next;
  401. if (next < 0 ||
  402. (!wrapped && si->prio != swap_info[next]->prio)) {
  403. next = swap_list.head;
  404. wrapped++;
  405. }
  406. if (!si->highest_bit)
  407. continue;
  408. if (!(si->flags & SWP_WRITEOK))
  409. continue;
  410. swap_list.next = next;
  411. /* This is called for allocating swap entry for cache */
  412. offset = scan_swap_map(si, SWAP_HAS_CACHE);
  413. if (offset) {
  414. spin_unlock(&swap_lock);
  415. return swp_entry(type, offset);
  416. }
  417. next = swap_list.next;
  418. }
  419. nr_swap_pages++;
  420. noswap:
  421. spin_unlock(&swap_lock);
  422. return (swp_entry_t) {0};
  423. }
  424. /* The only caller of this function is now susupend routine */
  425. swp_entry_t get_swap_page_of_type(int type)
  426. {
  427. struct swap_info_struct *si;
  428. pgoff_t offset;
  429. spin_lock(&swap_lock);
  430. si = swap_info[type];
  431. if (si && (si->flags & SWP_WRITEOK)) {
  432. nr_swap_pages--;
  433. /* This is called for allocating swap entry, not cache */
  434. offset = scan_swap_map(si, 1);
  435. if (offset) {
  436. spin_unlock(&swap_lock);
  437. return swp_entry(type, offset);
  438. }
  439. nr_swap_pages++;
  440. }
  441. spin_unlock(&swap_lock);
  442. return (swp_entry_t) {0};
  443. }
  444. static struct swap_info_struct *swap_info_get(swp_entry_t entry)
  445. {
  446. struct swap_info_struct *p;
  447. unsigned long offset, type;
  448. if (!entry.val)
  449. goto out;
  450. type = swp_type(entry);
  451. if (type >= nr_swapfiles)
  452. goto bad_nofile;
  453. p = swap_info[type];
  454. if (!(p->flags & SWP_USED))
  455. goto bad_device;
  456. offset = swp_offset(entry);
  457. if (offset >= p->max)
  458. goto bad_offset;
  459. if (!p->swap_map[offset])
  460. goto bad_free;
  461. spin_lock(&swap_lock);
  462. return p;
  463. bad_free:
  464. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
  465. goto out;
  466. bad_offset:
  467. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
  468. goto out;
  469. bad_device:
  470. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
  471. goto out;
  472. bad_nofile:
  473. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
  474. out:
  475. return NULL;
  476. }
  477. static unsigned char swap_entry_free(struct swap_info_struct *p,
  478. swp_entry_t entry, unsigned char usage)
  479. {
  480. unsigned long offset = swp_offset(entry);
  481. unsigned char count;
  482. unsigned char has_cache;
  483. count = p->swap_map[offset];
  484. has_cache = count & SWAP_HAS_CACHE;
  485. count &= ~SWAP_HAS_CACHE;
  486. if (usage == SWAP_HAS_CACHE) {
  487. VM_BUG_ON(!has_cache);
  488. has_cache = 0;
  489. } else if (count == SWAP_MAP_SHMEM) {
  490. /*
  491. * Or we could insist on shmem.c using a special
  492. * swap_shmem_free() and free_shmem_swap_and_cache()...
  493. */
  494. count = 0;
  495. } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
  496. if (count == COUNT_CONTINUED) {
  497. if (swap_count_continued(p, offset, count))
  498. count = SWAP_MAP_MAX | COUNT_CONTINUED;
  499. else
  500. count = SWAP_MAP_MAX;
  501. } else
  502. count--;
  503. }
  504. if (!count)
  505. mem_cgroup_uncharge_swap(entry);
  506. usage = count | has_cache;
  507. p->swap_map[offset] = usage;
  508. /* free if no reference */
  509. if (!usage) {
  510. struct gendisk *disk = p->bdev->bd_disk;
  511. if (offset < p->lowest_bit)
  512. p->lowest_bit = offset;
  513. if (offset > p->highest_bit)
  514. p->highest_bit = offset;
  515. if (swap_list.next >= 0 &&
  516. p->prio > swap_info[swap_list.next]->prio)
  517. swap_list.next = p->type;
  518. nr_swap_pages++;
  519. p->inuse_pages--;
  520. if ((p->flags & SWP_BLKDEV) &&
  521. disk->fops->swap_slot_free_notify)
  522. disk->fops->swap_slot_free_notify(p->bdev, offset);
  523. }
  524. return usage;
  525. }
  526. /*
  527. * Caller has made sure that the swapdevice corresponding to entry
  528. * is still around or has not been recycled.
  529. */
  530. void swap_free(swp_entry_t entry)
  531. {
  532. struct swap_info_struct *p;
  533. p = swap_info_get(entry);
  534. if (p) {
  535. swap_entry_free(p, entry, 1);
  536. spin_unlock(&swap_lock);
  537. }
  538. }
  539. /*
  540. * Called after dropping swapcache to decrease refcnt to swap entries.
  541. */
  542. void swapcache_free(swp_entry_t entry, struct page *page)
  543. {
  544. struct swap_info_struct *p;
  545. unsigned char count;
  546. p = swap_info_get(entry);
  547. if (p) {
  548. count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
  549. if (page)
  550. mem_cgroup_uncharge_swapcache(page, entry, count != 0);
  551. spin_unlock(&swap_lock);
  552. }
  553. }
  554. /*
  555. * How many references to page are currently swapped out?
  556. * This does not give an exact answer when swap count is continued,
  557. * but does include the high COUNT_CONTINUED flag to allow for that.
  558. */
  559. static inline int page_swapcount(struct page *page)
  560. {
  561. int count = 0;
  562. struct swap_info_struct *p;
  563. swp_entry_t entry;
  564. entry.val = page_private(page);
  565. p = swap_info_get(entry);
  566. if (p) {
  567. count = swap_count(p->swap_map[swp_offset(entry)]);
  568. spin_unlock(&swap_lock);
  569. }
  570. return count;
  571. }
  572. /*
  573. * We can write to an anon page without COW if there are no other references
  574. * to it. And as a side-effect, free up its swap: because the old content
  575. * on disk will never be read, and seeking back there to write new content
  576. * later would only waste time away from clustering.
  577. */
  578. int reuse_swap_page(struct page *page)
  579. {
  580. int count;
  581. VM_BUG_ON(!PageLocked(page));
  582. if (unlikely(PageKsm(page)))
  583. return 0;
  584. count = page_mapcount(page);
  585. if (count <= 1 && PageSwapCache(page)) {
  586. count += page_swapcount(page);
  587. if (count == 1 && !PageWriteback(page)) {
  588. delete_from_swap_cache(page);
  589. SetPageDirty(page);
  590. }
  591. }
  592. return count <= 1;
  593. }
  594. /*
  595. * If swap is getting full, or if there are no more mappings of this page,
  596. * then try_to_free_swap is called to free its swap space.
  597. */
  598. int try_to_free_swap(struct page *page)
  599. {
  600. VM_BUG_ON(!PageLocked(page));
  601. if (!PageSwapCache(page))
  602. return 0;
  603. if (PageWriteback(page))
  604. return 0;
  605. if (page_swapcount(page))
  606. return 0;
  607. /*
  608. * Once hibernation has begun to create its image of memory,
  609. * there's a danger that one of the calls to try_to_free_swap()
  610. * - most probably a call from __try_to_reclaim_swap() while
  611. * hibernation is allocating its own swap pages for the image,
  612. * but conceivably even a call from memory reclaim - will free
  613. * the swap from a page which has already been recorded in the
  614. * image as a clean swapcache page, and then reuse its swap for
  615. * another page of the image. On waking from hibernation, the
  616. * original page might be freed under memory pressure, then
  617. * later read back in from swap, now with the wrong data.
  618. *
  619. * Hibernation clears bits from gfp_allowed_mask to prevent
  620. * memory reclaim from writing to disk, so check that here.
  621. */
  622. if (!(gfp_allowed_mask & __GFP_IO))
  623. return 0;
  624. delete_from_swap_cache(page);
  625. SetPageDirty(page);
  626. return 1;
  627. }
  628. /*
  629. * Free the swap entry like above, but also try to
  630. * free the page cache entry if it is the last user.
  631. */
  632. int free_swap_and_cache(swp_entry_t entry)
  633. {
  634. struct swap_info_struct *p;
  635. struct page *page = NULL;
  636. if (non_swap_entry(entry))
  637. return 1;
  638. p = swap_info_get(entry);
  639. if (p) {
  640. if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
  641. page = find_get_page(&swapper_space, entry.val);
  642. if (page && !trylock_page(page)) {
  643. page_cache_release(page);
  644. page = NULL;
  645. }
  646. }
  647. spin_unlock(&swap_lock);
  648. }
  649. if (page) {
  650. /*
  651. * Not mapped elsewhere, or swap space full? Free it!
  652. * Also recheck PageSwapCache now page is locked (above).
  653. */
  654. if (PageSwapCache(page) && !PageWriteback(page) &&
  655. (!page_mapped(page) || vm_swap_full())) {
  656. delete_from_swap_cache(page);
  657. SetPageDirty(page);
  658. }
  659. unlock_page(page);
  660. page_cache_release(page);
  661. }
  662. return p != NULL;
  663. }
  664. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  665. /**
  666. * mem_cgroup_count_swap_user - count the user of a swap entry
  667. * @ent: the swap entry to be checked
  668. * @pagep: the pointer for the swap cache page of the entry to be stored
  669. *
  670. * Returns the number of the user of the swap entry. The number is valid only
  671. * for swaps of anonymous pages.
  672. * If the entry is found on swap cache, the page is stored to pagep with
  673. * refcount of it being incremented.
  674. */
  675. int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
  676. {
  677. struct page *page;
  678. struct swap_info_struct *p;
  679. int count = 0;
  680. page = find_get_page(&swapper_space, ent.val);
  681. if (page)
  682. count += page_mapcount(page);
  683. p = swap_info_get(ent);
  684. if (p) {
  685. count += swap_count(p->swap_map[swp_offset(ent)]);
  686. spin_unlock(&swap_lock);
  687. }
  688. *pagep = page;
  689. return count;
  690. }
  691. #endif
  692. #ifdef CONFIG_HIBERNATION
  693. /*
  694. * Find the swap type that corresponds to given device (if any).
  695. *
  696. * @offset - number of the PAGE_SIZE-sized block of the device, starting
  697. * from 0, in which the swap header is expected to be located.
  698. *
  699. * This is needed for the suspend to disk (aka swsusp).
  700. */
  701. int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
  702. {
  703. struct block_device *bdev = NULL;
  704. int type;
  705. if (device)
  706. bdev = bdget(device);
  707. spin_lock(&swap_lock);
  708. for (type = 0; type < nr_swapfiles; type++) {
  709. struct swap_info_struct *sis = swap_info[type];
  710. if (!(sis->flags & SWP_WRITEOK))
  711. continue;
  712. if (!bdev) {
  713. if (bdev_p)
  714. *bdev_p = bdgrab(sis->bdev);
  715. spin_unlock(&swap_lock);
  716. return type;
  717. }
  718. if (bdev == sis->bdev) {
  719. struct swap_extent *se = &sis->first_swap_extent;
  720. if (se->start_block == offset) {
  721. if (bdev_p)
  722. *bdev_p = bdgrab(sis->bdev);
  723. spin_unlock(&swap_lock);
  724. bdput(bdev);
  725. return type;
  726. }
  727. }
  728. }
  729. spin_unlock(&swap_lock);
  730. if (bdev)
  731. bdput(bdev);
  732. return -ENODEV;
  733. }
  734. /*
  735. * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
  736. * corresponding to given index in swap_info (swap type).
  737. */
  738. sector_t swapdev_block(int type, pgoff_t offset)
  739. {
  740. struct block_device *bdev;
  741. if ((unsigned int)type >= nr_swapfiles)
  742. return 0;
  743. if (!(swap_info[type]->flags & SWP_WRITEOK))
  744. return 0;
  745. return map_swap_entry(swp_entry(type, offset), &bdev);
  746. }
  747. /*
  748. * Return either the total number of swap pages of given type, or the number
  749. * of free pages of that type (depending on @free)
  750. *
  751. * This is needed for software suspend
  752. */
  753. unsigned int count_swap_pages(int type, int free)
  754. {
  755. unsigned int n = 0;
  756. spin_lock(&swap_lock);
  757. if ((unsigned int)type < nr_swapfiles) {
  758. struct swap_info_struct *sis = swap_info[type];
  759. if (sis->flags & SWP_WRITEOK) {
  760. n = sis->pages;
  761. if (free)
  762. n -= sis->inuse_pages;
  763. }
  764. }
  765. spin_unlock(&swap_lock);
  766. return n;
  767. }
  768. #endif /* CONFIG_HIBERNATION */
  769. /*
  770. * No need to decide whether this PTE shares the swap entry with others,
  771. * just let do_wp_page work it out if a write is requested later - to
  772. * force COW, vm_page_prot omits write permission from any private vma.
  773. */
  774. static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
  775. unsigned long addr, swp_entry_t entry, struct page *page)
  776. {
  777. struct mem_cgroup *ptr = NULL;
  778. spinlock_t *ptl;
  779. pte_t *pte;
  780. int ret = 1;
  781. if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
  782. ret = -ENOMEM;
  783. goto out_nolock;
  784. }
  785. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  786. if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
  787. if (ret > 0)
  788. mem_cgroup_cancel_charge_swapin(ptr);
  789. ret = 0;
  790. goto out;
  791. }
  792. dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
  793. inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
  794. get_page(page);
  795. set_pte_at(vma->vm_mm, addr, pte,
  796. pte_mkold(mk_pte(page, vma->vm_page_prot)));
  797. page_add_anon_rmap(page, vma, addr);
  798. mem_cgroup_commit_charge_swapin(page, ptr);
  799. swap_free(entry);
  800. /*
  801. * Move the page to the active list so it is not
  802. * immediately swapped out again after swapon.
  803. */
  804. activate_page(page);
  805. out:
  806. pte_unmap_unlock(pte, ptl);
  807. out_nolock:
  808. return ret;
  809. }
  810. static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  811. unsigned long addr, unsigned long end,
  812. swp_entry_t entry, struct page *page)
  813. {
  814. pte_t swp_pte = swp_entry_to_pte(entry);
  815. pte_t *pte;
  816. int ret = 0;
  817. /*
  818. * We don't actually need pte lock while scanning for swp_pte: since
  819. * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
  820. * page table while we're scanning; though it could get zapped, and on
  821. * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
  822. * of unmatched parts which look like swp_pte, so unuse_pte must
  823. * recheck under pte lock. Scanning without pte lock lets it be
  824. * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
  825. */
  826. pte = pte_offset_map(pmd, addr);
  827. do {
  828. /*
  829. * swapoff spends a _lot_ of time in this loop!
  830. * Test inline before going to call unuse_pte.
  831. */
  832. if (unlikely(pte_same(*pte, swp_pte))) {
  833. pte_unmap(pte);
  834. ret = unuse_pte(vma, pmd, addr, entry, page);
  835. if (ret)
  836. goto out;
  837. pte = pte_offset_map(pmd, addr);
  838. }
  839. } while (pte++, addr += PAGE_SIZE, addr != end);
  840. pte_unmap(pte - 1);
  841. out:
  842. return ret;
  843. }
  844. static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  845. unsigned long addr, unsigned long end,
  846. swp_entry_t entry, struct page *page)
  847. {
  848. pmd_t *pmd;
  849. unsigned long next;
  850. int ret;
  851. pmd = pmd_offset(pud, addr);
  852. do {
  853. next = pmd_addr_end(addr, end);
  854. if (pmd_none_or_clear_bad(pmd))
  855. continue;
  856. ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
  857. if (ret)
  858. return ret;
  859. } while (pmd++, addr = next, addr != end);
  860. return 0;
  861. }
  862. static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  863. unsigned long addr, unsigned long end,
  864. swp_entry_t entry, struct page *page)
  865. {
  866. pud_t *pud;
  867. unsigned long next;
  868. int ret;
  869. pud = pud_offset(pgd, addr);
  870. do {
  871. next = pud_addr_end(addr, end);
  872. if (pud_none_or_clear_bad(pud))
  873. continue;
  874. ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
  875. if (ret)
  876. return ret;
  877. } while (pud++, addr = next, addr != end);
  878. return 0;
  879. }
  880. static int unuse_vma(struct vm_area_struct *vma,
  881. swp_entry_t entry, struct page *page)
  882. {
  883. pgd_t *pgd;
  884. unsigned long addr, end, next;
  885. int ret;
  886. if (page_anon_vma(page)) {
  887. addr = page_address_in_vma(page, vma);
  888. if (addr == -EFAULT)
  889. return 0;
  890. else
  891. end = addr + PAGE_SIZE;
  892. } else {
  893. addr = vma->vm_start;
  894. end = vma->vm_end;
  895. }
  896. pgd = pgd_offset(vma->vm_mm, addr);
  897. do {
  898. next = pgd_addr_end(addr, end);
  899. if (pgd_none_or_clear_bad(pgd))
  900. continue;
  901. ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
  902. if (ret)
  903. return ret;
  904. } while (pgd++, addr = next, addr != end);
  905. return 0;
  906. }
  907. static int unuse_mm(struct mm_struct *mm,
  908. swp_entry_t entry, struct page *page)
  909. {
  910. struct vm_area_struct *vma;
  911. int ret = 0;
  912. if (!down_read_trylock(&mm->mmap_sem)) {
  913. /*
  914. * Activate page so shrink_inactive_list is unlikely to unmap
  915. * its ptes while lock is dropped, so swapoff can make progress.
  916. */
  917. activate_page(page);
  918. unlock_page(page);
  919. down_read(&mm->mmap_sem);
  920. lock_page(page);
  921. }
  922. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  923. if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
  924. break;
  925. }
  926. up_read(&mm->mmap_sem);
  927. return (ret < 0)? ret: 0;
  928. }
  929. /*
  930. * Scan swap_map from current position to next entry still in use.
  931. * Recycle to start on reaching the end, returning 0 when empty.
  932. */
  933. static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  934. unsigned int prev)
  935. {
  936. unsigned int max = si->max;
  937. unsigned int i = prev;
  938. unsigned char count;
  939. /*
  940. * No need for swap_lock here: we're just looking
  941. * for whether an entry is in use, not modifying it; false
  942. * hits are okay, and sys_swapoff() has already prevented new
  943. * allocations from this area (while holding swap_lock).
  944. */
  945. for (;;) {
  946. if (++i >= max) {
  947. if (!prev) {
  948. i = 0;
  949. break;
  950. }
  951. /*
  952. * No entries in use at top of swap_map,
  953. * loop back to start and recheck there.
  954. */
  955. max = prev + 1;
  956. prev = 0;
  957. i = 1;
  958. }
  959. count = si->swap_map[i];
  960. if (count && swap_count(count) != SWAP_MAP_BAD)
  961. break;
  962. }
  963. return i;
  964. }
  965. /*
  966. * We completely avoid races by reading each swap page in advance,
  967. * and then search for the process using it. All the necessary
  968. * page table adjustments can then be made atomically.
  969. */
  970. static int try_to_unuse(unsigned int type)
  971. {
  972. struct swap_info_struct *si = swap_info[type];
  973. struct mm_struct *start_mm;
  974. unsigned char *swap_map;
  975. unsigned char swcount;
  976. struct page *page;
  977. swp_entry_t entry;
  978. unsigned int i = 0;
  979. int retval = 0;
  980. /*
  981. * When searching mms for an entry, a good strategy is to
  982. * start at the first mm we freed the previous entry from
  983. * (though actually we don't notice whether we or coincidence
  984. * freed the entry). Initialize this start_mm with a hold.
  985. *
  986. * A simpler strategy would be to start at the last mm we
  987. * freed the previous entry from; but that would take less
  988. * advantage of mmlist ordering, which clusters forked mms
  989. * together, child after parent. If we race with dup_mmap(), we
  990. * prefer to resolve parent before child, lest we miss entries
  991. * duplicated after we scanned child: using last mm would invert
  992. * that.
  993. */
  994. start_mm = &init_mm;
  995. atomic_inc(&init_mm.mm_users);
  996. /*
  997. * Keep on scanning until all entries have gone. Usually,
  998. * one pass through swap_map is enough, but not necessarily:
  999. * there are races when an instance of an entry might be missed.
  1000. */
  1001. while ((i = find_next_to_unuse(si, i)) != 0) {
  1002. if (signal_pending(current)) {
  1003. retval = -EINTR;
  1004. break;
  1005. }
  1006. /*
  1007. * Get a page for the entry, using the existing swap
  1008. * cache page if there is one. Otherwise, get a clean
  1009. * page and read the swap into it.
  1010. */
  1011. swap_map = &si->swap_map[i];
  1012. entry = swp_entry(type, i);
  1013. page = read_swap_cache_async(entry,
  1014. GFP_HIGHUSER_MOVABLE, NULL, 0);
  1015. if (!page) {
  1016. /*
  1017. * Either swap_duplicate() failed because entry
  1018. * has been freed independently, and will not be
  1019. * reused since sys_swapoff() already disabled
  1020. * allocation from here, or alloc_page() failed.
  1021. */
  1022. if (!*swap_map)
  1023. continue;
  1024. retval = -ENOMEM;
  1025. break;
  1026. }
  1027. /*
  1028. * Don't hold on to start_mm if it looks like exiting.
  1029. */
  1030. if (atomic_read(&start_mm->mm_users) == 1) {
  1031. mmput(start_mm);
  1032. start_mm = &init_mm;
  1033. atomic_inc(&init_mm.mm_users);
  1034. }
  1035. /*
  1036. * Wait for and lock page. When do_swap_page races with
  1037. * try_to_unuse, do_swap_page can handle the fault much
  1038. * faster than try_to_unuse can locate the entry. This
  1039. * apparently redundant "wait_on_page_locked" lets try_to_unuse
  1040. * defer to do_swap_page in such a case - in some tests,
  1041. * do_swap_page and try_to_unuse repeatedly compete.
  1042. */
  1043. wait_on_page_locked(page);
  1044. wait_on_page_writeback(page);
  1045. lock_page(page);
  1046. wait_on_page_writeback(page);
  1047. /*
  1048. * Remove all references to entry.
  1049. */
  1050. swcount = *swap_map;
  1051. if (swap_count(swcount) == SWAP_MAP_SHMEM) {
  1052. retval = shmem_unuse(entry, page);
  1053. /* page has already been unlocked and released */
  1054. if (retval < 0)
  1055. break;
  1056. continue;
  1057. }
  1058. if (swap_count(swcount) && start_mm != &init_mm)
  1059. retval = unuse_mm(start_mm, entry, page);
  1060. if (swap_count(*swap_map)) {
  1061. int set_start_mm = (*swap_map >= swcount);
  1062. struct list_head *p = &start_mm->mmlist;
  1063. struct mm_struct *new_start_mm = start_mm;
  1064. struct mm_struct *prev_mm = start_mm;
  1065. struct mm_struct *mm;
  1066. atomic_inc(&new_start_mm->mm_users);
  1067. atomic_inc(&prev_mm->mm_users);
  1068. spin_lock(&mmlist_lock);
  1069. while (swap_count(*swap_map) && !retval &&
  1070. (p = p->next) != &start_mm->mmlist) {
  1071. mm = list_entry(p, struct mm_struct, mmlist);
  1072. if (!atomic_inc_not_zero(&mm->mm_users))
  1073. continue;
  1074. spin_unlock(&mmlist_lock);
  1075. mmput(prev_mm);
  1076. prev_mm = mm;
  1077. cond_resched();
  1078. swcount = *swap_map;
  1079. if (!swap_count(swcount)) /* any usage ? */
  1080. ;
  1081. else if (mm == &init_mm)
  1082. set_start_mm = 1;
  1083. else
  1084. retval = unuse_mm(mm, entry, page);
  1085. if (set_start_mm && *swap_map < swcount) {
  1086. mmput(new_start_mm);
  1087. atomic_inc(&mm->mm_users);
  1088. new_start_mm = mm;
  1089. set_start_mm = 0;
  1090. }
  1091. spin_lock(&mmlist_lock);
  1092. }
  1093. spin_unlock(&mmlist_lock);
  1094. mmput(prev_mm);
  1095. mmput(start_mm);
  1096. start_mm = new_start_mm;
  1097. }
  1098. if (retval) {
  1099. unlock_page(page);
  1100. page_cache_release(page);
  1101. break;
  1102. }
  1103. /*
  1104. * If a reference remains (rare), we would like to leave
  1105. * the page in the swap cache; but try_to_unmap could
  1106. * then re-duplicate the entry once we drop page lock,
  1107. * so we might loop indefinitely; also, that page could
  1108. * not be swapped out to other storage meanwhile. So:
  1109. * delete from cache even if there's another reference,
  1110. * after ensuring that the data has been saved to disk -
  1111. * since if the reference remains (rarer), it will be
  1112. * read from disk into another page. Splitting into two
  1113. * pages would be incorrect if swap supported "shared
  1114. * private" pages, but they are handled by tmpfs files.
  1115. *
  1116. * Given how unuse_vma() targets one particular offset
  1117. * in an anon_vma, once the anon_vma has been determined,
  1118. * this splitting happens to be just what is needed to
  1119. * handle where KSM pages have been swapped out: re-reading
  1120. * is unnecessarily slow, but we can fix that later on.
  1121. */
  1122. if (swap_count(*swap_map) &&
  1123. PageDirty(page) && PageSwapCache(page)) {
  1124. struct writeback_control wbc = {
  1125. .sync_mode = WB_SYNC_NONE,
  1126. };
  1127. swap_writepage(page, &wbc);
  1128. lock_page(page);
  1129. wait_on_page_writeback(page);
  1130. }
  1131. /*
  1132. * It is conceivable that a racing task removed this page from
  1133. * swap cache just before we acquired the page lock at the top,
  1134. * or while we dropped it in unuse_mm(). The page might even
  1135. * be back in swap cache on another swap area: that we must not
  1136. * delete, since it may not have been written out to swap yet.
  1137. */
  1138. if (PageSwapCache(page) &&
  1139. likely(page_private(page) == entry.val))
  1140. delete_from_swap_cache(page);
  1141. /*
  1142. * So we could skip searching mms once swap count went
  1143. * to 1, we did not mark any present ptes as dirty: must
  1144. * mark page dirty so shrink_page_list will preserve it.
  1145. */
  1146. SetPageDirty(page);
  1147. unlock_page(page);
  1148. page_cache_release(page);
  1149. /*
  1150. * Make sure that we aren't completely killing
  1151. * interactive performance.
  1152. */
  1153. cond_resched();
  1154. }
  1155. mmput(start_mm);
  1156. return retval;
  1157. }
  1158. /*
  1159. * After a successful try_to_unuse, if no swap is now in use, we know
  1160. * we can empty the mmlist. swap_lock must be held on entry and exit.
  1161. * Note that mmlist_lock nests inside swap_lock, and an mm must be
  1162. * added to the mmlist just after page_duplicate - before would be racy.
  1163. */
  1164. static void drain_mmlist(void)
  1165. {
  1166. struct list_head *p, *next;
  1167. unsigned int type;
  1168. for (type = 0; type < nr_swapfiles; type++)
  1169. if (swap_info[type]->inuse_pages)
  1170. return;
  1171. spin_lock(&mmlist_lock);
  1172. list_for_each_safe(p, next, &init_mm.mmlist)
  1173. list_del_init(p);
  1174. spin_unlock(&mmlist_lock);
  1175. }
  1176. /*
  1177. * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
  1178. * corresponds to page offset for the specified swap entry.
  1179. * Note that the type of this function is sector_t, but it returns page offset
  1180. * into the bdev, not sector offset.
  1181. */
  1182. static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
  1183. {
  1184. struct swap_info_struct *sis;
  1185. struct swap_extent *start_se;
  1186. struct swap_extent *se;
  1187. pgoff_t offset;
  1188. sis = swap_info[swp_type(entry)];
  1189. *bdev = sis->bdev;
  1190. offset = swp_offset(entry);
  1191. start_se = sis->curr_swap_extent;
  1192. se = start_se;
  1193. for ( ; ; ) {
  1194. struct list_head *lh;
  1195. if (se->start_page <= offset &&
  1196. offset < (se->start_page + se->nr_pages)) {
  1197. return se->start_block + (offset - se->start_page);
  1198. }
  1199. lh = se->list.next;
  1200. se = list_entry(lh, struct swap_extent, list);
  1201. sis->curr_swap_extent = se;
  1202. BUG_ON(se == start_se); /* It *must* be present */
  1203. }
  1204. }
  1205. /*
  1206. * Returns the page offset into bdev for the specified page's swap entry.
  1207. */
  1208. sector_t map_swap_page(struct page *page, struct block_device **bdev)
  1209. {
  1210. swp_entry_t entry;
  1211. entry.val = page_private(page);
  1212. return map_swap_entry(entry, bdev);
  1213. }
  1214. /*
  1215. * Free all of a swapdev's extent information
  1216. */
  1217. static void destroy_swap_extents(struct swap_info_struct *sis)
  1218. {
  1219. while (!list_empty(&sis->first_swap_extent.list)) {
  1220. struct swap_extent *se;
  1221. se = list_entry(sis->first_swap_extent.list.next,
  1222. struct swap_extent, list);
  1223. list_del(&se->list);
  1224. kfree(se);
  1225. }
  1226. }
  1227. /*
  1228. * Add a block range (and the corresponding page range) into this swapdev's
  1229. * extent list. The extent list is kept sorted in page order.
  1230. *
  1231. * This function rather assumes that it is called in ascending page order.
  1232. */
  1233. static int
  1234. add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
  1235. unsigned long nr_pages, sector_t start_block)
  1236. {
  1237. struct swap_extent *se;
  1238. struct swap_extent *new_se;
  1239. struct list_head *lh;
  1240. if (start_page == 0) {
  1241. se = &sis->first_swap_extent;
  1242. sis->curr_swap_extent = se;
  1243. se->start_page = 0;
  1244. se->nr_pages = nr_pages;
  1245. se->start_block = start_block;
  1246. return 1;
  1247. } else {
  1248. lh = sis->first_swap_extent.list.prev; /* Highest extent */
  1249. se = list_entry(lh, struct swap_extent, list);
  1250. BUG_ON(se->start_page + se->nr_pages != start_page);
  1251. if (se->start_block + se->nr_pages == start_block) {
  1252. /* Merge it */
  1253. se->nr_pages += nr_pages;
  1254. return 0;
  1255. }
  1256. }
  1257. /*
  1258. * No merge. Insert a new extent, preserving ordering.
  1259. */
  1260. new_se = kmalloc(sizeof(*se), GFP_KERNEL);
  1261. if (new_se == NULL)
  1262. return -ENOMEM;
  1263. new_se->start_page = start_page;
  1264. new_se->nr_pages = nr_pages;
  1265. new_se->start_block = start_block;
  1266. list_add_tail(&new_se->list, &sis->first_swap_extent.list);
  1267. return 1;
  1268. }
  1269. /*
  1270. * A `swap extent' is a simple thing which maps a contiguous range of pages
  1271. * onto a contiguous range of disk blocks. An ordered list of swap extents
  1272. * is built at swapon time and is then used at swap_writepage/swap_readpage
  1273. * time for locating where on disk a page belongs.
  1274. *
  1275. * If the swapfile is an S_ISBLK block device, a single extent is installed.
  1276. * This is done so that the main operating code can treat S_ISBLK and S_ISREG
  1277. * swap files identically.
  1278. *
  1279. * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
  1280. * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
  1281. * swapfiles are handled *identically* after swapon time.
  1282. *
  1283. * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
  1284. * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
  1285. * some stray blocks are found which do not fall within the PAGE_SIZE alignment
  1286. * requirements, they are simply tossed out - we will never use those blocks
  1287. * for swapping.
  1288. *
  1289. * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
  1290. * prevents root from shooting her foot off by ftruncating an in-use swapfile,
  1291. * which will scribble on the fs.
  1292. *
  1293. * The amount of disk space which a single swap extent represents varies.
  1294. * Typically it is in the 1-4 megabyte range. So we can have hundreds of
  1295. * extents in the list. To avoid much list walking, we cache the previous
  1296. * search location in `curr_swap_extent', and start new searches from there.
  1297. * This is extremely effective. The average number of iterations in
  1298. * map_swap_page() has been measured at about 0.3 per page. - akpm.
  1299. */
  1300. static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
  1301. {
  1302. struct inode *inode;
  1303. unsigned blocks_per_page;
  1304. unsigned long page_no;
  1305. unsigned blkbits;
  1306. sector_t probe_block;
  1307. sector_t last_block;
  1308. sector_t lowest_block = -1;
  1309. sector_t highest_block = 0;
  1310. int nr_extents = 0;
  1311. int ret;
  1312. inode = sis->swap_file->f_mapping->host;
  1313. if (S_ISBLK(inode->i_mode)) {
  1314. ret = add_swap_extent(sis, 0, sis->max, 0);
  1315. *span = sis->pages;
  1316. goto out;
  1317. }
  1318. blkbits = inode->i_blkbits;
  1319. blocks_per_page = PAGE_SIZE >> blkbits;
  1320. /*
  1321. * Map all the blocks into the extent list. This code doesn't try
  1322. * to be very smart.
  1323. */
  1324. probe_block = 0;
  1325. page_no = 0;
  1326. last_block = i_size_read(inode) >> blkbits;
  1327. while ((probe_block + blocks_per_page) <= last_block &&
  1328. page_no < sis->max) {
  1329. unsigned block_in_page;
  1330. sector_t first_block;
  1331. first_block = bmap(inode, probe_block);
  1332. if (first_block == 0)
  1333. goto bad_bmap;
  1334. /*
  1335. * It must be PAGE_SIZE aligned on-disk
  1336. */
  1337. if (first_block & (blocks_per_page - 1)) {
  1338. probe_block++;
  1339. goto reprobe;
  1340. }
  1341. for (block_in_page = 1; block_in_page < blocks_per_page;
  1342. block_in_page++) {
  1343. sector_t block;
  1344. block = bmap(inode, probe_block + block_in_page);
  1345. if (block == 0)
  1346. goto bad_bmap;
  1347. if (block != first_block + block_in_page) {
  1348. /* Discontiguity */
  1349. probe_block++;
  1350. goto reprobe;
  1351. }
  1352. }
  1353. first_block >>= (PAGE_SHIFT - blkbits);
  1354. if (page_no) { /* exclude the header page */
  1355. if (first_block < lowest_block)
  1356. lowest_block = first_block;
  1357. if (first_block > highest_block)
  1358. highest_block = first_block;
  1359. }
  1360. /*
  1361. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  1362. */
  1363. ret = add_swap_extent(sis, page_no, 1, first_block);
  1364. if (ret < 0)
  1365. goto out;
  1366. nr_extents += ret;
  1367. page_no++;
  1368. probe_block += blocks_per_page;
  1369. reprobe:
  1370. continue;
  1371. }
  1372. ret = nr_extents;
  1373. *span = 1 + highest_block - lowest_block;
  1374. if (page_no == 0)
  1375. page_no = 1; /* force Empty message */
  1376. sis->max = page_no;
  1377. sis->pages = page_no - 1;
  1378. sis->highest_bit = page_no - 1;
  1379. out:
  1380. return ret;
  1381. bad_bmap:
  1382. printk(KERN_ERR "swapon: swapfile has holes\n");
  1383. ret = -EINVAL;
  1384. goto out;
  1385. }
  1386. SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
  1387. {
  1388. struct swap_info_struct *p = NULL;
  1389. unsigned char *swap_map;
  1390. struct file *swap_file, *victim;
  1391. struct address_space *mapping;
  1392. struct inode *inode;
  1393. char *pathname;
  1394. int i, type, prev;
  1395. int err;
  1396. if (!capable(CAP_SYS_ADMIN))
  1397. return -EPERM;
  1398. pathname = getname(specialfile);
  1399. err = PTR_ERR(pathname);
  1400. if (IS_ERR(pathname))
  1401. goto out;
  1402. victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
  1403. putname(pathname);
  1404. err = PTR_ERR(victim);
  1405. if (IS_ERR(victim))
  1406. goto out;
  1407. mapping = victim->f_mapping;
  1408. prev = -1;
  1409. spin_lock(&swap_lock);
  1410. for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
  1411. p = swap_info[type];
  1412. if (p->flags & SWP_WRITEOK) {
  1413. if (p->swap_file->f_mapping == mapping)
  1414. break;
  1415. }
  1416. prev = type;
  1417. }
  1418. if (type < 0) {
  1419. err = -EINVAL;
  1420. spin_unlock(&swap_lock);
  1421. goto out_dput;
  1422. }
  1423. if (!security_vm_enough_memory(p->pages))
  1424. vm_unacct_memory(p->pages);
  1425. else {
  1426. err = -ENOMEM;
  1427. spin_unlock(&swap_lock);
  1428. goto out_dput;
  1429. }
  1430. if (prev < 0)
  1431. swap_list.head = p->next;
  1432. else
  1433. swap_info[prev]->next = p->next;
  1434. if (type == swap_list.next) {
  1435. /* just pick something that's safe... */
  1436. swap_list.next = swap_list.head;
  1437. }
  1438. if (p->prio < 0) {
  1439. for (i = p->next; i >= 0; i = swap_info[i]->next)
  1440. swap_info[i]->prio = p->prio--;
  1441. least_priority++;
  1442. }
  1443. nr_swap_pages -= p->pages;
  1444. total_swap_pages -= p->pages;
  1445. p->flags &= ~SWP_WRITEOK;
  1446. spin_unlock(&swap_lock);
  1447. current->flags |= PF_OOM_ORIGIN;
  1448. err = try_to_unuse(type);
  1449. current->flags &= ~PF_OOM_ORIGIN;
  1450. if (err) {
  1451. /* re-insert swap space back into swap_list */
  1452. spin_lock(&swap_lock);
  1453. if (p->prio < 0)
  1454. p->prio = --least_priority;
  1455. prev = -1;
  1456. for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
  1457. if (p->prio >= swap_info[i]->prio)
  1458. break;
  1459. prev = i;
  1460. }
  1461. p->next = i;
  1462. if (prev < 0)
  1463. swap_list.head = swap_list.next = type;
  1464. else
  1465. swap_info[prev]->next = type;
  1466. nr_swap_pages += p->pages;
  1467. total_swap_pages += p->pages;
  1468. p->flags |= SWP_WRITEOK;
  1469. spin_unlock(&swap_lock);
  1470. goto out_dput;
  1471. }
  1472. /* wait for any unplug function to finish */
  1473. down_write(&swap_unplug_sem);
  1474. up_write(&swap_unplug_sem);
  1475. destroy_swap_extents(p);
  1476. if (p->flags & SWP_CONTINUED)
  1477. free_swap_count_continuations(p);
  1478. mutex_lock(&swapon_mutex);
  1479. spin_lock(&swap_lock);
  1480. drain_mmlist();
  1481. /* wait for anyone still in scan_swap_map */
  1482. p->highest_bit = 0; /* cuts scans short */
  1483. while (p->flags >= SWP_SCANNING) {
  1484. spin_unlock(&swap_lock);
  1485. schedule_timeout_uninterruptible(1);
  1486. spin_lock(&swap_lock);
  1487. }
  1488. swap_file = p->swap_file;
  1489. p->swap_file = NULL;
  1490. p->max = 0;
  1491. swap_map = p->swap_map;
  1492. p->swap_map = NULL;
  1493. p->flags = 0;
  1494. spin_unlock(&swap_lock);
  1495. mutex_unlock(&swapon_mutex);
  1496. vfree(swap_map);
  1497. /* Destroy swap account informatin */
  1498. swap_cgroup_swapoff(type);
  1499. inode = mapping->host;
  1500. if (S_ISBLK(inode->i_mode)) {
  1501. struct block_device *bdev = I_BDEV(inode);
  1502. set_blocksize(bdev, p->old_block_size);
  1503. bd_release(bdev);
  1504. } else {
  1505. mutex_lock(&inode->i_mutex);
  1506. inode->i_flags &= ~S_SWAPFILE;
  1507. mutex_unlock(&inode->i_mutex);
  1508. }
  1509. filp_close(swap_file, NULL);
  1510. err = 0;
  1511. out_dput:
  1512. filp_close(victim, NULL);
  1513. out:
  1514. return err;
  1515. }
  1516. #ifdef CONFIG_PROC_FS
  1517. /* iterator */
  1518. static void *swap_start(struct seq_file *swap, loff_t *pos)
  1519. {
  1520. struct swap_info_struct *si;
  1521. int type;
  1522. loff_t l = *pos;
  1523. mutex_lock(&swapon_mutex);
  1524. if (!l)
  1525. return SEQ_START_TOKEN;
  1526. for (type = 0; type < nr_swapfiles; type++) {
  1527. smp_rmb(); /* read nr_swapfiles before swap_info[type] */
  1528. si = swap_info[type];
  1529. if (!(si->flags & SWP_USED) || !si->swap_map)
  1530. continue;
  1531. if (!--l)
  1532. return si;
  1533. }
  1534. return NULL;
  1535. }
  1536. static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
  1537. {
  1538. struct swap_info_struct *si = v;
  1539. int type;
  1540. if (v == SEQ_START_TOKEN)
  1541. type = 0;
  1542. else
  1543. type = si->type + 1;
  1544. for (; type < nr_swapfiles; type++) {
  1545. smp_rmb(); /* read nr_swapfiles before swap_info[type] */
  1546. si = swap_info[type];
  1547. if (!(si->flags & SWP_USED) || !si->swap_map)
  1548. continue;
  1549. ++*pos;
  1550. return si;
  1551. }
  1552. return NULL;
  1553. }
  1554. static void swap_stop(struct seq_file *swap, void *v)
  1555. {
  1556. mutex_unlock(&swapon_mutex);
  1557. }
  1558. static int swap_show(struct seq_file *swap, void *v)
  1559. {
  1560. struct swap_info_struct *si = v;
  1561. struct file *file;
  1562. int len;
  1563. if (si == SEQ_START_TOKEN) {
  1564. seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
  1565. return 0;
  1566. }
  1567. file = si->swap_file;
  1568. len = seq_path(swap, &file->f_path, " \t\n\\");
  1569. seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
  1570. len < 40 ? 40 - len : 1, " ",
  1571. S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
  1572. "partition" : "file\t",
  1573. si->pages << (PAGE_SHIFT - 10),
  1574. si->inuse_pages << (PAGE_SHIFT - 10),
  1575. si->prio);
  1576. return 0;
  1577. }
  1578. static const struct seq_operations swaps_op = {
  1579. .start = swap_start,
  1580. .next = swap_next,
  1581. .stop = swap_stop,
  1582. .show = swap_show
  1583. };
  1584. static int swaps_open(struct inode *inode, struct file *file)
  1585. {
  1586. return seq_open(file, &swaps_op);
  1587. }
  1588. static const struct file_operations proc_swaps_operations = {
  1589. .open = swaps_open,
  1590. .read = seq_read,
  1591. .llseek = seq_lseek,
  1592. .release = seq_release,
  1593. };
  1594. static int __init procswaps_init(void)
  1595. {
  1596. proc_create("swaps", 0, NULL, &proc_swaps_operations);
  1597. return 0;
  1598. }
  1599. __initcall(procswaps_init);
  1600. #endif /* CONFIG_PROC_FS */
  1601. #ifdef MAX_SWAPFILES_CHECK
  1602. static int __init max_swapfiles_check(void)
  1603. {
  1604. MAX_SWAPFILES_CHECK();
  1605. return 0;
  1606. }
  1607. late_initcall(max_swapfiles_check);
  1608. #endif
  1609. /*
  1610. * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
  1611. *
  1612. * The swapon system call
  1613. */
  1614. SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
  1615. {
  1616. struct swap_info_struct *p;
  1617. char *name = NULL;
  1618. struct block_device *bdev = NULL;
  1619. struct file *swap_file = NULL;
  1620. struct address_space *mapping;
  1621. unsigned int type;
  1622. int i, prev;
  1623. int error;
  1624. union swap_header *swap_header;
  1625. unsigned int nr_good_pages;
  1626. int nr_extents = 0;
  1627. sector_t span;
  1628. unsigned long maxpages;
  1629. unsigned long swapfilepages;
  1630. unsigned char *swap_map = NULL;
  1631. struct page *page = NULL;
  1632. struct inode *inode = NULL;
  1633. int did_down = 0;
  1634. if (!capable(CAP_SYS_ADMIN))
  1635. return -EPERM;
  1636. p = kzalloc(sizeof(*p), GFP_KERNEL);
  1637. if (!p)
  1638. return -ENOMEM;
  1639. spin_lock(&swap_lock);
  1640. for (type = 0; type < nr_swapfiles; type++) {
  1641. if (!(swap_info[type]->flags & SWP_USED))
  1642. break;
  1643. }
  1644. error = -EPERM;
  1645. if (type >= MAX_SWAPFILES) {
  1646. spin_unlock(&swap_lock);
  1647. kfree(p);
  1648. goto out;
  1649. }
  1650. if (type >= nr_swapfiles) {
  1651. p->type = type;
  1652. swap_info[type] = p;
  1653. /*
  1654. * Write swap_info[type] before nr_swapfiles, in case a
  1655. * racing procfs swap_start() or swap_next() is reading them.
  1656. * (We never shrink nr_swapfiles, we never free this entry.)
  1657. */
  1658. smp_wmb();
  1659. nr_swapfiles++;
  1660. } else {
  1661. kfree(p);
  1662. p = swap_info[type];
  1663. /*
  1664. * Do not memset this entry: a racing procfs swap_next()
  1665. * would be relying on p->type to remain valid.
  1666. */
  1667. }
  1668. INIT_LIST_HEAD(&p->first_swap_extent.list);
  1669. p->flags = SWP_USED;
  1670. p->next = -1;
  1671. spin_unlock(&swap_lock);
  1672. name = getname(specialfile);
  1673. error = PTR_ERR(name);
  1674. if (IS_ERR(name)) {
  1675. name = NULL;
  1676. goto bad_swap_2;
  1677. }
  1678. swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
  1679. error = PTR_ERR(swap_file);
  1680. if (IS_ERR(swap_file)) {
  1681. swap_file = NULL;
  1682. goto bad_swap_2;
  1683. }
  1684. p->swap_file = swap_file;
  1685. mapping = swap_file->f_mapping;
  1686. inode = mapping->host;
  1687. error = -EBUSY;
  1688. for (i = 0; i < nr_swapfiles; i++) {
  1689. struct swap_info_struct *q = swap_info[i];
  1690. if (i == type || !q->swap_file)
  1691. continue;
  1692. if (mapping == q->swap_file->f_mapping)
  1693. goto bad_swap;
  1694. }
  1695. error = -EINVAL;
  1696. if (S_ISBLK(inode->i_mode)) {
  1697. bdev = I_BDEV(inode);
  1698. error = bd_claim(bdev, sys_swapon);
  1699. if (error < 0) {
  1700. bdev = NULL;
  1701. error = -EINVAL;
  1702. goto bad_swap;
  1703. }
  1704. p->old_block_size = block_size(bdev);
  1705. error = set_blocksize(bdev, PAGE_SIZE);
  1706. if (error < 0)
  1707. goto bad_swap;
  1708. p->bdev = bdev;
  1709. p->flags |= SWP_BLKDEV;
  1710. } else if (S_ISREG(inode->i_mode)) {
  1711. p->bdev = inode->i_sb->s_bdev;
  1712. mutex_lock(&inode->i_mutex);
  1713. did_down = 1;
  1714. if (IS_SWAPFILE(inode)) {
  1715. error = -EBUSY;
  1716. goto bad_swap;
  1717. }
  1718. } else {
  1719. goto bad_swap;
  1720. }
  1721. swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
  1722. /*
  1723. * Read the swap header.
  1724. */
  1725. if (!mapping->a_ops->readpage) {
  1726. error = -EINVAL;
  1727. goto bad_swap;
  1728. }
  1729. page = read_mapping_page(mapping, 0, swap_file);
  1730. if (IS_ERR(page)) {
  1731. error = PTR_ERR(page);
  1732. goto bad_swap;
  1733. }
  1734. swap_header = kmap(page);
  1735. if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
  1736. printk(KERN_ERR "Unable to find swap-space signature\n");
  1737. error = -EINVAL;
  1738. goto bad_swap;
  1739. }
  1740. /* swap partition endianess hack... */
  1741. if (swab32(swap_header->info.version) == 1) {
  1742. swab32s(&swap_header->info.version);
  1743. swab32s(&swap_header->info.last_page);
  1744. swab32s(&swap_header->info.nr_badpages);
  1745. for (i = 0; i < swap_header->info.nr_badpages; i++)
  1746. swab32s(&swap_header->info.badpages[i]);
  1747. }
  1748. /* Check the swap header's sub-version */
  1749. if (swap_header->info.version != 1) {
  1750. printk(KERN_WARNING
  1751. "Unable to handle swap header version %d\n",
  1752. swap_header->info.version);
  1753. error = -EINVAL;
  1754. goto bad_swap;
  1755. }
  1756. p->lowest_bit = 1;
  1757. p->cluster_next = 1;
  1758. p->cluster_nr = 0;
  1759. /*
  1760. * Find out how many pages are allowed for a single swap
  1761. * device. There are two limiting factors: 1) the number of
  1762. * bits for the swap offset in the swp_entry_t type and
  1763. * 2) the number of bits in the a swap pte as defined by
  1764. * the different architectures. In order to find the
  1765. * largest possible bit mask a swap entry with swap type 0
  1766. * and swap offset ~0UL is created, encoded to a swap pte,
  1767. * decoded to a swp_entry_t again and finally the swap
  1768. * offset is extracted. This will mask all the bits from
  1769. * the initial ~0UL mask that can't be encoded in either
  1770. * the swp_entry_t or the architecture definition of a
  1771. * swap pte.
  1772. */
  1773. maxpages = swp_offset(pte_to_swp_entry(
  1774. swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
  1775. if (maxpages > swap_header->info.last_page) {
  1776. maxpages = swap_header->info.last_page + 1;
  1777. /* p->max is an unsigned int: don't overflow it */
  1778. if ((unsigned int)maxpages == 0)
  1779. maxpages = UINT_MAX;
  1780. }
  1781. p->highest_bit = maxpages - 1;
  1782. error = -EINVAL;
  1783. if (!maxpages)
  1784. goto bad_swap;
  1785. if (swapfilepages && maxpages > swapfilepages) {
  1786. printk(KERN_WARNING
  1787. "Swap area shorter than signature indicates\n");
  1788. goto bad_swap;
  1789. }
  1790. if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
  1791. goto bad_swap;
  1792. if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
  1793. goto bad_swap;
  1794. /* OK, set up the swap map and apply the bad block list */
  1795. swap_map = vmalloc(maxpages);
  1796. if (!swap_map) {
  1797. error = -ENOMEM;
  1798. goto bad_swap;
  1799. }
  1800. memset(swap_map, 0, maxpages);
  1801. nr_good_pages = maxpages - 1; /* omit header page */
  1802. for (i = 0; i < swap_header->info.nr_badpages; i++) {
  1803. unsigned int page_nr = swap_header->info.badpages[i];
  1804. if (page_nr == 0 || page_nr > swap_header->info.last_page) {
  1805. error = -EINVAL;
  1806. goto bad_swap;
  1807. }
  1808. if (page_nr < maxpages) {
  1809. swap_map[page_nr] = SWAP_MAP_BAD;
  1810. nr_good_pages--;
  1811. }
  1812. }
  1813. error = swap_cgroup_swapon(type, maxpages);
  1814. if (error)
  1815. goto bad_swap;
  1816. if (nr_good_pages) {
  1817. swap_map[0] = SWAP_MAP_BAD;
  1818. p->max = maxpages;
  1819. p->pages = nr_good_pages;
  1820. nr_extents = setup_swap_extents(p, &span);
  1821. if (nr_extents < 0) {
  1822. error = nr_extents;
  1823. goto bad_swap;
  1824. }
  1825. nr_good_pages = p->pages;
  1826. }
  1827. if (!nr_good_pages) {
  1828. printk(KERN_WARNING "Empty swap-file\n");
  1829. error = -EINVAL;
  1830. goto bad_swap;
  1831. }
  1832. if (p->bdev) {
  1833. if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
  1834. p->flags |= SWP_SOLIDSTATE;
  1835. p->cluster_next = 1 + (random32() % p->highest_bit);
  1836. }
  1837. if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
  1838. p->flags |= SWP_DISCARDABLE;
  1839. }
  1840. mutex_lock(&swapon_mutex);
  1841. spin_lock(&swap_lock);
  1842. if (swap_flags & SWAP_FLAG_PREFER)
  1843. p->prio =
  1844. (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
  1845. else
  1846. p->prio = --least_priority;
  1847. p->swap_map = swap_map;
  1848. p->flags |= SWP_WRITEOK;
  1849. nr_swap_pages += nr_good_pages;
  1850. total_swap_pages += nr_good_pages;
  1851. printk(KERN_INFO "Adding %uk swap on %s. "
  1852. "Priority:%d extents:%d across:%lluk %s%s\n",
  1853. nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
  1854. nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
  1855. (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
  1856. (p->flags & SWP_DISCARDABLE) ? "D" : "");
  1857. /* insert swap space into swap_list: */
  1858. prev = -1;
  1859. for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
  1860. if (p->prio >= swap_info[i]->prio)
  1861. break;
  1862. prev = i;
  1863. }
  1864. p->next = i;
  1865. if (prev < 0)
  1866. swap_list.head = swap_list.next = type;
  1867. else
  1868. swap_info[prev]->next = type;
  1869. spin_unlock(&swap_lock);
  1870. mutex_unlock(&swapon_mutex);
  1871. error = 0;
  1872. goto out;
  1873. bad_swap:
  1874. if (bdev) {
  1875. set_blocksize(bdev, p->old_block_size);
  1876. bd_release(bdev);
  1877. }
  1878. destroy_swap_extents(p);
  1879. swap_cgroup_swapoff(type);
  1880. bad_swap_2:
  1881. spin_lock(&swap_lock);
  1882. p->swap_file = NULL;
  1883. p->flags = 0;
  1884. spin_unlock(&swap_lock);
  1885. vfree(swap_map);
  1886. if (swap_file)
  1887. filp_close(swap_file, NULL);
  1888. out:
  1889. if (page && !IS_ERR(page)) {
  1890. kunmap(page);
  1891. page_cache_release(page);
  1892. }
  1893. if (name)
  1894. putname(name);
  1895. if (did_down) {
  1896. if (!error)
  1897. inode->i_flags |= S_SWAPFILE;
  1898. mutex_unlock(&inode->i_mutex);
  1899. }
  1900. return error;
  1901. }
  1902. void si_swapinfo(struct sysinfo *val)
  1903. {
  1904. unsigned int type;
  1905. unsigned long nr_to_be_unused = 0;
  1906. spin_lock(&swap_lock);
  1907. for (type = 0; type < nr_swapfiles; type++) {
  1908. struct swap_info_struct *si = swap_info[type];
  1909. if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
  1910. nr_to_be_unused += si->inuse_pages;
  1911. }
  1912. val->freeswap = nr_swap_pages + nr_to_be_unused;
  1913. val->totalswap = total_swap_pages + nr_to_be_unused;
  1914. spin_unlock(&swap_lock);
  1915. }
  1916. /*
  1917. * Verify that a swap entry is valid and increment its swap map count.
  1918. *
  1919. * Returns error code in following case.
  1920. * - success -> 0
  1921. * - swp_entry is invalid -> EINVAL
  1922. * - swp_entry is migration entry -> EINVAL
  1923. * - swap-cache reference is requested but there is already one. -> EEXIST
  1924. * - swap-cache reference is requested but the entry is not used. -> ENOENT
  1925. * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
  1926. */
  1927. static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
  1928. {
  1929. struct swap_info_struct *p;
  1930. unsigned long offset, type;
  1931. unsigned char count;
  1932. unsigned char has_cache;
  1933. int err = -EINVAL;
  1934. if (non_swap_entry(entry))
  1935. goto out;
  1936. type = swp_type(entry);
  1937. if (type >= nr_swapfiles)
  1938. goto bad_file;
  1939. p = swap_info[type];
  1940. offset = swp_offset(entry);
  1941. spin_lock(&swap_lock);
  1942. if (unlikely(offset >= p->max))
  1943. goto unlock_out;
  1944. count = p->swap_map[offset];
  1945. has_cache = count & SWAP_HAS_CACHE;
  1946. count &= ~SWAP_HAS_CACHE;
  1947. err = 0;
  1948. if (usage == SWAP_HAS_CACHE) {
  1949. /* set SWAP_HAS_CACHE if there is no cache and entry is used */
  1950. if (!has_cache && count)
  1951. has_cache = SWAP_HAS_CACHE;
  1952. else if (has_cache) /* someone else added cache */
  1953. err = -EEXIST;
  1954. else /* no users remaining */
  1955. err = -ENOENT;
  1956. } else if (count || has_cache) {
  1957. if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
  1958. count += usage;
  1959. else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
  1960. err = -EINVAL;
  1961. else if (swap_count_continued(p, offset, count))
  1962. count = COUNT_CONTINUED;
  1963. else
  1964. err = -ENOMEM;
  1965. } else
  1966. err = -ENOENT; /* unused swap entry */
  1967. p->swap_map[offset] = count | has_cache;
  1968. unlock_out:
  1969. spin_unlock(&swap_lock);
  1970. out:
  1971. return err;
  1972. bad_file:
  1973. printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
  1974. goto out;
  1975. }
  1976. /*
  1977. * Help swapoff by noting that swap entry belongs to shmem/tmpfs
  1978. * (in which case its reference count is never incremented).
  1979. */
  1980. void swap_shmem_alloc(swp_entry_t entry)
  1981. {
  1982. __swap_duplicate(entry, SWAP_MAP_SHMEM);
  1983. }
  1984. /*
  1985. * Increase reference count of swap entry by 1.
  1986. * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
  1987. * but could not be atomically allocated. Returns 0, just as if it succeeded,
  1988. * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
  1989. * might occur if a page table entry has got corrupted.
  1990. */
  1991. int swap_duplicate(swp_entry_t entry)
  1992. {
  1993. int err = 0;
  1994. while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
  1995. err = add_swap_count_continuation(entry, GFP_ATOMIC);
  1996. return err;
  1997. }
  1998. /*
  1999. * @entry: swap entry for which we allocate swap cache.
  2000. *
  2001. * Called when allocating swap cache for existing swap entry,
  2002. * This can return error codes. Returns 0 at success.
  2003. * -EBUSY means there is a swap cache.
  2004. * Note: return code is different from swap_duplicate().
  2005. */
  2006. int swapcache_prepare(swp_entry_t entry)
  2007. {
  2008. return __swap_duplicate(entry, SWAP_HAS_CACHE);
  2009. }
  2010. /*
  2011. * swap_lock prevents swap_map being freed. Don't grab an extra
  2012. * reference on the swaphandle, it doesn't matter if it becomes unused.
  2013. */
  2014. int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
  2015. {
  2016. struct swap_info_struct *si;
  2017. int our_page_cluster = page_cluster;
  2018. pgoff_t target, toff;
  2019. pgoff_t base, end;
  2020. int nr_pages = 0;
  2021. if (!our_page_cluster) /* no readahead */
  2022. return 0;
  2023. si = swap_info[swp_type(entry)];
  2024. target = swp_offset(entry);
  2025. base = (target >> our_page_cluster) << our_page_cluster;
  2026. end = base + (1 << our_page_cluster);
  2027. if (!base) /* first page is swap header */
  2028. base++;
  2029. spin_lock(&swap_lock);
  2030. if (end > si->max) /* don't go beyond end of map */
  2031. end = si->max;
  2032. /* Count contiguous allocated slots above our target */
  2033. for (toff = target; ++toff < end; nr_pages++) {
  2034. /* Don't read in free or bad pages */
  2035. if (!si->swap_map[toff])
  2036. break;
  2037. if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
  2038. break;
  2039. }
  2040. /* Count contiguous allocated slots below our target */
  2041. for (toff = target; --toff >= base; nr_pages++) {
  2042. /* Don't read in free or bad pages */
  2043. if (!si->swap_map[toff])
  2044. break;
  2045. if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
  2046. break;
  2047. }
  2048. spin_unlock(&swap_lock);
  2049. /*
  2050. * Indicate starting offset, and return number of pages to get:
  2051. * if only 1, say 0, since there's then no readahead to be done.
  2052. */
  2053. *offset = ++toff;
  2054. return nr_pages? ++nr_pages: 0;
  2055. }
  2056. /*
  2057. * add_swap_count_continuation - called when a swap count is duplicated
  2058. * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
  2059. * page of the original vmalloc'ed swap_map, to hold the continuation count
  2060. * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
  2061. * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
  2062. *
  2063. * These continuation pages are seldom referenced: the common paths all work
  2064. * on the original swap_map, only referring to a continuation page when the
  2065. * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
  2066. *
  2067. * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
  2068. * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
  2069. * can be called after dropping locks.
  2070. */
  2071. int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
  2072. {
  2073. struct swap_info_struct *si;
  2074. struct page *head;
  2075. struct page *page;
  2076. struct page *list_page;
  2077. pgoff_t offset;
  2078. unsigned char count;
  2079. /*
  2080. * When debugging, it's easier to use __GFP_ZERO here; but it's better
  2081. * for latency not to zero a page while GFP_ATOMIC and holding locks.
  2082. */
  2083. page = alloc_page(gfp_mask | __GFP_HIGHMEM);
  2084. si = swap_info_get(entry);
  2085. if (!si) {
  2086. /*
  2087. * An acceptable race has occurred since the failing
  2088. * __swap_duplicate(): the swap entry has been freed,
  2089. * perhaps even the whole swap_map cleared for swapoff.
  2090. */
  2091. goto outer;
  2092. }
  2093. offset = swp_offset(entry);
  2094. count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
  2095. if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
  2096. /*
  2097. * The higher the swap count, the more likely it is that tasks
  2098. * will race to add swap count continuation: we need to avoid
  2099. * over-provisioning.
  2100. */
  2101. goto out;
  2102. }
  2103. if (!page) {
  2104. spin_unlock(&swap_lock);
  2105. return -ENOMEM;
  2106. }
  2107. /*
  2108. * We are fortunate that although vmalloc_to_page uses pte_offset_map,
  2109. * no architecture is using highmem pages for kernel pagetables: so it
  2110. * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
  2111. */
  2112. head = vmalloc_to_page(si->swap_map + offset);
  2113. offset &= ~PAGE_MASK;
  2114. /*
  2115. * Page allocation does not initialize the page's lru field,
  2116. * but it does always reset its private field.
  2117. */
  2118. if (!page_private(head)) {
  2119. BUG_ON(count & COUNT_CONTINUED);
  2120. INIT_LIST_HEAD(&head->lru);
  2121. set_page_private(head, SWP_CONTINUED);
  2122. si->flags |= SWP_CONTINUED;
  2123. }
  2124. list_for_each_entry(list_page, &head->lru, lru) {
  2125. unsigned char *map;
  2126. /*
  2127. * If the previous map said no continuation, but we've found
  2128. * a continuation page, free our allocation and use this one.
  2129. */
  2130. if (!(count & COUNT_CONTINUED))
  2131. goto out;
  2132. map = kmap_atomic(list_page, KM_USER0) + offset;
  2133. count = *map;
  2134. kunmap_atomic(map, KM_USER0);
  2135. /*
  2136. * If this continuation count now has some space in it,
  2137. * free our allocation and use this one.
  2138. */
  2139. if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
  2140. goto out;
  2141. }
  2142. list_add_tail(&page->lru, &head->lru);
  2143. page = NULL; /* now it's attached, don't free it */
  2144. out:
  2145. spin_unlock(&swap_lock);
  2146. outer:
  2147. if (page)
  2148. __free_page(page);
  2149. return 0;
  2150. }
  2151. /*
  2152. * swap_count_continued - when the original swap_map count is incremented
  2153. * from SWAP_MAP_MAX, check if there is already a continuation page to carry
  2154. * into, carry if so, or else fail until a new continuation page is allocated;
  2155. * when the original swap_map count is decremented from 0 with continuation,
  2156. * borrow from the continuation and report whether it still holds more.
  2157. * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
  2158. */
  2159. static bool swap_count_continued(struct swap_info_struct *si,
  2160. pgoff_t offset, unsigned char count)
  2161. {
  2162. struct page *head;
  2163. struct page *page;
  2164. unsigned char *map;
  2165. head = vmalloc_to_page(si->swap_map + offset);
  2166. if (page_private(head) != SWP_CONTINUED) {
  2167. BUG_ON(count & COUNT_CONTINUED);
  2168. return false; /* need to add count continuation */
  2169. }
  2170. offset &= ~PAGE_MASK;
  2171. page = list_entry(head->lru.next, struct page, lru);
  2172. map = kmap_atomic(page, KM_USER0) + offset;
  2173. if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
  2174. goto init_map; /* jump over SWAP_CONT_MAX checks */
  2175. if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
  2176. /*
  2177. * Think of how you add 1 to 999
  2178. */
  2179. while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
  2180. kunmap_atomic(map, KM_USER0);
  2181. page = list_entry(page->lru.next, struct page, lru);
  2182. BUG_ON(page == head);
  2183. map = kmap_atomic(page, KM_USER0) + offset;
  2184. }
  2185. if (*map == SWAP_CONT_MAX) {
  2186. kunmap_atomic(map, KM_USER0);
  2187. page = list_entry(page->lru.next, struct page, lru);
  2188. if (page == head)
  2189. return false; /* add count continuation */
  2190. map = kmap_atomic(page, KM_USER0) + offset;
  2191. init_map: *map = 0; /* we didn't zero the page */
  2192. }
  2193. *map += 1;
  2194. kunmap_atomic(map, KM_USER0);
  2195. page = list_entry(page->lru.prev, struct page, lru);
  2196. while (page != head) {
  2197. map = kmap_atomic(page, KM_USER0) + offset;
  2198. *map = COUNT_CONTINUED;
  2199. kunmap_atomic(map, KM_USER0);
  2200. page = list_entry(page->lru.prev, struct page, lru);
  2201. }
  2202. return true; /* incremented */
  2203. } else { /* decrementing */
  2204. /*
  2205. * Think of how you subtract 1 from 1000
  2206. */
  2207. BUG_ON(count != COUNT_CONTINUED);
  2208. while (*map == COUNT_CONTINUED) {
  2209. kunmap_atomic(map, KM_USER0);
  2210. page = list_entry(page->lru.next, struct page, lru);
  2211. BUG_ON(page == head);
  2212. map = kmap_atomic(page, KM_USER0) + offset;
  2213. }
  2214. BUG_ON(*map == 0);
  2215. *map -= 1;
  2216. if (*map == 0)
  2217. count = 0;
  2218. kunmap_atomic(map, KM_USER0);
  2219. page = list_entry(page->lru.prev, struct page, lru);
  2220. while (page != head) {
  2221. map = kmap_atomic(page, KM_USER0) + offset;
  2222. *map = SWAP_CONT_MAX | count;
  2223. count = COUNT_CONTINUED;
  2224. kunmap_atomic(map, KM_USER0);
  2225. page = list_entry(page->lru.prev, struct page, lru);
  2226. }
  2227. return count == COUNT_CONTINUED;
  2228. }
  2229. }
  2230. /*
  2231. * free_swap_count_continuations - swapoff free all the continuation pages
  2232. * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
  2233. */
  2234. static void free_swap_count_continuations(struct swap_info_struct *si)
  2235. {
  2236. pgoff_t offset;
  2237. for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
  2238. struct page *head;
  2239. head = vmalloc_to_page(si->swap_map + offset);
  2240. if (page_private(head)) {
  2241. struct list_head *this, *next;
  2242. list_for_each_safe(this, next, &head->lru) {
  2243. struct page *page;
  2244. page = list_entry(this, struct page, lru);
  2245. list_del(this);
  2246. __free_page(page);
  2247. }
  2248. }
  2249. }
  2250. }