rmap.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <linux/hugetlb.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. }
  66. void anon_vma_free(struct anon_vma *anon_vma)
  67. {
  68. kmem_cache_free(anon_vma_cachep, anon_vma);
  69. }
  70. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  71. {
  72. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  73. }
  74. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  75. {
  76. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  77. }
  78. /**
  79. * anon_vma_prepare - attach an anon_vma to a memory region
  80. * @vma: the memory region in question
  81. *
  82. * This makes sure the memory mapping described by 'vma' has
  83. * an 'anon_vma' attached to it, so that we can associate the
  84. * anonymous pages mapped into it with that anon_vma.
  85. *
  86. * The common case will be that we already have one, but if
  87. * if not we either need to find an adjacent mapping that we
  88. * can re-use the anon_vma from (very common when the only
  89. * reason for splitting a vma has been mprotect()), or we
  90. * allocate a new one.
  91. *
  92. * Anon-vma allocations are very subtle, because we may have
  93. * optimistically looked up an anon_vma in page_lock_anon_vma()
  94. * and that may actually touch the spinlock even in the newly
  95. * allocated vma (it depends on RCU to make sure that the
  96. * anon_vma isn't actually destroyed).
  97. *
  98. * As a result, we need to do proper anon_vma locking even
  99. * for the new allocation. At the same time, we do not want
  100. * to do any locking for the common case of already having
  101. * an anon_vma.
  102. *
  103. * This must be called with the mmap_sem held for reading.
  104. */
  105. int anon_vma_prepare(struct vm_area_struct *vma)
  106. {
  107. struct anon_vma *anon_vma = vma->anon_vma;
  108. struct anon_vma_chain *avc;
  109. might_sleep();
  110. if (unlikely(!anon_vma)) {
  111. struct mm_struct *mm = vma->vm_mm;
  112. struct anon_vma *allocated;
  113. avc = anon_vma_chain_alloc();
  114. if (!avc)
  115. goto out_enomem;
  116. anon_vma = find_mergeable_anon_vma(vma);
  117. allocated = NULL;
  118. if (!anon_vma) {
  119. anon_vma = anon_vma_alloc();
  120. if (unlikely(!anon_vma))
  121. goto out_enomem_free_avc;
  122. allocated = anon_vma;
  123. /*
  124. * This VMA had no anon_vma yet. This anon_vma is
  125. * the root of any anon_vma tree that might form.
  126. */
  127. anon_vma->root = anon_vma;
  128. }
  129. anon_vma_lock(anon_vma);
  130. /* page_table_lock to protect against threads */
  131. spin_lock(&mm->page_table_lock);
  132. if (likely(!vma->anon_vma)) {
  133. vma->anon_vma = anon_vma;
  134. avc->anon_vma = anon_vma;
  135. avc->vma = vma;
  136. list_add(&avc->same_vma, &vma->anon_vma_chain);
  137. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  138. allocated = NULL;
  139. avc = NULL;
  140. }
  141. spin_unlock(&mm->page_table_lock);
  142. anon_vma_unlock(anon_vma);
  143. if (unlikely(allocated))
  144. anon_vma_free(allocated);
  145. if (unlikely(avc))
  146. anon_vma_chain_free(avc);
  147. }
  148. return 0;
  149. out_enomem_free_avc:
  150. anon_vma_chain_free(avc);
  151. out_enomem:
  152. return -ENOMEM;
  153. }
  154. static void anon_vma_chain_link(struct vm_area_struct *vma,
  155. struct anon_vma_chain *avc,
  156. struct anon_vma *anon_vma)
  157. {
  158. avc->vma = vma;
  159. avc->anon_vma = anon_vma;
  160. list_add(&avc->same_vma, &vma->anon_vma_chain);
  161. anon_vma_lock(anon_vma);
  162. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  163. anon_vma_unlock(anon_vma);
  164. }
  165. /*
  166. * Attach the anon_vmas from src to dst.
  167. * Returns 0 on success, -ENOMEM on failure.
  168. */
  169. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  170. {
  171. struct anon_vma_chain *avc, *pavc;
  172. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  173. avc = anon_vma_chain_alloc();
  174. if (!avc)
  175. goto enomem_failure;
  176. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  177. }
  178. return 0;
  179. enomem_failure:
  180. unlink_anon_vmas(dst);
  181. return -ENOMEM;
  182. }
  183. /*
  184. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  185. * the corresponding VMA in the parent process is attached to.
  186. * Returns 0 on success, non-zero on failure.
  187. */
  188. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  189. {
  190. struct anon_vma_chain *avc;
  191. struct anon_vma *anon_vma;
  192. /* Don't bother if the parent process has no anon_vma here. */
  193. if (!pvma->anon_vma)
  194. return 0;
  195. /*
  196. * First, attach the new VMA to the parent VMA's anon_vmas,
  197. * so rmap can find non-COWed pages in child processes.
  198. */
  199. if (anon_vma_clone(vma, pvma))
  200. return -ENOMEM;
  201. /* Then add our own anon_vma. */
  202. anon_vma = anon_vma_alloc();
  203. if (!anon_vma)
  204. goto out_error;
  205. avc = anon_vma_chain_alloc();
  206. if (!avc)
  207. goto out_error_free_anon_vma;
  208. /*
  209. * The root anon_vma's spinlock is the lock actually used when we
  210. * lock any of the anon_vmas in this anon_vma tree.
  211. */
  212. anon_vma->root = pvma->anon_vma->root;
  213. /*
  214. * With KSM refcounts, an anon_vma can stay around longer than the
  215. * process it belongs to. The root anon_vma needs to be pinned
  216. * until this anon_vma is freed, because the lock lives in the root.
  217. */
  218. get_anon_vma(anon_vma->root);
  219. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  220. vma->anon_vma = anon_vma;
  221. anon_vma_chain_link(vma, avc, anon_vma);
  222. return 0;
  223. out_error_free_anon_vma:
  224. anon_vma_free(anon_vma);
  225. out_error:
  226. unlink_anon_vmas(vma);
  227. return -ENOMEM;
  228. }
  229. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  230. {
  231. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  232. int empty;
  233. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  234. if (!anon_vma)
  235. return;
  236. anon_vma_lock(anon_vma);
  237. list_del(&anon_vma_chain->same_anon_vma);
  238. /* We must garbage collect the anon_vma if it's empty */
  239. empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
  240. anon_vma_unlock(anon_vma);
  241. if (empty) {
  242. /* We no longer need the root anon_vma */
  243. if (anon_vma->root != anon_vma)
  244. drop_anon_vma(anon_vma->root);
  245. anon_vma_free(anon_vma);
  246. }
  247. }
  248. void unlink_anon_vmas(struct vm_area_struct *vma)
  249. {
  250. struct anon_vma_chain *avc, *next;
  251. /*
  252. * Unlink each anon_vma chained to the VMA. This list is ordered
  253. * from newest to oldest, ensuring the root anon_vma gets freed last.
  254. */
  255. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  256. anon_vma_unlink(avc);
  257. list_del(&avc->same_vma);
  258. anon_vma_chain_free(avc);
  259. }
  260. }
  261. static void anon_vma_ctor(void *data)
  262. {
  263. struct anon_vma *anon_vma = data;
  264. spin_lock_init(&anon_vma->lock);
  265. anonvma_external_refcount_init(anon_vma);
  266. INIT_LIST_HEAD(&anon_vma->head);
  267. }
  268. void __init anon_vma_init(void)
  269. {
  270. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  271. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  272. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  273. }
  274. /*
  275. * Getting a lock on a stable anon_vma from a page off the LRU is
  276. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  277. */
  278. struct anon_vma *page_lock_anon_vma(struct page *page)
  279. {
  280. struct anon_vma *anon_vma, *root_anon_vma;
  281. unsigned long anon_mapping;
  282. rcu_read_lock();
  283. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  284. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  285. goto out;
  286. if (!page_mapped(page))
  287. goto out;
  288. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  289. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  290. spin_lock(&root_anon_vma->lock);
  291. /*
  292. * If this page is still mapped, then its anon_vma cannot have been
  293. * freed. But if it has been unmapped, we have no security against
  294. * the anon_vma structure being freed and reused (for another anon_vma:
  295. * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
  296. * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
  297. * anon_vma->root before page_unlock_anon_vma() is called to unlock.
  298. */
  299. if (page_mapped(page))
  300. return anon_vma;
  301. spin_unlock(&root_anon_vma->lock);
  302. out:
  303. rcu_read_unlock();
  304. return NULL;
  305. }
  306. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  307. {
  308. anon_vma_unlock(anon_vma);
  309. rcu_read_unlock();
  310. }
  311. /*
  312. * At what user virtual address is page expected in @vma?
  313. * Returns virtual address or -EFAULT if page's index/offset is not
  314. * within the range mapped the @vma.
  315. */
  316. static inline unsigned long
  317. vma_address(struct page *page, struct vm_area_struct *vma)
  318. {
  319. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  320. unsigned long address;
  321. if (unlikely(is_vm_hugetlb_page(vma)))
  322. pgoff = page->index << huge_page_order(page_hstate(page));
  323. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  324. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  325. /* page should be within @vma mapping range */
  326. return -EFAULT;
  327. }
  328. return address;
  329. }
  330. /*
  331. * At what user virtual address is page expected in vma?
  332. * Caller should check the page is actually part of the vma.
  333. */
  334. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  335. {
  336. if (PageAnon(page)) {
  337. if (vma->anon_vma->root != page_anon_vma(page)->root)
  338. return -EFAULT;
  339. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  340. if (!vma->vm_file ||
  341. vma->vm_file->f_mapping != page->mapping)
  342. return -EFAULT;
  343. } else
  344. return -EFAULT;
  345. return vma_address(page, vma);
  346. }
  347. /*
  348. * Check that @page is mapped at @address into @mm.
  349. *
  350. * If @sync is false, page_check_address may perform a racy check to avoid
  351. * the page table lock when the pte is not present (helpful when reclaiming
  352. * highly shared pages).
  353. *
  354. * On success returns with pte mapped and locked.
  355. */
  356. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  357. unsigned long address, spinlock_t **ptlp, int sync)
  358. {
  359. pgd_t *pgd;
  360. pud_t *pud;
  361. pmd_t *pmd;
  362. pte_t *pte;
  363. spinlock_t *ptl;
  364. if (unlikely(PageHuge(page))) {
  365. pte = huge_pte_offset(mm, address);
  366. ptl = &mm->page_table_lock;
  367. goto check;
  368. }
  369. pgd = pgd_offset(mm, address);
  370. if (!pgd_present(*pgd))
  371. return NULL;
  372. pud = pud_offset(pgd, address);
  373. if (!pud_present(*pud))
  374. return NULL;
  375. pmd = pmd_offset(pud, address);
  376. if (!pmd_present(*pmd))
  377. return NULL;
  378. pte = pte_offset_map(pmd, address);
  379. /* Make a quick check before getting the lock */
  380. if (!sync && !pte_present(*pte)) {
  381. pte_unmap(pte);
  382. return NULL;
  383. }
  384. ptl = pte_lockptr(mm, pmd);
  385. check:
  386. spin_lock(ptl);
  387. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  388. *ptlp = ptl;
  389. return pte;
  390. }
  391. pte_unmap_unlock(pte, ptl);
  392. return NULL;
  393. }
  394. /**
  395. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  396. * @page: the page to test
  397. * @vma: the VMA to test
  398. *
  399. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  400. * if the page is not mapped into the page tables of this VMA. Only
  401. * valid for normal file or anonymous VMAs.
  402. */
  403. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  404. {
  405. unsigned long address;
  406. pte_t *pte;
  407. spinlock_t *ptl;
  408. address = vma_address(page, vma);
  409. if (address == -EFAULT) /* out of vma range */
  410. return 0;
  411. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  412. if (!pte) /* the page is not in this mm */
  413. return 0;
  414. pte_unmap_unlock(pte, ptl);
  415. return 1;
  416. }
  417. /*
  418. * Subfunctions of page_referenced: page_referenced_one called
  419. * repeatedly from either page_referenced_anon or page_referenced_file.
  420. */
  421. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  422. unsigned long address, unsigned int *mapcount,
  423. unsigned long *vm_flags)
  424. {
  425. struct mm_struct *mm = vma->vm_mm;
  426. pte_t *pte;
  427. spinlock_t *ptl;
  428. int referenced = 0;
  429. pte = page_check_address(page, mm, address, &ptl, 0);
  430. if (!pte)
  431. goto out;
  432. /*
  433. * Don't want to elevate referenced for mlocked page that gets this far,
  434. * in order that it progresses to try_to_unmap and is moved to the
  435. * unevictable list.
  436. */
  437. if (vma->vm_flags & VM_LOCKED) {
  438. *mapcount = 1; /* break early from loop */
  439. *vm_flags |= VM_LOCKED;
  440. goto out_unmap;
  441. }
  442. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  443. /*
  444. * Don't treat a reference through a sequentially read
  445. * mapping as such. If the page has been used in
  446. * another mapping, we will catch it; if this other
  447. * mapping is already gone, the unmap path will have
  448. * set PG_referenced or activated the page.
  449. */
  450. if (likely(!VM_SequentialReadHint(vma)))
  451. referenced++;
  452. }
  453. /* Pretend the page is referenced if the task has the
  454. swap token and is in the middle of a page fault. */
  455. if (mm != current->mm && has_swap_token(mm) &&
  456. rwsem_is_locked(&mm->mmap_sem))
  457. referenced++;
  458. out_unmap:
  459. (*mapcount)--;
  460. pte_unmap_unlock(pte, ptl);
  461. if (referenced)
  462. *vm_flags |= vma->vm_flags;
  463. out:
  464. return referenced;
  465. }
  466. static int page_referenced_anon(struct page *page,
  467. struct mem_cgroup *mem_cont,
  468. unsigned long *vm_flags)
  469. {
  470. unsigned int mapcount;
  471. struct anon_vma *anon_vma;
  472. struct anon_vma_chain *avc;
  473. int referenced = 0;
  474. anon_vma = page_lock_anon_vma(page);
  475. if (!anon_vma)
  476. return referenced;
  477. mapcount = page_mapcount(page);
  478. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  479. struct vm_area_struct *vma = avc->vma;
  480. unsigned long address = vma_address(page, vma);
  481. if (address == -EFAULT)
  482. continue;
  483. /*
  484. * If we are reclaiming on behalf of a cgroup, skip
  485. * counting on behalf of references from different
  486. * cgroups
  487. */
  488. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  489. continue;
  490. referenced += page_referenced_one(page, vma, address,
  491. &mapcount, vm_flags);
  492. if (!mapcount)
  493. break;
  494. }
  495. page_unlock_anon_vma(anon_vma);
  496. return referenced;
  497. }
  498. /**
  499. * page_referenced_file - referenced check for object-based rmap
  500. * @page: the page we're checking references on.
  501. * @mem_cont: target memory controller
  502. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  503. *
  504. * For an object-based mapped page, find all the places it is mapped and
  505. * check/clear the referenced flag. This is done by following the page->mapping
  506. * pointer, then walking the chain of vmas it holds. It returns the number
  507. * of references it found.
  508. *
  509. * This function is only called from page_referenced for object-based pages.
  510. */
  511. static int page_referenced_file(struct page *page,
  512. struct mem_cgroup *mem_cont,
  513. unsigned long *vm_flags)
  514. {
  515. unsigned int mapcount;
  516. struct address_space *mapping = page->mapping;
  517. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  518. struct vm_area_struct *vma;
  519. struct prio_tree_iter iter;
  520. int referenced = 0;
  521. /*
  522. * The caller's checks on page->mapping and !PageAnon have made
  523. * sure that this is a file page: the check for page->mapping
  524. * excludes the case just before it gets set on an anon page.
  525. */
  526. BUG_ON(PageAnon(page));
  527. /*
  528. * The page lock not only makes sure that page->mapping cannot
  529. * suddenly be NULLified by truncation, it makes sure that the
  530. * structure at mapping cannot be freed and reused yet,
  531. * so we can safely take mapping->i_mmap_lock.
  532. */
  533. BUG_ON(!PageLocked(page));
  534. spin_lock(&mapping->i_mmap_lock);
  535. /*
  536. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  537. * is more likely to be accurate if we note it after spinning.
  538. */
  539. mapcount = page_mapcount(page);
  540. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  541. unsigned long address = vma_address(page, vma);
  542. if (address == -EFAULT)
  543. continue;
  544. /*
  545. * If we are reclaiming on behalf of a cgroup, skip
  546. * counting on behalf of references from different
  547. * cgroups
  548. */
  549. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  550. continue;
  551. referenced += page_referenced_one(page, vma, address,
  552. &mapcount, vm_flags);
  553. if (!mapcount)
  554. break;
  555. }
  556. spin_unlock(&mapping->i_mmap_lock);
  557. return referenced;
  558. }
  559. /**
  560. * page_referenced - test if the page was referenced
  561. * @page: the page to test
  562. * @is_locked: caller holds lock on the page
  563. * @mem_cont: target memory controller
  564. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  565. *
  566. * Quick test_and_clear_referenced for all mappings to a page,
  567. * returns the number of ptes which referenced the page.
  568. */
  569. int page_referenced(struct page *page,
  570. int is_locked,
  571. struct mem_cgroup *mem_cont,
  572. unsigned long *vm_flags)
  573. {
  574. int referenced = 0;
  575. int we_locked = 0;
  576. *vm_flags = 0;
  577. if (page_mapped(page) && page_rmapping(page)) {
  578. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  579. we_locked = trylock_page(page);
  580. if (!we_locked) {
  581. referenced++;
  582. goto out;
  583. }
  584. }
  585. if (unlikely(PageKsm(page)))
  586. referenced += page_referenced_ksm(page, mem_cont,
  587. vm_flags);
  588. else if (PageAnon(page))
  589. referenced += page_referenced_anon(page, mem_cont,
  590. vm_flags);
  591. else if (page->mapping)
  592. referenced += page_referenced_file(page, mem_cont,
  593. vm_flags);
  594. if (we_locked)
  595. unlock_page(page);
  596. }
  597. out:
  598. if (page_test_and_clear_young(page))
  599. referenced++;
  600. return referenced;
  601. }
  602. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  603. unsigned long address)
  604. {
  605. struct mm_struct *mm = vma->vm_mm;
  606. pte_t *pte;
  607. spinlock_t *ptl;
  608. int ret = 0;
  609. pte = page_check_address(page, mm, address, &ptl, 1);
  610. if (!pte)
  611. goto out;
  612. if (pte_dirty(*pte) || pte_write(*pte)) {
  613. pte_t entry;
  614. flush_cache_page(vma, address, pte_pfn(*pte));
  615. entry = ptep_clear_flush_notify(vma, address, pte);
  616. entry = pte_wrprotect(entry);
  617. entry = pte_mkclean(entry);
  618. set_pte_at(mm, address, pte, entry);
  619. ret = 1;
  620. }
  621. pte_unmap_unlock(pte, ptl);
  622. out:
  623. return ret;
  624. }
  625. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  626. {
  627. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  628. struct vm_area_struct *vma;
  629. struct prio_tree_iter iter;
  630. int ret = 0;
  631. BUG_ON(PageAnon(page));
  632. spin_lock(&mapping->i_mmap_lock);
  633. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  634. if (vma->vm_flags & VM_SHARED) {
  635. unsigned long address = vma_address(page, vma);
  636. if (address == -EFAULT)
  637. continue;
  638. ret += page_mkclean_one(page, vma, address);
  639. }
  640. }
  641. spin_unlock(&mapping->i_mmap_lock);
  642. return ret;
  643. }
  644. int page_mkclean(struct page *page)
  645. {
  646. int ret = 0;
  647. BUG_ON(!PageLocked(page));
  648. if (page_mapped(page)) {
  649. struct address_space *mapping = page_mapping(page);
  650. if (mapping) {
  651. ret = page_mkclean_file(mapping, page);
  652. if (page_test_dirty(page)) {
  653. page_clear_dirty(page);
  654. ret = 1;
  655. }
  656. }
  657. }
  658. return ret;
  659. }
  660. EXPORT_SYMBOL_GPL(page_mkclean);
  661. /**
  662. * page_move_anon_rmap - move a page to our anon_vma
  663. * @page: the page to move to our anon_vma
  664. * @vma: the vma the page belongs to
  665. * @address: the user virtual address mapped
  666. *
  667. * When a page belongs exclusively to one process after a COW event,
  668. * that page can be moved into the anon_vma that belongs to just that
  669. * process, so the rmap code will not search the parent or sibling
  670. * processes.
  671. */
  672. void page_move_anon_rmap(struct page *page,
  673. struct vm_area_struct *vma, unsigned long address)
  674. {
  675. struct anon_vma *anon_vma = vma->anon_vma;
  676. VM_BUG_ON(!PageLocked(page));
  677. VM_BUG_ON(!anon_vma);
  678. VM_BUG_ON(page->index != linear_page_index(vma, address));
  679. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  680. page->mapping = (struct address_space *) anon_vma;
  681. }
  682. /**
  683. * __page_set_anon_rmap - setup new anonymous rmap
  684. * @page: the page to add the mapping to
  685. * @vma: the vm area in which the mapping is added
  686. * @address: the user virtual address mapped
  687. * @exclusive: the page is exclusively owned by the current process
  688. */
  689. static void __page_set_anon_rmap(struct page *page,
  690. struct vm_area_struct *vma, unsigned long address, int exclusive)
  691. {
  692. struct anon_vma *anon_vma = vma->anon_vma;
  693. BUG_ON(!anon_vma);
  694. /*
  695. * If the page isn't exclusively mapped into this vma,
  696. * we must use the _oldest_ possible anon_vma for the
  697. * page mapping!
  698. */
  699. if (!exclusive) {
  700. if (PageAnon(page))
  701. return;
  702. anon_vma = anon_vma->root;
  703. } else {
  704. /*
  705. * In this case, swapped-out-but-not-discarded swap-cache
  706. * is remapped. So, no need to update page->mapping here.
  707. * We convice anon_vma poitned by page->mapping is not obsolete
  708. * because vma->anon_vma is necessary to be a family of it.
  709. */
  710. if (PageAnon(page))
  711. return;
  712. }
  713. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  714. page->mapping = (struct address_space *) anon_vma;
  715. page->index = linear_page_index(vma, address);
  716. }
  717. /**
  718. * __page_check_anon_rmap - sanity check anonymous rmap addition
  719. * @page: the page to add the mapping to
  720. * @vma: the vm area in which the mapping is added
  721. * @address: the user virtual address mapped
  722. */
  723. static void __page_check_anon_rmap(struct page *page,
  724. struct vm_area_struct *vma, unsigned long address)
  725. {
  726. #ifdef CONFIG_DEBUG_VM
  727. /*
  728. * The page's anon-rmap details (mapping and index) are guaranteed to
  729. * be set up correctly at this point.
  730. *
  731. * We have exclusion against page_add_anon_rmap because the caller
  732. * always holds the page locked, except if called from page_dup_rmap,
  733. * in which case the page is already known to be setup.
  734. *
  735. * We have exclusion against page_add_new_anon_rmap because those pages
  736. * are initially only visible via the pagetables, and the pte is locked
  737. * over the call to page_add_new_anon_rmap.
  738. */
  739. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  740. BUG_ON(page->index != linear_page_index(vma, address));
  741. #endif
  742. }
  743. /**
  744. * page_add_anon_rmap - add pte mapping to an anonymous page
  745. * @page: the page to add the mapping to
  746. * @vma: the vm area in which the mapping is added
  747. * @address: the user virtual address mapped
  748. *
  749. * The caller needs to hold the pte lock, and the page must be locked in
  750. * the anon_vma case: to serialize mapping,index checking after setting,
  751. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  752. * (but PageKsm is never downgraded to PageAnon).
  753. */
  754. void page_add_anon_rmap(struct page *page,
  755. struct vm_area_struct *vma, unsigned long address)
  756. {
  757. do_page_add_anon_rmap(page, vma, address, 0);
  758. }
  759. /*
  760. * Special version of the above for do_swap_page, which often runs
  761. * into pages that are exclusively owned by the current process.
  762. * Everybody else should continue to use page_add_anon_rmap above.
  763. */
  764. void do_page_add_anon_rmap(struct page *page,
  765. struct vm_area_struct *vma, unsigned long address, int exclusive)
  766. {
  767. int first = atomic_inc_and_test(&page->_mapcount);
  768. if (first)
  769. __inc_zone_page_state(page, NR_ANON_PAGES);
  770. if (unlikely(PageKsm(page)))
  771. return;
  772. VM_BUG_ON(!PageLocked(page));
  773. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  774. if (first)
  775. __page_set_anon_rmap(page, vma, address, exclusive);
  776. else
  777. __page_check_anon_rmap(page, vma, address);
  778. }
  779. /**
  780. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  781. * @page: the page to add the mapping to
  782. * @vma: the vm area in which the mapping is added
  783. * @address: the user virtual address mapped
  784. *
  785. * Same as page_add_anon_rmap but must only be called on *new* pages.
  786. * This means the inc-and-test can be bypassed.
  787. * Page does not have to be locked.
  788. */
  789. void page_add_new_anon_rmap(struct page *page,
  790. struct vm_area_struct *vma, unsigned long address)
  791. {
  792. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  793. SetPageSwapBacked(page);
  794. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  795. __inc_zone_page_state(page, NR_ANON_PAGES);
  796. __page_set_anon_rmap(page, vma, address, 1);
  797. if (page_evictable(page, vma))
  798. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  799. else
  800. add_page_to_unevictable_list(page);
  801. }
  802. /**
  803. * page_add_file_rmap - add pte mapping to a file page
  804. * @page: the page to add the mapping to
  805. *
  806. * The caller needs to hold the pte lock.
  807. */
  808. void page_add_file_rmap(struct page *page)
  809. {
  810. if (atomic_inc_and_test(&page->_mapcount)) {
  811. __inc_zone_page_state(page, NR_FILE_MAPPED);
  812. mem_cgroup_update_file_mapped(page, 1);
  813. }
  814. }
  815. /**
  816. * page_remove_rmap - take down pte mapping from a page
  817. * @page: page to remove mapping from
  818. *
  819. * The caller needs to hold the pte lock.
  820. */
  821. void page_remove_rmap(struct page *page)
  822. {
  823. /* page still mapped by someone else? */
  824. if (!atomic_add_negative(-1, &page->_mapcount))
  825. return;
  826. /*
  827. * Now that the last pte has gone, s390 must transfer dirty
  828. * flag from storage key to struct page. We can usually skip
  829. * this if the page is anon, so about to be freed; but perhaps
  830. * not if it's in swapcache - there might be another pte slot
  831. * containing the swap entry, but page not yet written to swap.
  832. */
  833. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  834. page_clear_dirty(page);
  835. set_page_dirty(page);
  836. }
  837. /*
  838. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  839. * and not charged by memcg for now.
  840. */
  841. if (unlikely(PageHuge(page)))
  842. return;
  843. if (PageAnon(page)) {
  844. mem_cgroup_uncharge_page(page);
  845. __dec_zone_page_state(page, NR_ANON_PAGES);
  846. } else {
  847. __dec_zone_page_state(page, NR_FILE_MAPPED);
  848. mem_cgroup_update_file_mapped(page, -1);
  849. }
  850. /*
  851. * It would be tidy to reset the PageAnon mapping here,
  852. * but that might overwrite a racing page_add_anon_rmap
  853. * which increments mapcount after us but sets mapping
  854. * before us: so leave the reset to free_hot_cold_page,
  855. * and remember that it's only reliable while mapped.
  856. * Leaving it set also helps swapoff to reinstate ptes
  857. * faster for those pages still in swapcache.
  858. */
  859. }
  860. /*
  861. * Subfunctions of try_to_unmap: try_to_unmap_one called
  862. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  863. */
  864. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  865. unsigned long address, enum ttu_flags flags)
  866. {
  867. struct mm_struct *mm = vma->vm_mm;
  868. pte_t *pte;
  869. pte_t pteval;
  870. spinlock_t *ptl;
  871. int ret = SWAP_AGAIN;
  872. pte = page_check_address(page, mm, address, &ptl, 0);
  873. if (!pte)
  874. goto out;
  875. /*
  876. * If the page is mlock()d, we cannot swap it out.
  877. * If it's recently referenced (perhaps page_referenced
  878. * skipped over this mm) then we should reactivate it.
  879. */
  880. if (!(flags & TTU_IGNORE_MLOCK)) {
  881. if (vma->vm_flags & VM_LOCKED)
  882. goto out_mlock;
  883. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  884. goto out_unmap;
  885. }
  886. if (!(flags & TTU_IGNORE_ACCESS)) {
  887. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  888. ret = SWAP_FAIL;
  889. goto out_unmap;
  890. }
  891. }
  892. /* Nuke the page table entry. */
  893. flush_cache_page(vma, address, page_to_pfn(page));
  894. pteval = ptep_clear_flush_notify(vma, address, pte);
  895. /* Move the dirty bit to the physical page now the pte is gone. */
  896. if (pte_dirty(pteval))
  897. set_page_dirty(page);
  898. /* Update high watermark before we lower rss */
  899. update_hiwater_rss(mm);
  900. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  901. if (PageAnon(page))
  902. dec_mm_counter(mm, MM_ANONPAGES);
  903. else
  904. dec_mm_counter(mm, MM_FILEPAGES);
  905. set_pte_at(mm, address, pte,
  906. swp_entry_to_pte(make_hwpoison_entry(page)));
  907. } else if (PageAnon(page)) {
  908. swp_entry_t entry = { .val = page_private(page) };
  909. if (PageSwapCache(page)) {
  910. /*
  911. * Store the swap location in the pte.
  912. * See handle_pte_fault() ...
  913. */
  914. if (swap_duplicate(entry) < 0) {
  915. set_pte_at(mm, address, pte, pteval);
  916. ret = SWAP_FAIL;
  917. goto out_unmap;
  918. }
  919. if (list_empty(&mm->mmlist)) {
  920. spin_lock(&mmlist_lock);
  921. if (list_empty(&mm->mmlist))
  922. list_add(&mm->mmlist, &init_mm.mmlist);
  923. spin_unlock(&mmlist_lock);
  924. }
  925. dec_mm_counter(mm, MM_ANONPAGES);
  926. inc_mm_counter(mm, MM_SWAPENTS);
  927. } else if (PAGE_MIGRATION) {
  928. /*
  929. * Store the pfn of the page in a special migration
  930. * pte. do_swap_page() will wait until the migration
  931. * pte is removed and then restart fault handling.
  932. */
  933. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  934. entry = make_migration_entry(page, pte_write(pteval));
  935. }
  936. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  937. BUG_ON(pte_file(*pte));
  938. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  939. /* Establish migration entry for a file page */
  940. swp_entry_t entry;
  941. entry = make_migration_entry(page, pte_write(pteval));
  942. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  943. } else
  944. dec_mm_counter(mm, MM_FILEPAGES);
  945. page_remove_rmap(page);
  946. page_cache_release(page);
  947. out_unmap:
  948. pte_unmap_unlock(pte, ptl);
  949. out:
  950. return ret;
  951. out_mlock:
  952. pte_unmap_unlock(pte, ptl);
  953. /*
  954. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  955. * unstable result and race. Plus, We can't wait here because
  956. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  957. * if trylock failed, the page remain in evictable lru and later
  958. * vmscan could retry to move the page to unevictable lru if the
  959. * page is actually mlocked.
  960. */
  961. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  962. if (vma->vm_flags & VM_LOCKED) {
  963. mlock_vma_page(page);
  964. ret = SWAP_MLOCK;
  965. }
  966. up_read(&vma->vm_mm->mmap_sem);
  967. }
  968. return ret;
  969. }
  970. /*
  971. * objrmap doesn't work for nonlinear VMAs because the assumption that
  972. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  973. * Consequently, given a particular page and its ->index, we cannot locate the
  974. * ptes which are mapping that page without an exhaustive linear search.
  975. *
  976. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  977. * maps the file to which the target page belongs. The ->vm_private_data field
  978. * holds the current cursor into that scan. Successive searches will circulate
  979. * around the vma's virtual address space.
  980. *
  981. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  982. * more scanning pressure is placed against them as well. Eventually pages
  983. * will become fully unmapped and are eligible for eviction.
  984. *
  985. * For very sparsely populated VMAs this is a little inefficient - chances are
  986. * there there won't be many ptes located within the scan cluster. In this case
  987. * maybe we could scan further - to the end of the pte page, perhaps.
  988. *
  989. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  990. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  991. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  992. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  993. */
  994. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  995. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  996. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  997. struct vm_area_struct *vma, struct page *check_page)
  998. {
  999. struct mm_struct *mm = vma->vm_mm;
  1000. pgd_t *pgd;
  1001. pud_t *pud;
  1002. pmd_t *pmd;
  1003. pte_t *pte;
  1004. pte_t pteval;
  1005. spinlock_t *ptl;
  1006. struct page *page;
  1007. unsigned long address;
  1008. unsigned long end;
  1009. int ret = SWAP_AGAIN;
  1010. int locked_vma = 0;
  1011. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1012. end = address + CLUSTER_SIZE;
  1013. if (address < vma->vm_start)
  1014. address = vma->vm_start;
  1015. if (end > vma->vm_end)
  1016. end = vma->vm_end;
  1017. pgd = pgd_offset(mm, address);
  1018. if (!pgd_present(*pgd))
  1019. return ret;
  1020. pud = pud_offset(pgd, address);
  1021. if (!pud_present(*pud))
  1022. return ret;
  1023. pmd = pmd_offset(pud, address);
  1024. if (!pmd_present(*pmd))
  1025. return ret;
  1026. /*
  1027. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1028. * keep the sem while scanning the cluster for mlocking pages.
  1029. */
  1030. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1031. locked_vma = (vma->vm_flags & VM_LOCKED);
  1032. if (!locked_vma)
  1033. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1034. }
  1035. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1036. /* Update high watermark before we lower rss */
  1037. update_hiwater_rss(mm);
  1038. for (; address < end; pte++, address += PAGE_SIZE) {
  1039. if (!pte_present(*pte))
  1040. continue;
  1041. page = vm_normal_page(vma, address, *pte);
  1042. BUG_ON(!page || PageAnon(page));
  1043. if (locked_vma) {
  1044. mlock_vma_page(page); /* no-op if already mlocked */
  1045. if (page == check_page)
  1046. ret = SWAP_MLOCK;
  1047. continue; /* don't unmap */
  1048. }
  1049. if (ptep_clear_flush_young_notify(vma, address, pte))
  1050. continue;
  1051. /* Nuke the page table entry. */
  1052. flush_cache_page(vma, address, pte_pfn(*pte));
  1053. pteval = ptep_clear_flush_notify(vma, address, pte);
  1054. /* If nonlinear, store the file page offset in the pte. */
  1055. if (page->index != linear_page_index(vma, address))
  1056. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1057. /* Move the dirty bit to the physical page now the pte is gone. */
  1058. if (pte_dirty(pteval))
  1059. set_page_dirty(page);
  1060. page_remove_rmap(page);
  1061. page_cache_release(page);
  1062. dec_mm_counter(mm, MM_FILEPAGES);
  1063. (*mapcount)--;
  1064. }
  1065. pte_unmap_unlock(pte - 1, ptl);
  1066. if (locked_vma)
  1067. up_read(&vma->vm_mm->mmap_sem);
  1068. return ret;
  1069. }
  1070. static bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1071. {
  1072. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1073. if (!maybe_stack)
  1074. return false;
  1075. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1076. VM_STACK_INCOMPLETE_SETUP)
  1077. return true;
  1078. return false;
  1079. }
  1080. /**
  1081. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1082. * rmap method
  1083. * @page: the page to unmap/unlock
  1084. * @flags: action and flags
  1085. *
  1086. * Find all the mappings of a page using the mapping pointer and the vma chains
  1087. * contained in the anon_vma struct it points to.
  1088. *
  1089. * This function is only called from try_to_unmap/try_to_munlock for
  1090. * anonymous pages.
  1091. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1092. * where the page was found will be held for write. So, we won't recheck
  1093. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1094. * 'LOCKED.
  1095. */
  1096. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1097. {
  1098. struct anon_vma *anon_vma;
  1099. struct anon_vma_chain *avc;
  1100. int ret = SWAP_AGAIN;
  1101. anon_vma = page_lock_anon_vma(page);
  1102. if (!anon_vma)
  1103. return ret;
  1104. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1105. struct vm_area_struct *vma = avc->vma;
  1106. unsigned long address;
  1107. /*
  1108. * During exec, a temporary VMA is setup and later moved.
  1109. * The VMA is moved under the anon_vma lock but not the
  1110. * page tables leading to a race where migration cannot
  1111. * find the migration ptes. Rather than increasing the
  1112. * locking requirements of exec(), migration skips
  1113. * temporary VMAs until after exec() completes.
  1114. */
  1115. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1116. is_vma_temporary_stack(vma))
  1117. continue;
  1118. address = vma_address(page, vma);
  1119. if (address == -EFAULT)
  1120. continue;
  1121. ret = try_to_unmap_one(page, vma, address, flags);
  1122. if (ret != SWAP_AGAIN || !page_mapped(page))
  1123. break;
  1124. }
  1125. page_unlock_anon_vma(anon_vma);
  1126. return ret;
  1127. }
  1128. /**
  1129. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1130. * @page: the page to unmap/unlock
  1131. * @flags: action and flags
  1132. *
  1133. * Find all the mappings of a page using the mapping pointer and the vma chains
  1134. * contained in the address_space struct it points to.
  1135. *
  1136. * This function is only called from try_to_unmap/try_to_munlock for
  1137. * object-based pages.
  1138. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1139. * where the page was found will be held for write. So, we won't recheck
  1140. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1141. * 'LOCKED.
  1142. */
  1143. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1144. {
  1145. struct address_space *mapping = page->mapping;
  1146. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1147. struct vm_area_struct *vma;
  1148. struct prio_tree_iter iter;
  1149. int ret = SWAP_AGAIN;
  1150. unsigned long cursor;
  1151. unsigned long max_nl_cursor = 0;
  1152. unsigned long max_nl_size = 0;
  1153. unsigned int mapcount;
  1154. spin_lock(&mapping->i_mmap_lock);
  1155. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1156. unsigned long address = vma_address(page, vma);
  1157. if (address == -EFAULT)
  1158. continue;
  1159. ret = try_to_unmap_one(page, vma, address, flags);
  1160. if (ret != SWAP_AGAIN || !page_mapped(page))
  1161. goto out;
  1162. }
  1163. if (list_empty(&mapping->i_mmap_nonlinear))
  1164. goto out;
  1165. /*
  1166. * We don't bother to try to find the munlocked page in nonlinears.
  1167. * It's costly. Instead, later, page reclaim logic may call
  1168. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1169. */
  1170. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1171. goto out;
  1172. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1173. shared.vm_set.list) {
  1174. cursor = (unsigned long) vma->vm_private_data;
  1175. if (cursor > max_nl_cursor)
  1176. max_nl_cursor = cursor;
  1177. cursor = vma->vm_end - vma->vm_start;
  1178. if (cursor > max_nl_size)
  1179. max_nl_size = cursor;
  1180. }
  1181. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1182. ret = SWAP_FAIL;
  1183. goto out;
  1184. }
  1185. /*
  1186. * We don't try to search for this page in the nonlinear vmas,
  1187. * and page_referenced wouldn't have found it anyway. Instead
  1188. * just walk the nonlinear vmas trying to age and unmap some.
  1189. * The mapcount of the page we came in with is irrelevant,
  1190. * but even so use it as a guide to how hard we should try?
  1191. */
  1192. mapcount = page_mapcount(page);
  1193. if (!mapcount)
  1194. goto out;
  1195. cond_resched_lock(&mapping->i_mmap_lock);
  1196. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1197. if (max_nl_cursor == 0)
  1198. max_nl_cursor = CLUSTER_SIZE;
  1199. do {
  1200. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1201. shared.vm_set.list) {
  1202. cursor = (unsigned long) vma->vm_private_data;
  1203. while ( cursor < max_nl_cursor &&
  1204. cursor < vma->vm_end - vma->vm_start) {
  1205. if (try_to_unmap_cluster(cursor, &mapcount,
  1206. vma, page) == SWAP_MLOCK)
  1207. ret = SWAP_MLOCK;
  1208. cursor += CLUSTER_SIZE;
  1209. vma->vm_private_data = (void *) cursor;
  1210. if ((int)mapcount <= 0)
  1211. goto out;
  1212. }
  1213. vma->vm_private_data = (void *) max_nl_cursor;
  1214. }
  1215. cond_resched_lock(&mapping->i_mmap_lock);
  1216. max_nl_cursor += CLUSTER_SIZE;
  1217. } while (max_nl_cursor <= max_nl_size);
  1218. /*
  1219. * Don't loop forever (perhaps all the remaining pages are
  1220. * in locked vmas). Reset cursor on all unreserved nonlinear
  1221. * vmas, now forgetting on which ones it had fallen behind.
  1222. */
  1223. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1224. vma->vm_private_data = NULL;
  1225. out:
  1226. spin_unlock(&mapping->i_mmap_lock);
  1227. return ret;
  1228. }
  1229. /**
  1230. * try_to_unmap - try to remove all page table mappings to a page
  1231. * @page: the page to get unmapped
  1232. * @flags: action and flags
  1233. *
  1234. * Tries to remove all the page table entries which are mapping this
  1235. * page, used in the pageout path. Caller must hold the page lock.
  1236. * Return values are:
  1237. *
  1238. * SWAP_SUCCESS - we succeeded in removing all mappings
  1239. * SWAP_AGAIN - we missed a mapping, try again later
  1240. * SWAP_FAIL - the page is unswappable
  1241. * SWAP_MLOCK - page is mlocked.
  1242. */
  1243. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1244. {
  1245. int ret;
  1246. BUG_ON(!PageLocked(page));
  1247. if (unlikely(PageKsm(page)))
  1248. ret = try_to_unmap_ksm(page, flags);
  1249. else if (PageAnon(page))
  1250. ret = try_to_unmap_anon(page, flags);
  1251. else
  1252. ret = try_to_unmap_file(page, flags);
  1253. if (ret != SWAP_MLOCK && !page_mapped(page))
  1254. ret = SWAP_SUCCESS;
  1255. return ret;
  1256. }
  1257. /**
  1258. * try_to_munlock - try to munlock a page
  1259. * @page: the page to be munlocked
  1260. *
  1261. * Called from munlock code. Checks all of the VMAs mapping the page
  1262. * to make sure nobody else has this page mlocked. The page will be
  1263. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1264. *
  1265. * Return values are:
  1266. *
  1267. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1268. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1269. * SWAP_FAIL - page cannot be located at present
  1270. * SWAP_MLOCK - page is now mlocked.
  1271. */
  1272. int try_to_munlock(struct page *page)
  1273. {
  1274. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1275. if (unlikely(PageKsm(page)))
  1276. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1277. else if (PageAnon(page))
  1278. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1279. else
  1280. return try_to_unmap_file(page, TTU_MUNLOCK);
  1281. }
  1282. #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
  1283. /*
  1284. * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
  1285. * if necessary. Be careful to do all the tests under the lock. Once
  1286. * we know we are the last user, nobody else can get a reference and we
  1287. * can do the freeing without the lock.
  1288. */
  1289. void drop_anon_vma(struct anon_vma *anon_vma)
  1290. {
  1291. BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
  1292. if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
  1293. struct anon_vma *root = anon_vma->root;
  1294. int empty = list_empty(&anon_vma->head);
  1295. int last_root_user = 0;
  1296. int root_empty = 0;
  1297. /*
  1298. * The refcount on a non-root anon_vma got dropped. Drop
  1299. * the refcount on the root and check if we need to free it.
  1300. */
  1301. if (empty && anon_vma != root) {
  1302. BUG_ON(atomic_read(&root->external_refcount) <= 0);
  1303. last_root_user = atomic_dec_and_test(&root->external_refcount);
  1304. root_empty = list_empty(&root->head);
  1305. }
  1306. anon_vma_unlock(anon_vma);
  1307. if (empty) {
  1308. anon_vma_free(anon_vma);
  1309. if (root_empty && last_root_user)
  1310. anon_vma_free(root);
  1311. }
  1312. }
  1313. }
  1314. #endif
  1315. #ifdef CONFIG_MIGRATION
  1316. /*
  1317. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1318. * Called by migrate.c to remove migration ptes, but might be used more later.
  1319. */
  1320. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1321. struct vm_area_struct *, unsigned long, void *), void *arg)
  1322. {
  1323. struct anon_vma *anon_vma;
  1324. struct anon_vma_chain *avc;
  1325. int ret = SWAP_AGAIN;
  1326. /*
  1327. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1328. * because that depends on page_mapped(); but not all its usages
  1329. * are holding mmap_sem. Users without mmap_sem are required to
  1330. * take a reference count to prevent the anon_vma disappearing
  1331. */
  1332. anon_vma = page_anon_vma(page);
  1333. if (!anon_vma)
  1334. return ret;
  1335. anon_vma_lock(anon_vma);
  1336. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1337. struct vm_area_struct *vma = avc->vma;
  1338. unsigned long address = vma_address(page, vma);
  1339. if (address == -EFAULT)
  1340. continue;
  1341. ret = rmap_one(page, vma, address, arg);
  1342. if (ret != SWAP_AGAIN)
  1343. break;
  1344. }
  1345. anon_vma_unlock(anon_vma);
  1346. return ret;
  1347. }
  1348. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1349. struct vm_area_struct *, unsigned long, void *), void *arg)
  1350. {
  1351. struct address_space *mapping = page->mapping;
  1352. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1353. struct vm_area_struct *vma;
  1354. struct prio_tree_iter iter;
  1355. int ret = SWAP_AGAIN;
  1356. if (!mapping)
  1357. return ret;
  1358. spin_lock(&mapping->i_mmap_lock);
  1359. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1360. unsigned long address = vma_address(page, vma);
  1361. if (address == -EFAULT)
  1362. continue;
  1363. ret = rmap_one(page, vma, address, arg);
  1364. if (ret != SWAP_AGAIN)
  1365. break;
  1366. }
  1367. /*
  1368. * No nonlinear handling: being always shared, nonlinear vmas
  1369. * never contain migration ptes. Decide what to do about this
  1370. * limitation to linear when we need rmap_walk() on nonlinear.
  1371. */
  1372. spin_unlock(&mapping->i_mmap_lock);
  1373. return ret;
  1374. }
  1375. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1376. struct vm_area_struct *, unsigned long, void *), void *arg)
  1377. {
  1378. VM_BUG_ON(!PageLocked(page));
  1379. if (unlikely(PageKsm(page)))
  1380. return rmap_walk_ksm(page, rmap_one, arg);
  1381. else if (PageAnon(page))
  1382. return rmap_walk_anon(page, rmap_one, arg);
  1383. else
  1384. return rmap_walk_file(page, rmap_one, arg);
  1385. }
  1386. #endif /* CONFIG_MIGRATION */
  1387. #ifdef CONFIG_HUGETLB_PAGE
  1388. /*
  1389. * The following three functions are for anonymous (private mapped) hugepages.
  1390. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1391. * and no lru code, because we handle hugepages differently from common pages.
  1392. */
  1393. static void __hugepage_set_anon_rmap(struct page *page,
  1394. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1395. {
  1396. struct anon_vma *anon_vma = vma->anon_vma;
  1397. BUG_ON(!anon_vma);
  1398. if (!exclusive) {
  1399. struct anon_vma_chain *avc;
  1400. avc = list_entry(vma->anon_vma_chain.prev,
  1401. struct anon_vma_chain, same_vma);
  1402. anon_vma = avc->anon_vma;
  1403. }
  1404. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1405. page->mapping = (struct address_space *) anon_vma;
  1406. page->index = linear_page_index(vma, address);
  1407. }
  1408. void hugepage_add_anon_rmap(struct page *page,
  1409. struct vm_area_struct *vma, unsigned long address)
  1410. {
  1411. struct anon_vma *anon_vma = vma->anon_vma;
  1412. int first;
  1413. BUG_ON(!anon_vma);
  1414. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1415. first = atomic_inc_and_test(&page->_mapcount);
  1416. if (first)
  1417. __hugepage_set_anon_rmap(page, vma, address, 0);
  1418. }
  1419. void hugepage_add_new_anon_rmap(struct page *page,
  1420. struct vm_area_struct *vma, unsigned long address)
  1421. {
  1422. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1423. atomic_set(&page->_mapcount, 0);
  1424. __hugepage_set_anon_rmap(page, vma, address, 1);
  1425. }
  1426. #endif /* CONFIG_HUGETLB_PAGE */