readahead.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570
  1. /*
  2. * mm/readahead.c - address_space-level file readahead.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds
  5. *
  6. * 09Apr2002 Andrew Morton
  7. * Initial version.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/fs.h>
  11. #include <linux/gfp.h>
  12. #include <linux/mm.h>
  13. #include <linux/module.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/backing-dev.h>
  16. #include <linux/task_io_accounting_ops.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/pagemap.h>
  19. /*
  20. * Initialise a struct file's readahead state. Assumes that the caller has
  21. * memset *ra to zero.
  22. */
  23. void
  24. file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  25. {
  26. ra->ra_pages = mapping->backing_dev_info->ra_pages;
  27. ra->prev_pos = -1;
  28. }
  29. EXPORT_SYMBOL_GPL(file_ra_state_init);
  30. #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
  31. /*
  32. * see if a page needs releasing upon read_cache_pages() failure
  33. * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  34. * before calling, such as the NFS fs marking pages that are cached locally
  35. * on disk, thus we need to give the fs a chance to clean up in the event of
  36. * an error
  37. */
  38. static void read_cache_pages_invalidate_page(struct address_space *mapping,
  39. struct page *page)
  40. {
  41. if (page_has_private(page)) {
  42. if (!trylock_page(page))
  43. BUG();
  44. page->mapping = mapping;
  45. do_invalidatepage(page, 0);
  46. page->mapping = NULL;
  47. unlock_page(page);
  48. }
  49. page_cache_release(page);
  50. }
  51. /*
  52. * release a list of pages, invalidating them first if need be
  53. */
  54. static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  55. struct list_head *pages)
  56. {
  57. struct page *victim;
  58. while (!list_empty(pages)) {
  59. victim = list_to_page(pages);
  60. list_del(&victim->lru);
  61. read_cache_pages_invalidate_page(mapping, victim);
  62. }
  63. }
  64. /**
  65. * read_cache_pages - populate an address space with some pages & start reads against them
  66. * @mapping: the address_space
  67. * @pages: The address of a list_head which contains the target pages. These
  68. * pages have their ->index populated and are otherwise uninitialised.
  69. * @filler: callback routine for filling a single page.
  70. * @data: private data for the callback routine.
  71. *
  72. * Hides the details of the LRU cache etc from the filesystems.
  73. */
  74. int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  75. int (*filler)(void *, struct page *), void *data)
  76. {
  77. struct page *page;
  78. int ret = 0;
  79. while (!list_empty(pages)) {
  80. page = list_to_page(pages);
  81. list_del(&page->lru);
  82. if (add_to_page_cache_lru(page, mapping,
  83. page->index, GFP_KERNEL)) {
  84. read_cache_pages_invalidate_page(mapping, page);
  85. continue;
  86. }
  87. page_cache_release(page);
  88. ret = filler(data, page);
  89. if (unlikely(ret)) {
  90. read_cache_pages_invalidate_pages(mapping, pages);
  91. break;
  92. }
  93. task_io_account_read(PAGE_CACHE_SIZE);
  94. }
  95. return ret;
  96. }
  97. EXPORT_SYMBOL(read_cache_pages);
  98. static int read_pages(struct address_space *mapping, struct file *filp,
  99. struct list_head *pages, unsigned nr_pages)
  100. {
  101. unsigned page_idx;
  102. int ret;
  103. if (mapping->a_ops->readpages) {
  104. ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
  105. /* Clean up the remaining pages */
  106. put_pages_list(pages);
  107. goto out;
  108. }
  109. for (page_idx = 0; page_idx < nr_pages; page_idx++) {
  110. struct page *page = list_to_page(pages);
  111. list_del(&page->lru);
  112. if (!add_to_page_cache_lru(page, mapping,
  113. page->index, GFP_KERNEL)) {
  114. mapping->a_ops->readpage(filp, page);
  115. }
  116. page_cache_release(page);
  117. }
  118. ret = 0;
  119. out:
  120. return ret;
  121. }
  122. /*
  123. * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
  124. * the pages first, then submits them all for I/O. This avoids the very bad
  125. * behaviour which would occur if page allocations are causing VM writeback.
  126. * We really don't want to intermingle reads and writes like that.
  127. *
  128. * Returns the number of pages requested, or the maximum amount of I/O allowed.
  129. */
  130. static int
  131. __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  132. pgoff_t offset, unsigned long nr_to_read,
  133. unsigned long lookahead_size)
  134. {
  135. struct inode *inode = mapping->host;
  136. struct page *page;
  137. unsigned long end_index; /* The last page we want to read */
  138. LIST_HEAD(page_pool);
  139. int page_idx;
  140. int ret = 0;
  141. loff_t isize = i_size_read(inode);
  142. if (isize == 0)
  143. goto out;
  144. end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
  145. /*
  146. * Preallocate as many pages as we will need.
  147. */
  148. for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
  149. pgoff_t page_offset = offset + page_idx;
  150. if (page_offset > end_index)
  151. break;
  152. rcu_read_lock();
  153. page = radix_tree_lookup(&mapping->page_tree, page_offset);
  154. rcu_read_unlock();
  155. if (page)
  156. continue;
  157. page = page_cache_alloc_cold(mapping);
  158. if (!page)
  159. break;
  160. page->index = page_offset;
  161. list_add(&page->lru, &page_pool);
  162. if (page_idx == nr_to_read - lookahead_size)
  163. SetPageReadahead(page);
  164. ret++;
  165. }
  166. /*
  167. * Now start the IO. We ignore I/O errors - if the page is not
  168. * uptodate then the caller will launch readpage again, and
  169. * will then handle the error.
  170. */
  171. if (ret)
  172. read_pages(mapping, filp, &page_pool, ret);
  173. BUG_ON(!list_empty(&page_pool));
  174. out:
  175. return ret;
  176. }
  177. /*
  178. * Chunk the readahead into 2 megabyte units, so that we don't pin too much
  179. * memory at once.
  180. */
  181. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  182. pgoff_t offset, unsigned long nr_to_read)
  183. {
  184. int ret = 0;
  185. if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
  186. return -EINVAL;
  187. nr_to_read = max_sane_readahead(nr_to_read);
  188. while (nr_to_read) {
  189. int err;
  190. unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
  191. if (this_chunk > nr_to_read)
  192. this_chunk = nr_to_read;
  193. err = __do_page_cache_readahead(mapping, filp,
  194. offset, this_chunk, 0);
  195. if (err < 0) {
  196. ret = err;
  197. break;
  198. }
  199. ret += err;
  200. offset += this_chunk;
  201. nr_to_read -= this_chunk;
  202. }
  203. return ret;
  204. }
  205. /*
  206. * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
  207. * sensible upper limit.
  208. */
  209. unsigned long max_sane_readahead(unsigned long nr)
  210. {
  211. return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
  212. + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
  213. }
  214. /*
  215. * Submit IO for the read-ahead request in file_ra_state.
  216. */
  217. unsigned long ra_submit(struct file_ra_state *ra,
  218. struct address_space *mapping, struct file *filp)
  219. {
  220. int actual;
  221. actual = __do_page_cache_readahead(mapping, filp,
  222. ra->start, ra->size, ra->async_size);
  223. return actual;
  224. }
  225. /*
  226. * Set the initial window size, round to next power of 2 and square
  227. * for small size, x 4 for medium, and x 2 for large
  228. * for 128k (32 page) max ra
  229. * 1-8 page = 32k initial, > 8 page = 128k initial
  230. */
  231. static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
  232. {
  233. unsigned long newsize = roundup_pow_of_two(size);
  234. if (newsize <= max / 32)
  235. newsize = newsize * 4;
  236. else if (newsize <= max / 4)
  237. newsize = newsize * 2;
  238. else
  239. newsize = max;
  240. return newsize;
  241. }
  242. /*
  243. * Get the previous window size, ramp it up, and
  244. * return it as the new window size.
  245. */
  246. static unsigned long get_next_ra_size(struct file_ra_state *ra,
  247. unsigned long max)
  248. {
  249. unsigned long cur = ra->size;
  250. unsigned long newsize;
  251. if (cur < max / 16)
  252. newsize = 4 * cur;
  253. else
  254. newsize = 2 * cur;
  255. return min(newsize, max);
  256. }
  257. /*
  258. * On-demand readahead design.
  259. *
  260. * The fields in struct file_ra_state represent the most-recently-executed
  261. * readahead attempt:
  262. *
  263. * |<----- async_size ---------|
  264. * |------------------- size -------------------->|
  265. * |==================#===========================|
  266. * ^start ^page marked with PG_readahead
  267. *
  268. * To overlap application thinking time and disk I/O time, we do
  269. * `readahead pipelining': Do not wait until the application consumed all
  270. * readahead pages and stalled on the missing page at readahead_index;
  271. * Instead, submit an asynchronous readahead I/O as soon as there are
  272. * only async_size pages left in the readahead window. Normally async_size
  273. * will be equal to size, for maximum pipelining.
  274. *
  275. * In interleaved sequential reads, concurrent streams on the same fd can
  276. * be invalidating each other's readahead state. So we flag the new readahead
  277. * page at (start+size-async_size) with PG_readahead, and use it as readahead
  278. * indicator. The flag won't be set on already cached pages, to avoid the
  279. * readahead-for-nothing fuss, saving pointless page cache lookups.
  280. *
  281. * prev_pos tracks the last visited byte in the _previous_ read request.
  282. * It should be maintained by the caller, and will be used for detecting
  283. * small random reads. Note that the readahead algorithm checks loosely
  284. * for sequential patterns. Hence interleaved reads might be served as
  285. * sequential ones.
  286. *
  287. * There is a special-case: if the first page which the application tries to
  288. * read happens to be the first page of the file, it is assumed that a linear
  289. * read is about to happen and the window is immediately set to the initial size
  290. * based on I/O request size and the max_readahead.
  291. *
  292. * The code ramps up the readahead size aggressively at first, but slow down as
  293. * it approaches max_readhead.
  294. */
  295. /*
  296. * Count contiguously cached pages from @offset-1 to @offset-@max,
  297. * this count is a conservative estimation of
  298. * - length of the sequential read sequence, or
  299. * - thrashing threshold in memory tight systems
  300. */
  301. static pgoff_t count_history_pages(struct address_space *mapping,
  302. struct file_ra_state *ra,
  303. pgoff_t offset, unsigned long max)
  304. {
  305. pgoff_t head;
  306. rcu_read_lock();
  307. head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
  308. rcu_read_unlock();
  309. return offset - 1 - head;
  310. }
  311. /*
  312. * page cache context based read-ahead
  313. */
  314. static int try_context_readahead(struct address_space *mapping,
  315. struct file_ra_state *ra,
  316. pgoff_t offset,
  317. unsigned long req_size,
  318. unsigned long max)
  319. {
  320. pgoff_t size;
  321. size = count_history_pages(mapping, ra, offset, max);
  322. /*
  323. * no history pages:
  324. * it could be a random read
  325. */
  326. if (!size)
  327. return 0;
  328. /*
  329. * starts from beginning of file:
  330. * it is a strong indication of long-run stream (or whole-file-read)
  331. */
  332. if (size >= offset)
  333. size *= 2;
  334. ra->start = offset;
  335. ra->size = get_init_ra_size(size + req_size, max);
  336. ra->async_size = ra->size;
  337. return 1;
  338. }
  339. /*
  340. * A minimal readahead algorithm for trivial sequential/random reads.
  341. */
  342. static unsigned long
  343. ondemand_readahead(struct address_space *mapping,
  344. struct file_ra_state *ra, struct file *filp,
  345. bool hit_readahead_marker, pgoff_t offset,
  346. unsigned long req_size)
  347. {
  348. unsigned long max = max_sane_readahead(ra->ra_pages);
  349. /*
  350. * start of file
  351. */
  352. if (!offset)
  353. goto initial_readahead;
  354. /*
  355. * It's the expected callback offset, assume sequential access.
  356. * Ramp up sizes, and push forward the readahead window.
  357. */
  358. if ((offset == (ra->start + ra->size - ra->async_size) ||
  359. offset == (ra->start + ra->size))) {
  360. ra->start += ra->size;
  361. ra->size = get_next_ra_size(ra, max);
  362. ra->async_size = ra->size;
  363. goto readit;
  364. }
  365. /*
  366. * Hit a marked page without valid readahead state.
  367. * E.g. interleaved reads.
  368. * Query the pagecache for async_size, which normally equals to
  369. * readahead size. Ramp it up and use it as the new readahead size.
  370. */
  371. if (hit_readahead_marker) {
  372. pgoff_t start;
  373. rcu_read_lock();
  374. start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
  375. rcu_read_unlock();
  376. if (!start || start - offset > max)
  377. return 0;
  378. ra->start = start;
  379. ra->size = start - offset; /* old async_size */
  380. ra->size += req_size;
  381. ra->size = get_next_ra_size(ra, max);
  382. ra->async_size = ra->size;
  383. goto readit;
  384. }
  385. /*
  386. * oversize read
  387. */
  388. if (req_size > max)
  389. goto initial_readahead;
  390. /*
  391. * sequential cache miss
  392. */
  393. if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
  394. goto initial_readahead;
  395. /*
  396. * Query the page cache and look for the traces(cached history pages)
  397. * that a sequential stream would leave behind.
  398. */
  399. if (try_context_readahead(mapping, ra, offset, req_size, max))
  400. goto readit;
  401. /*
  402. * standalone, small random read
  403. * Read as is, and do not pollute the readahead state.
  404. */
  405. return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
  406. initial_readahead:
  407. ra->start = offset;
  408. ra->size = get_init_ra_size(req_size, max);
  409. ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
  410. readit:
  411. /*
  412. * Will this read hit the readahead marker made by itself?
  413. * If so, trigger the readahead marker hit now, and merge
  414. * the resulted next readahead window into the current one.
  415. */
  416. if (offset == ra->start && ra->size == ra->async_size) {
  417. ra->async_size = get_next_ra_size(ra, max);
  418. ra->size += ra->async_size;
  419. }
  420. return ra_submit(ra, mapping, filp);
  421. }
  422. /**
  423. * page_cache_sync_readahead - generic file readahead
  424. * @mapping: address_space which holds the pagecache and I/O vectors
  425. * @ra: file_ra_state which holds the readahead state
  426. * @filp: passed on to ->readpage() and ->readpages()
  427. * @offset: start offset into @mapping, in pagecache page-sized units
  428. * @req_size: hint: total size of the read which the caller is performing in
  429. * pagecache pages
  430. *
  431. * page_cache_sync_readahead() should be called when a cache miss happened:
  432. * it will submit the read. The readahead logic may decide to piggyback more
  433. * pages onto the read request if access patterns suggest it will improve
  434. * performance.
  435. */
  436. void page_cache_sync_readahead(struct address_space *mapping,
  437. struct file_ra_state *ra, struct file *filp,
  438. pgoff_t offset, unsigned long req_size)
  439. {
  440. /* no read-ahead */
  441. if (!ra->ra_pages)
  442. return;
  443. /* be dumb */
  444. if (filp && (filp->f_mode & FMODE_RANDOM)) {
  445. force_page_cache_readahead(mapping, filp, offset, req_size);
  446. return;
  447. }
  448. /* do read-ahead */
  449. ondemand_readahead(mapping, ra, filp, false, offset, req_size);
  450. }
  451. EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
  452. /**
  453. * page_cache_async_readahead - file readahead for marked pages
  454. * @mapping: address_space which holds the pagecache and I/O vectors
  455. * @ra: file_ra_state which holds the readahead state
  456. * @filp: passed on to ->readpage() and ->readpages()
  457. * @page: the page at @offset which has the PG_readahead flag set
  458. * @offset: start offset into @mapping, in pagecache page-sized units
  459. * @req_size: hint: total size of the read which the caller is performing in
  460. * pagecache pages
  461. *
  462. * page_cache_async_readahead() should be called when a page is used which
  463. * has the PG_readahead flag; this is a marker to suggest that the application
  464. * has used up enough of the readahead window that we should start pulling in
  465. * more pages.
  466. */
  467. void
  468. page_cache_async_readahead(struct address_space *mapping,
  469. struct file_ra_state *ra, struct file *filp,
  470. struct page *page, pgoff_t offset,
  471. unsigned long req_size)
  472. {
  473. /* no read-ahead */
  474. if (!ra->ra_pages)
  475. return;
  476. /*
  477. * Same bit is used for PG_readahead and PG_reclaim.
  478. */
  479. if (PageWriteback(page))
  480. return;
  481. ClearPageReadahead(page);
  482. /*
  483. * Defer asynchronous read-ahead on IO congestion.
  484. */
  485. if (bdi_read_congested(mapping->backing_dev_info))
  486. return;
  487. /* do read-ahead */
  488. ondemand_readahead(mapping, ra, filp, true, offset, req_size);
  489. #ifdef CONFIG_BLOCK
  490. /*
  491. * Normally the current page is !uptodate and lock_page() will be
  492. * immediately called to implicitly unplug the device. However this
  493. * is not always true for RAID conifgurations, where data arrives
  494. * not strictly in their submission order. In this case we need to
  495. * explicitly kick off the IO.
  496. */
  497. if (PageUptodate(page))
  498. blk_run_backing_dev(mapping->backing_dev_info, NULL);
  499. #endif
  500. }
  501. EXPORT_SYMBOL_GPL(page_cache_async_readahead);