percpu-km.c 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. /*
  2. * mm/percpu-km.c - kernel memory based chunk allocation
  3. *
  4. * Copyright (C) 2010 SUSE Linux Products GmbH
  5. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  6. *
  7. * This file is released under the GPLv2.
  8. *
  9. * Chunks are allocated as a contiguous kernel memory using gfp
  10. * allocation. This is to be used on nommu architectures.
  11. *
  12. * To use percpu-km,
  13. *
  14. * - define CONFIG_NEED_PER_CPU_KM from the arch Kconfig.
  15. *
  16. * - CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK must not be defined. It's
  17. * not compatible with PER_CPU_KM. EMBED_FIRST_CHUNK should work
  18. * fine.
  19. *
  20. * - NUMA is not supported. When setting up the first chunk,
  21. * @cpu_distance_fn should be NULL or report all CPUs to be nearer
  22. * than or at LOCAL_DISTANCE.
  23. *
  24. * - It's best if the chunk size is power of two multiple of
  25. * PAGE_SIZE. Because each chunk is allocated as a contiguous
  26. * kernel memory block using alloc_pages(), memory will be wasted if
  27. * chunk size is not aligned. percpu-km code will whine about it.
  28. */
  29. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  30. #error "contiguous percpu allocation is incompatible with paged first chunk"
  31. #endif
  32. #include <linux/log2.h>
  33. static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
  34. {
  35. /* noop */
  36. return 0;
  37. }
  38. static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
  39. {
  40. /* nada */
  41. }
  42. static struct pcpu_chunk *pcpu_create_chunk(void)
  43. {
  44. const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT;
  45. struct pcpu_chunk *chunk;
  46. struct page *pages;
  47. int i;
  48. chunk = pcpu_alloc_chunk();
  49. if (!chunk)
  50. return NULL;
  51. pages = alloc_pages(GFP_KERNEL, order_base_2(nr_pages));
  52. if (!pages) {
  53. pcpu_free_chunk(chunk);
  54. return NULL;
  55. }
  56. for (i = 0; i < nr_pages; i++)
  57. pcpu_set_page_chunk(nth_page(pages, i), chunk);
  58. chunk->data = pages;
  59. chunk->base_addr = page_address(pages) - pcpu_group_offsets[0];
  60. return chunk;
  61. }
  62. static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
  63. {
  64. const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT;
  65. if (chunk && chunk->data)
  66. __free_pages(chunk->data, order_base_2(nr_pages));
  67. pcpu_free_chunk(chunk);
  68. }
  69. static struct page *pcpu_addr_to_page(void *addr)
  70. {
  71. return virt_to_page(addr);
  72. }
  73. static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
  74. {
  75. size_t nr_pages, alloc_pages;
  76. /* all units must be in a single group */
  77. if (ai->nr_groups != 1) {
  78. printk(KERN_CRIT "percpu: can't handle more than one groups\n");
  79. return -EINVAL;
  80. }
  81. nr_pages = (ai->groups[0].nr_units * ai->unit_size) >> PAGE_SHIFT;
  82. alloc_pages = roundup_pow_of_two(nr_pages);
  83. if (alloc_pages > nr_pages)
  84. printk(KERN_WARNING "percpu: wasting %zu pages per chunk\n",
  85. alloc_pages - nr_pages);
  86. return 0;
  87. }