memory-failure.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/kernel-page-flags.h>
  37. #include <linux/sched.h>
  38. #include <linux/ksm.h>
  39. #include <linux/rmap.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/migrate.h>
  44. #include <linux/page-isolation.h>
  45. #include <linux/suspend.h>
  46. #include <linux/slab.h>
  47. #include <linux/swapops.h>
  48. #include <linux/hugetlb.h>
  49. #include "internal.h"
  50. int sysctl_memory_failure_early_kill __read_mostly = 0;
  51. int sysctl_memory_failure_recovery __read_mostly = 1;
  52. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  53. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  54. u32 hwpoison_filter_enable = 0;
  55. u32 hwpoison_filter_dev_major = ~0U;
  56. u32 hwpoison_filter_dev_minor = ~0U;
  57. u64 hwpoison_filter_flags_mask;
  58. u64 hwpoison_filter_flags_value;
  59. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  60. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  61. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  62. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  63. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  64. static int hwpoison_filter_dev(struct page *p)
  65. {
  66. struct address_space *mapping;
  67. dev_t dev;
  68. if (hwpoison_filter_dev_major == ~0U &&
  69. hwpoison_filter_dev_minor == ~0U)
  70. return 0;
  71. /*
  72. * page_mapping() does not accept slab page
  73. */
  74. if (PageSlab(p))
  75. return -EINVAL;
  76. mapping = page_mapping(p);
  77. if (mapping == NULL || mapping->host == NULL)
  78. return -EINVAL;
  79. dev = mapping->host->i_sb->s_dev;
  80. if (hwpoison_filter_dev_major != ~0U &&
  81. hwpoison_filter_dev_major != MAJOR(dev))
  82. return -EINVAL;
  83. if (hwpoison_filter_dev_minor != ~0U &&
  84. hwpoison_filter_dev_minor != MINOR(dev))
  85. return -EINVAL;
  86. return 0;
  87. }
  88. static int hwpoison_filter_flags(struct page *p)
  89. {
  90. if (!hwpoison_filter_flags_mask)
  91. return 0;
  92. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  93. hwpoison_filter_flags_value)
  94. return 0;
  95. else
  96. return -EINVAL;
  97. }
  98. /*
  99. * This allows stress tests to limit test scope to a collection of tasks
  100. * by putting them under some memcg. This prevents killing unrelated/important
  101. * processes such as /sbin/init. Note that the target task may share clean
  102. * pages with init (eg. libc text), which is harmless. If the target task
  103. * share _dirty_ pages with another task B, the test scheme must make sure B
  104. * is also included in the memcg. At last, due to race conditions this filter
  105. * can only guarantee that the page either belongs to the memcg tasks, or is
  106. * a freed page.
  107. */
  108. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  109. u64 hwpoison_filter_memcg;
  110. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  111. static int hwpoison_filter_task(struct page *p)
  112. {
  113. struct mem_cgroup *mem;
  114. struct cgroup_subsys_state *css;
  115. unsigned long ino;
  116. if (!hwpoison_filter_memcg)
  117. return 0;
  118. mem = try_get_mem_cgroup_from_page(p);
  119. if (!mem)
  120. return -EINVAL;
  121. css = mem_cgroup_css(mem);
  122. /* root_mem_cgroup has NULL dentries */
  123. if (!css->cgroup->dentry)
  124. return -EINVAL;
  125. ino = css->cgroup->dentry->d_inode->i_ino;
  126. css_put(css);
  127. if (ino != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped an ``action optional''
  155. * signal.
  156. */
  157. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  158. unsigned long pfn)
  159. {
  160. struct siginfo si;
  161. int ret;
  162. printk(KERN_ERR
  163. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  164. pfn, t->comm, t->pid);
  165. si.si_signo = SIGBUS;
  166. si.si_errno = 0;
  167. si.si_code = BUS_MCEERR_AO;
  168. si.si_addr = (void *)addr;
  169. #ifdef __ARCH_SI_TRAPNO
  170. si.si_trapno = trapno;
  171. #endif
  172. si.si_addr_lsb = PAGE_SHIFT;
  173. /*
  174. * Don't use force here, it's convenient if the signal
  175. * can be temporarily blocked.
  176. * This could cause a loop when the user sets SIGBUS
  177. * to SIG_IGN, but hopefully noone will do that?
  178. */
  179. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  180. if (ret < 0)
  181. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  182. t->comm, t->pid, ret);
  183. return ret;
  184. }
  185. /*
  186. * When a unknown page type is encountered drain as many buffers as possible
  187. * in the hope to turn the page into a LRU or free page, which we can handle.
  188. */
  189. void shake_page(struct page *p, int access)
  190. {
  191. if (!PageSlab(p)) {
  192. lru_add_drain_all();
  193. if (PageLRU(p))
  194. return;
  195. drain_all_pages();
  196. if (PageLRU(p) || is_free_buddy_page(p))
  197. return;
  198. }
  199. /*
  200. * Only all shrink_slab here (which would also
  201. * shrink other caches) if access is not potentially fatal.
  202. */
  203. if (access) {
  204. int nr;
  205. do {
  206. nr = shrink_slab(1000, GFP_KERNEL, 1000);
  207. if (page_count(p) == 0)
  208. break;
  209. } while (nr > 10);
  210. }
  211. }
  212. EXPORT_SYMBOL_GPL(shake_page);
  213. /*
  214. * Kill all processes that have a poisoned page mapped and then isolate
  215. * the page.
  216. *
  217. * General strategy:
  218. * Find all processes having the page mapped and kill them.
  219. * But we keep a page reference around so that the page is not
  220. * actually freed yet.
  221. * Then stash the page away
  222. *
  223. * There's no convenient way to get back to mapped processes
  224. * from the VMAs. So do a brute-force search over all
  225. * running processes.
  226. *
  227. * Remember that machine checks are not common (or rather
  228. * if they are common you have other problems), so this shouldn't
  229. * be a performance issue.
  230. *
  231. * Also there are some races possible while we get from the
  232. * error detection to actually handle it.
  233. */
  234. struct to_kill {
  235. struct list_head nd;
  236. struct task_struct *tsk;
  237. unsigned long addr;
  238. unsigned addr_valid:1;
  239. };
  240. /*
  241. * Failure handling: if we can't find or can't kill a process there's
  242. * not much we can do. We just print a message and ignore otherwise.
  243. */
  244. /*
  245. * Schedule a process for later kill.
  246. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  247. * TBD would GFP_NOIO be enough?
  248. */
  249. static void add_to_kill(struct task_struct *tsk, struct page *p,
  250. struct vm_area_struct *vma,
  251. struct list_head *to_kill,
  252. struct to_kill **tkc)
  253. {
  254. struct to_kill *tk;
  255. if (*tkc) {
  256. tk = *tkc;
  257. *tkc = NULL;
  258. } else {
  259. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  260. if (!tk) {
  261. printk(KERN_ERR
  262. "MCE: Out of memory while machine check handling\n");
  263. return;
  264. }
  265. }
  266. tk->addr = page_address_in_vma(p, vma);
  267. tk->addr_valid = 1;
  268. /*
  269. * In theory we don't have to kill when the page was
  270. * munmaped. But it could be also a mremap. Since that's
  271. * likely very rare kill anyways just out of paranoia, but use
  272. * a SIGKILL because the error is not contained anymore.
  273. */
  274. if (tk->addr == -EFAULT) {
  275. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  276. page_to_pfn(p), tsk->comm);
  277. tk->addr_valid = 0;
  278. }
  279. get_task_struct(tsk);
  280. tk->tsk = tsk;
  281. list_add_tail(&tk->nd, to_kill);
  282. }
  283. /*
  284. * Kill the processes that have been collected earlier.
  285. *
  286. * Only do anything when DOIT is set, otherwise just free the list
  287. * (this is used for clean pages which do not need killing)
  288. * Also when FAIL is set do a force kill because something went
  289. * wrong earlier.
  290. */
  291. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  292. int fail, unsigned long pfn)
  293. {
  294. struct to_kill *tk, *next;
  295. list_for_each_entry_safe (tk, next, to_kill, nd) {
  296. if (doit) {
  297. /*
  298. * In case something went wrong with munmapping
  299. * make sure the process doesn't catch the
  300. * signal and then access the memory. Just kill it.
  301. */
  302. if (fail || tk->addr_valid == 0) {
  303. printk(KERN_ERR
  304. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  305. pfn, tk->tsk->comm, tk->tsk->pid);
  306. force_sig(SIGKILL, tk->tsk);
  307. }
  308. /*
  309. * In theory the process could have mapped
  310. * something else on the address in-between. We could
  311. * check for that, but we need to tell the
  312. * process anyways.
  313. */
  314. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  315. pfn) < 0)
  316. printk(KERN_ERR
  317. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  318. pfn, tk->tsk->comm, tk->tsk->pid);
  319. }
  320. put_task_struct(tk->tsk);
  321. kfree(tk);
  322. }
  323. }
  324. static int task_early_kill(struct task_struct *tsk)
  325. {
  326. if (!tsk->mm)
  327. return 0;
  328. if (tsk->flags & PF_MCE_PROCESS)
  329. return !!(tsk->flags & PF_MCE_EARLY);
  330. return sysctl_memory_failure_early_kill;
  331. }
  332. /*
  333. * Collect processes when the error hit an anonymous page.
  334. */
  335. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  336. struct to_kill **tkc)
  337. {
  338. struct vm_area_struct *vma;
  339. struct task_struct *tsk;
  340. struct anon_vma *av;
  341. read_lock(&tasklist_lock);
  342. av = page_lock_anon_vma(page);
  343. if (av == NULL) /* Not actually mapped anymore */
  344. goto out;
  345. for_each_process (tsk) {
  346. struct anon_vma_chain *vmac;
  347. if (!task_early_kill(tsk))
  348. continue;
  349. list_for_each_entry(vmac, &av->head, same_anon_vma) {
  350. vma = vmac->vma;
  351. if (!page_mapped_in_vma(page, vma))
  352. continue;
  353. if (vma->vm_mm == tsk->mm)
  354. add_to_kill(tsk, page, vma, to_kill, tkc);
  355. }
  356. }
  357. page_unlock_anon_vma(av);
  358. out:
  359. read_unlock(&tasklist_lock);
  360. }
  361. /*
  362. * Collect processes when the error hit a file mapped page.
  363. */
  364. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  365. struct to_kill **tkc)
  366. {
  367. struct vm_area_struct *vma;
  368. struct task_struct *tsk;
  369. struct prio_tree_iter iter;
  370. struct address_space *mapping = page->mapping;
  371. /*
  372. * A note on the locking order between the two locks.
  373. * We don't rely on this particular order.
  374. * If you have some other code that needs a different order
  375. * feel free to switch them around. Or add a reverse link
  376. * from mm_struct to task_struct, then this could be all
  377. * done without taking tasklist_lock and looping over all tasks.
  378. */
  379. read_lock(&tasklist_lock);
  380. spin_lock(&mapping->i_mmap_lock);
  381. for_each_process(tsk) {
  382. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  383. if (!task_early_kill(tsk))
  384. continue;
  385. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  386. pgoff) {
  387. /*
  388. * Send early kill signal to tasks where a vma covers
  389. * the page but the corrupted page is not necessarily
  390. * mapped it in its pte.
  391. * Assume applications who requested early kill want
  392. * to be informed of all such data corruptions.
  393. */
  394. if (vma->vm_mm == tsk->mm)
  395. add_to_kill(tsk, page, vma, to_kill, tkc);
  396. }
  397. }
  398. spin_unlock(&mapping->i_mmap_lock);
  399. read_unlock(&tasklist_lock);
  400. }
  401. /*
  402. * Collect the processes who have the corrupted page mapped to kill.
  403. * This is done in two steps for locking reasons.
  404. * First preallocate one tokill structure outside the spin locks,
  405. * so that we can kill at least one process reasonably reliable.
  406. */
  407. static void collect_procs(struct page *page, struct list_head *tokill)
  408. {
  409. struct to_kill *tk;
  410. if (!page->mapping)
  411. return;
  412. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  413. if (!tk)
  414. return;
  415. if (PageAnon(page))
  416. collect_procs_anon(page, tokill, &tk);
  417. else
  418. collect_procs_file(page, tokill, &tk);
  419. kfree(tk);
  420. }
  421. /*
  422. * Error handlers for various types of pages.
  423. */
  424. enum outcome {
  425. IGNORED, /* Error: cannot be handled */
  426. FAILED, /* Error: handling failed */
  427. DELAYED, /* Will be handled later */
  428. RECOVERED, /* Successfully recovered */
  429. };
  430. static const char *action_name[] = {
  431. [IGNORED] = "Ignored",
  432. [FAILED] = "Failed",
  433. [DELAYED] = "Delayed",
  434. [RECOVERED] = "Recovered",
  435. };
  436. /*
  437. * XXX: It is possible that a page is isolated from LRU cache,
  438. * and then kept in swap cache or failed to remove from page cache.
  439. * The page count will stop it from being freed by unpoison.
  440. * Stress tests should be aware of this memory leak problem.
  441. */
  442. static int delete_from_lru_cache(struct page *p)
  443. {
  444. if (!isolate_lru_page(p)) {
  445. /*
  446. * Clear sensible page flags, so that the buddy system won't
  447. * complain when the page is unpoison-and-freed.
  448. */
  449. ClearPageActive(p);
  450. ClearPageUnevictable(p);
  451. /*
  452. * drop the page count elevated by isolate_lru_page()
  453. */
  454. page_cache_release(p);
  455. return 0;
  456. }
  457. return -EIO;
  458. }
  459. /*
  460. * Error hit kernel page.
  461. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  462. * could be more sophisticated.
  463. */
  464. static int me_kernel(struct page *p, unsigned long pfn)
  465. {
  466. return IGNORED;
  467. }
  468. /*
  469. * Page in unknown state. Do nothing.
  470. */
  471. static int me_unknown(struct page *p, unsigned long pfn)
  472. {
  473. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  474. return FAILED;
  475. }
  476. /*
  477. * Clean (or cleaned) page cache page.
  478. */
  479. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  480. {
  481. int err;
  482. int ret = FAILED;
  483. struct address_space *mapping;
  484. delete_from_lru_cache(p);
  485. /*
  486. * For anonymous pages we're done the only reference left
  487. * should be the one m_f() holds.
  488. */
  489. if (PageAnon(p))
  490. return RECOVERED;
  491. /*
  492. * Now truncate the page in the page cache. This is really
  493. * more like a "temporary hole punch"
  494. * Don't do this for block devices when someone else
  495. * has a reference, because it could be file system metadata
  496. * and that's not safe to truncate.
  497. */
  498. mapping = page_mapping(p);
  499. if (!mapping) {
  500. /*
  501. * Page has been teared down in the meanwhile
  502. */
  503. return FAILED;
  504. }
  505. /*
  506. * Truncation is a bit tricky. Enable it per file system for now.
  507. *
  508. * Open: to take i_mutex or not for this? Right now we don't.
  509. */
  510. if (mapping->a_ops->error_remove_page) {
  511. err = mapping->a_ops->error_remove_page(mapping, p);
  512. if (err != 0) {
  513. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  514. pfn, err);
  515. } else if (page_has_private(p) &&
  516. !try_to_release_page(p, GFP_NOIO)) {
  517. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  518. } else {
  519. ret = RECOVERED;
  520. }
  521. } else {
  522. /*
  523. * If the file system doesn't support it just invalidate
  524. * This fails on dirty or anything with private pages
  525. */
  526. if (invalidate_inode_page(p))
  527. ret = RECOVERED;
  528. else
  529. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  530. pfn);
  531. }
  532. return ret;
  533. }
  534. /*
  535. * Dirty cache page page
  536. * Issues: when the error hit a hole page the error is not properly
  537. * propagated.
  538. */
  539. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  540. {
  541. struct address_space *mapping = page_mapping(p);
  542. SetPageError(p);
  543. /* TBD: print more information about the file. */
  544. if (mapping) {
  545. /*
  546. * IO error will be reported by write(), fsync(), etc.
  547. * who check the mapping.
  548. * This way the application knows that something went
  549. * wrong with its dirty file data.
  550. *
  551. * There's one open issue:
  552. *
  553. * The EIO will be only reported on the next IO
  554. * operation and then cleared through the IO map.
  555. * Normally Linux has two mechanisms to pass IO error
  556. * first through the AS_EIO flag in the address space
  557. * and then through the PageError flag in the page.
  558. * Since we drop pages on memory failure handling the
  559. * only mechanism open to use is through AS_AIO.
  560. *
  561. * This has the disadvantage that it gets cleared on
  562. * the first operation that returns an error, while
  563. * the PageError bit is more sticky and only cleared
  564. * when the page is reread or dropped. If an
  565. * application assumes it will always get error on
  566. * fsync, but does other operations on the fd before
  567. * and the page is dropped inbetween then the error
  568. * will not be properly reported.
  569. *
  570. * This can already happen even without hwpoisoned
  571. * pages: first on metadata IO errors (which only
  572. * report through AS_EIO) or when the page is dropped
  573. * at the wrong time.
  574. *
  575. * So right now we assume that the application DTRT on
  576. * the first EIO, but we're not worse than other parts
  577. * of the kernel.
  578. */
  579. mapping_set_error(mapping, EIO);
  580. }
  581. return me_pagecache_clean(p, pfn);
  582. }
  583. /*
  584. * Clean and dirty swap cache.
  585. *
  586. * Dirty swap cache page is tricky to handle. The page could live both in page
  587. * cache and swap cache(ie. page is freshly swapped in). So it could be
  588. * referenced concurrently by 2 types of PTEs:
  589. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  590. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  591. * and then
  592. * - clear dirty bit to prevent IO
  593. * - remove from LRU
  594. * - but keep in the swap cache, so that when we return to it on
  595. * a later page fault, we know the application is accessing
  596. * corrupted data and shall be killed (we installed simple
  597. * interception code in do_swap_page to catch it).
  598. *
  599. * Clean swap cache pages can be directly isolated. A later page fault will
  600. * bring in the known good data from disk.
  601. */
  602. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  603. {
  604. ClearPageDirty(p);
  605. /* Trigger EIO in shmem: */
  606. ClearPageUptodate(p);
  607. if (!delete_from_lru_cache(p))
  608. return DELAYED;
  609. else
  610. return FAILED;
  611. }
  612. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  613. {
  614. delete_from_swap_cache(p);
  615. if (!delete_from_lru_cache(p))
  616. return RECOVERED;
  617. else
  618. return FAILED;
  619. }
  620. /*
  621. * Huge pages. Needs work.
  622. * Issues:
  623. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  624. * To narrow down kill region to one page, we need to break up pmd.
  625. * - To support soft-offlining for hugepage, we need to support hugepage
  626. * migration.
  627. */
  628. static int me_huge_page(struct page *p, unsigned long pfn)
  629. {
  630. struct page *hpage = compound_head(p);
  631. /*
  632. * We can safely recover from error on free or reserved (i.e.
  633. * not in-use) hugepage by dequeuing it from freelist.
  634. * To check whether a hugepage is in-use or not, we can't use
  635. * page->lru because it can be used in other hugepage operations,
  636. * such as __unmap_hugepage_range() and gather_surplus_pages().
  637. * So instead we use page_mapping() and PageAnon().
  638. * We assume that this function is called with page lock held,
  639. * so there is no race between isolation and mapping/unmapping.
  640. */
  641. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  642. __isolate_hwpoisoned_huge_page(hpage);
  643. return RECOVERED;
  644. }
  645. return DELAYED;
  646. }
  647. /*
  648. * Various page states we can handle.
  649. *
  650. * A page state is defined by its current page->flags bits.
  651. * The table matches them in order and calls the right handler.
  652. *
  653. * This is quite tricky because we can access page at any time
  654. * in its live cycle, so all accesses have to be extremly careful.
  655. *
  656. * This is not complete. More states could be added.
  657. * For any missing state don't attempt recovery.
  658. */
  659. #define dirty (1UL << PG_dirty)
  660. #define sc (1UL << PG_swapcache)
  661. #define unevict (1UL << PG_unevictable)
  662. #define mlock (1UL << PG_mlocked)
  663. #define writeback (1UL << PG_writeback)
  664. #define lru (1UL << PG_lru)
  665. #define swapbacked (1UL << PG_swapbacked)
  666. #define head (1UL << PG_head)
  667. #define tail (1UL << PG_tail)
  668. #define compound (1UL << PG_compound)
  669. #define slab (1UL << PG_slab)
  670. #define reserved (1UL << PG_reserved)
  671. static struct page_state {
  672. unsigned long mask;
  673. unsigned long res;
  674. char *msg;
  675. int (*action)(struct page *p, unsigned long pfn);
  676. } error_states[] = {
  677. { reserved, reserved, "reserved kernel", me_kernel },
  678. /*
  679. * free pages are specially detected outside this table:
  680. * PG_buddy pages only make a small fraction of all free pages.
  681. */
  682. /*
  683. * Could in theory check if slab page is free or if we can drop
  684. * currently unused objects without touching them. But just
  685. * treat it as standard kernel for now.
  686. */
  687. { slab, slab, "kernel slab", me_kernel },
  688. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  689. { head, head, "huge", me_huge_page },
  690. { tail, tail, "huge", me_huge_page },
  691. #else
  692. { compound, compound, "huge", me_huge_page },
  693. #endif
  694. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  695. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  696. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  697. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  698. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  699. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  700. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  701. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  702. /*
  703. * Catchall entry: must be at end.
  704. */
  705. { 0, 0, "unknown page state", me_unknown },
  706. };
  707. #undef dirty
  708. #undef sc
  709. #undef unevict
  710. #undef mlock
  711. #undef writeback
  712. #undef lru
  713. #undef swapbacked
  714. #undef head
  715. #undef tail
  716. #undef compound
  717. #undef slab
  718. #undef reserved
  719. static void action_result(unsigned long pfn, char *msg, int result)
  720. {
  721. struct page *page = pfn_to_page(pfn);
  722. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  723. pfn,
  724. PageDirty(page) ? "dirty " : "",
  725. msg, action_name[result]);
  726. }
  727. static int page_action(struct page_state *ps, struct page *p,
  728. unsigned long pfn)
  729. {
  730. int result;
  731. int count;
  732. result = ps->action(p, pfn);
  733. action_result(pfn, ps->msg, result);
  734. count = page_count(p) - 1;
  735. if (ps->action == me_swapcache_dirty && result == DELAYED)
  736. count--;
  737. if (count != 0) {
  738. printk(KERN_ERR
  739. "MCE %#lx: %s page still referenced by %d users\n",
  740. pfn, ps->msg, count);
  741. result = FAILED;
  742. }
  743. /* Could do more checks here if page looks ok */
  744. /*
  745. * Could adjust zone counters here to correct for the missing page.
  746. */
  747. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  748. }
  749. #define N_UNMAP_TRIES 5
  750. /*
  751. * Do all that is necessary to remove user space mappings. Unmap
  752. * the pages and send SIGBUS to the processes if the data was dirty.
  753. */
  754. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  755. int trapno)
  756. {
  757. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  758. struct address_space *mapping;
  759. LIST_HEAD(tokill);
  760. int ret;
  761. int i;
  762. int kill = 1;
  763. struct page *hpage = compound_head(p);
  764. if (PageReserved(p) || PageSlab(p))
  765. return SWAP_SUCCESS;
  766. /*
  767. * This check implies we don't kill processes if their pages
  768. * are in the swap cache early. Those are always late kills.
  769. */
  770. if (!page_mapped(hpage))
  771. return SWAP_SUCCESS;
  772. if (PageKsm(p))
  773. return SWAP_FAIL;
  774. if (PageSwapCache(p)) {
  775. printk(KERN_ERR
  776. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  777. ttu |= TTU_IGNORE_HWPOISON;
  778. }
  779. /*
  780. * Propagate the dirty bit from PTEs to struct page first, because we
  781. * need this to decide if we should kill or just drop the page.
  782. * XXX: the dirty test could be racy: set_page_dirty() may not always
  783. * be called inside page lock (it's recommended but not enforced).
  784. */
  785. mapping = page_mapping(hpage);
  786. if (!PageDirty(hpage) && mapping &&
  787. mapping_cap_writeback_dirty(mapping)) {
  788. if (page_mkclean(hpage)) {
  789. SetPageDirty(hpage);
  790. } else {
  791. kill = 0;
  792. ttu |= TTU_IGNORE_HWPOISON;
  793. printk(KERN_INFO
  794. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  795. pfn);
  796. }
  797. }
  798. /*
  799. * First collect all the processes that have the page
  800. * mapped in dirty form. This has to be done before try_to_unmap,
  801. * because ttu takes the rmap data structures down.
  802. *
  803. * Error handling: We ignore errors here because
  804. * there's nothing that can be done.
  805. */
  806. if (kill)
  807. collect_procs(hpage, &tokill);
  808. /*
  809. * try_to_unmap can fail temporarily due to races.
  810. * Try a few times (RED-PEN better strategy?)
  811. */
  812. for (i = 0; i < N_UNMAP_TRIES; i++) {
  813. ret = try_to_unmap(hpage, ttu);
  814. if (ret == SWAP_SUCCESS)
  815. break;
  816. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  817. }
  818. if (ret != SWAP_SUCCESS)
  819. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  820. pfn, page_mapcount(hpage));
  821. /*
  822. * Now that the dirty bit has been propagated to the
  823. * struct page and all unmaps done we can decide if
  824. * killing is needed or not. Only kill when the page
  825. * was dirty, otherwise the tokill list is merely
  826. * freed. When there was a problem unmapping earlier
  827. * use a more force-full uncatchable kill to prevent
  828. * any accesses to the poisoned memory.
  829. */
  830. kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
  831. ret != SWAP_SUCCESS, pfn);
  832. return ret;
  833. }
  834. static void set_page_hwpoison_huge_page(struct page *hpage)
  835. {
  836. int i;
  837. int nr_pages = 1 << compound_order(hpage);
  838. for (i = 0; i < nr_pages; i++)
  839. SetPageHWPoison(hpage + i);
  840. }
  841. static void clear_page_hwpoison_huge_page(struct page *hpage)
  842. {
  843. int i;
  844. int nr_pages = 1 << compound_order(hpage);
  845. for (i = 0; i < nr_pages; i++)
  846. ClearPageHWPoison(hpage + i);
  847. }
  848. int __memory_failure(unsigned long pfn, int trapno, int flags)
  849. {
  850. struct page_state *ps;
  851. struct page *p;
  852. struct page *hpage;
  853. int res;
  854. unsigned int nr_pages;
  855. if (!sysctl_memory_failure_recovery)
  856. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  857. if (!pfn_valid(pfn)) {
  858. printk(KERN_ERR
  859. "MCE %#lx: memory outside kernel control\n",
  860. pfn);
  861. return -ENXIO;
  862. }
  863. p = pfn_to_page(pfn);
  864. hpage = compound_head(p);
  865. if (TestSetPageHWPoison(p)) {
  866. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  867. return 0;
  868. }
  869. nr_pages = 1 << compound_order(hpage);
  870. atomic_long_add(nr_pages, &mce_bad_pages);
  871. /*
  872. * We need/can do nothing about count=0 pages.
  873. * 1) it's a free page, and therefore in safe hand:
  874. * prep_new_page() will be the gate keeper.
  875. * 2) it's part of a non-compound high order page.
  876. * Implies some kernel user: cannot stop them from
  877. * R/W the page; let's pray that the page has been
  878. * used and will be freed some time later.
  879. * In fact it's dangerous to directly bump up page count from 0,
  880. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  881. */
  882. if (!(flags & MF_COUNT_INCREASED) &&
  883. !get_page_unless_zero(hpage)) {
  884. if (is_free_buddy_page(p)) {
  885. action_result(pfn, "free buddy", DELAYED);
  886. return 0;
  887. } else {
  888. action_result(pfn, "high order kernel", IGNORED);
  889. return -EBUSY;
  890. }
  891. }
  892. /*
  893. * We ignore non-LRU pages for good reasons.
  894. * - PG_locked is only well defined for LRU pages and a few others
  895. * - to avoid races with __set_page_locked()
  896. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  897. * The check (unnecessarily) ignores LRU pages being isolated and
  898. * walked by the page reclaim code, however that's not a big loss.
  899. */
  900. if (!PageLRU(p) && !PageHuge(p))
  901. shake_page(p, 0);
  902. if (!PageLRU(p) && !PageHuge(p)) {
  903. /*
  904. * shake_page could have turned it free.
  905. */
  906. if (is_free_buddy_page(p)) {
  907. action_result(pfn, "free buddy, 2nd try", DELAYED);
  908. return 0;
  909. }
  910. action_result(pfn, "non LRU", IGNORED);
  911. put_page(p);
  912. return -EBUSY;
  913. }
  914. /*
  915. * Lock the page and wait for writeback to finish.
  916. * It's very difficult to mess with pages currently under IO
  917. * and in many cases impossible, so we just avoid it here.
  918. */
  919. lock_page_nosync(hpage);
  920. /*
  921. * unpoison always clear PG_hwpoison inside page lock
  922. */
  923. if (!PageHWPoison(p)) {
  924. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  925. res = 0;
  926. goto out;
  927. }
  928. if (hwpoison_filter(p)) {
  929. if (TestClearPageHWPoison(p))
  930. atomic_long_sub(nr_pages, &mce_bad_pages);
  931. unlock_page(hpage);
  932. put_page(hpage);
  933. return 0;
  934. }
  935. /*
  936. * For error on the tail page, we should set PG_hwpoison
  937. * on the head page to show that the hugepage is hwpoisoned
  938. */
  939. if (PageTail(p) && TestSetPageHWPoison(hpage)) {
  940. action_result(pfn, "hugepage already hardware poisoned",
  941. IGNORED);
  942. unlock_page(hpage);
  943. put_page(hpage);
  944. return 0;
  945. }
  946. /*
  947. * Set PG_hwpoison on all pages in an error hugepage,
  948. * because containment is done in hugepage unit for now.
  949. * Since we have done TestSetPageHWPoison() for the head page with
  950. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  951. */
  952. if (PageHuge(p))
  953. set_page_hwpoison_huge_page(hpage);
  954. wait_on_page_writeback(p);
  955. /*
  956. * Now take care of user space mappings.
  957. * Abort on fail: __remove_from_page_cache() assumes unmapped page.
  958. */
  959. if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
  960. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  961. res = -EBUSY;
  962. goto out;
  963. }
  964. /*
  965. * Torn down by someone else?
  966. */
  967. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  968. action_result(pfn, "already truncated LRU", IGNORED);
  969. res = -EBUSY;
  970. goto out;
  971. }
  972. res = -EBUSY;
  973. for (ps = error_states;; ps++) {
  974. if ((p->flags & ps->mask) == ps->res) {
  975. res = page_action(ps, p, pfn);
  976. break;
  977. }
  978. }
  979. out:
  980. unlock_page(hpage);
  981. return res;
  982. }
  983. EXPORT_SYMBOL_GPL(__memory_failure);
  984. /**
  985. * memory_failure - Handle memory failure of a page.
  986. * @pfn: Page Number of the corrupted page
  987. * @trapno: Trap number reported in the signal to user space.
  988. *
  989. * This function is called by the low level machine check code
  990. * of an architecture when it detects hardware memory corruption
  991. * of a page. It tries its best to recover, which includes
  992. * dropping pages, killing processes etc.
  993. *
  994. * The function is primarily of use for corruptions that
  995. * happen outside the current execution context (e.g. when
  996. * detected by a background scrubber)
  997. *
  998. * Must run in process context (e.g. a work queue) with interrupts
  999. * enabled and no spinlocks hold.
  1000. */
  1001. void memory_failure(unsigned long pfn, int trapno)
  1002. {
  1003. __memory_failure(pfn, trapno, 0);
  1004. }
  1005. /**
  1006. * unpoison_memory - Unpoison a previously poisoned page
  1007. * @pfn: Page number of the to be unpoisoned page
  1008. *
  1009. * Software-unpoison a page that has been poisoned by
  1010. * memory_failure() earlier.
  1011. *
  1012. * This is only done on the software-level, so it only works
  1013. * for linux injected failures, not real hardware failures
  1014. *
  1015. * Returns 0 for success, otherwise -errno.
  1016. */
  1017. int unpoison_memory(unsigned long pfn)
  1018. {
  1019. struct page *page;
  1020. struct page *p;
  1021. int freeit = 0;
  1022. unsigned int nr_pages;
  1023. if (!pfn_valid(pfn))
  1024. return -ENXIO;
  1025. p = pfn_to_page(pfn);
  1026. page = compound_head(p);
  1027. if (!PageHWPoison(p)) {
  1028. pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
  1029. return 0;
  1030. }
  1031. nr_pages = 1 << compound_order(page);
  1032. if (!get_page_unless_zero(page)) {
  1033. if (TestClearPageHWPoison(p))
  1034. atomic_long_sub(nr_pages, &mce_bad_pages);
  1035. pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
  1036. return 0;
  1037. }
  1038. lock_page_nosync(page);
  1039. /*
  1040. * This test is racy because PG_hwpoison is set outside of page lock.
  1041. * That's acceptable because that won't trigger kernel panic. Instead,
  1042. * the PG_hwpoison page will be caught and isolated on the entrance to
  1043. * the free buddy page pool.
  1044. */
  1045. if (TestClearPageHWPoison(page)) {
  1046. pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
  1047. atomic_long_sub(nr_pages, &mce_bad_pages);
  1048. freeit = 1;
  1049. }
  1050. if (PageHuge(p))
  1051. clear_page_hwpoison_huge_page(page);
  1052. unlock_page(page);
  1053. put_page(page);
  1054. if (freeit)
  1055. put_page(page);
  1056. return 0;
  1057. }
  1058. EXPORT_SYMBOL(unpoison_memory);
  1059. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1060. {
  1061. int nid = page_to_nid(p);
  1062. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1063. }
  1064. /*
  1065. * Safely get reference count of an arbitrary page.
  1066. * Returns 0 for a free page, -EIO for a zero refcount page
  1067. * that is not free, and 1 for any other page type.
  1068. * For 1 the page is returned with increased page count, otherwise not.
  1069. */
  1070. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1071. {
  1072. int ret;
  1073. if (flags & MF_COUNT_INCREASED)
  1074. return 1;
  1075. /*
  1076. * The lock_system_sleep prevents a race with memory hotplug,
  1077. * because the isolation assumes there's only a single user.
  1078. * This is a big hammer, a better would be nicer.
  1079. */
  1080. lock_system_sleep();
  1081. /*
  1082. * Isolate the page, so that it doesn't get reallocated if it
  1083. * was free.
  1084. */
  1085. set_migratetype_isolate(p);
  1086. if (!get_page_unless_zero(compound_head(p))) {
  1087. if (is_free_buddy_page(p)) {
  1088. pr_debug("get_any_page: %#lx free buddy page\n", pfn);
  1089. /* Set hwpoison bit while page is still isolated */
  1090. SetPageHWPoison(p);
  1091. ret = 0;
  1092. } else {
  1093. pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
  1094. pfn, p->flags);
  1095. ret = -EIO;
  1096. }
  1097. } else {
  1098. /* Not a free page */
  1099. ret = 1;
  1100. }
  1101. unset_migratetype_isolate(p);
  1102. unlock_system_sleep();
  1103. return ret;
  1104. }
  1105. /**
  1106. * soft_offline_page - Soft offline a page.
  1107. * @page: page to offline
  1108. * @flags: flags. Same as memory_failure().
  1109. *
  1110. * Returns 0 on success, otherwise negated errno.
  1111. *
  1112. * Soft offline a page, by migration or invalidation,
  1113. * without killing anything. This is for the case when
  1114. * a page is not corrupted yet (so it's still valid to access),
  1115. * but has had a number of corrected errors and is better taken
  1116. * out.
  1117. *
  1118. * The actual policy on when to do that is maintained by
  1119. * user space.
  1120. *
  1121. * This should never impact any application or cause data loss,
  1122. * however it might take some time.
  1123. *
  1124. * This is not a 100% solution for all memory, but tries to be
  1125. * ``good enough'' for the majority of memory.
  1126. */
  1127. int soft_offline_page(struct page *page, int flags)
  1128. {
  1129. int ret;
  1130. unsigned long pfn = page_to_pfn(page);
  1131. ret = get_any_page(page, pfn, flags);
  1132. if (ret < 0)
  1133. return ret;
  1134. if (ret == 0)
  1135. goto done;
  1136. /*
  1137. * Page cache page we can handle?
  1138. */
  1139. if (!PageLRU(page)) {
  1140. /*
  1141. * Try to free it.
  1142. */
  1143. put_page(page);
  1144. shake_page(page, 1);
  1145. /*
  1146. * Did it turn free?
  1147. */
  1148. ret = get_any_page(page, pfn, 0);
  1149. if (ret < 0)
  1150. return ret;
  1151. if (ret == 0)
  1152. goto done;
  1153. }
  1154. if (!PageLRU(page)) {
  1155. pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1156. pfn, page->flags);
  1157. return -EIO;
  1158. }
  1159. lock_page(page);
  1160. wait_on_page_writeback(page);
  1161. /*
  1162. * Synchronized using the page lock with memory_failure()
  1163. */
  1164. if (PageHWPoison(page)) {
  1165. unlock_page(page);
  1166. put_page(page);
  1167. pr_debug("soft offline: %#lx page already poisoned\n", pfn);
  1168. return -EBUSY;
  1169. }
  1170. /*
  1171. * Try to invalidate first. This should work for
  1172. * non dirty unmapped page cache pages.
  1173. */
  1174. ret = invalidate_inode_page(page);
  1175. unlock_page(page);
  1176. /*
  1177. * Drop count because page migration doesn't like raised
  1178. * counts. The page could get re-allocated, but if it becomes
  1179. * LRU the isolation will just fail.
  1180. * RED-PEN would be better to keep it isolated here, but we
  1181. * would need to fix isolation locking first.
  1182. */
  1183. put_page(page);
  1184. if (ret == 1) {
  1185. ret = 0;
  1186. pr_debug("soft_offline: %#lx: invalidated\n", pfn);
  1187. goto done;
  1188. }
  1189. /*
  1190. * Simple invalidation didn't work.
  1191. * Try to migrate to a new page instead. migrate.c
  1192. * handles a large number of cases for us.
  1193. */
  1194. ret = isolate_lru_page(page);
  1195. if (!ret) {
  1196. LIST_HEAD(pagelist);
  1197. list_add(&page->lru, &pagelist);
  1198. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
  1199. if (ret) {
  1200. pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
  1201. pfn, ret, page->flags);
  1202. if (ret > 0)
  1203. ret = -EIO;
  1204. }
  1205. } else {
  1206. pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1207. pfn, ret, page_count(page), page->flags);
  1208. }
  1209. if (ret)
  1210. return ret;
  1211. done:
  1212. atomic_long_add(1, &mce_bad_pages);
  1213. SetPageHWPoison(page);
  1214. /* keep elevated page count for bad page */
  1215. return ret;
  1216. }
  1217. /*
  1218. * The caller must hold current->mm->mmap_sem in read mode.
  1219. */
  1220. int is_hwpoison_address(unsigned long addr)
  1221. {
  1222. pgd_t *pgdp;
  1223. pud_t pud, *pudp;
  1224. pmd_t pmd, *pmdp;
  1225. pte_t pte, *ptep;
  1226. swp_entry_t entry;
  1227. pgdp = pgd_offset(current->mm, addr);
  1228. if (!pgd_present(*pgdp))
  1229. return 0;
  1230. pudp = pud_offset(pgdp, addr);
  1231. pud = *pudp;
  1232. if (!pud_present(pud) || pud_large(pud))
  1233. return 0;
  1234. pmdp = pmd_offset(pudp, addr);
  1235. pmd = *pmdp;
  1236. if (!pmd_present(pmd) || pmd_large(pmd))
  1237. return 0;
  1238. ptep = pte_offset_map(pmdp, addr);
  1239. pte = *ptep;
  1240. pte_unmap(ptep);
  1241. if (!is_swap_pte(pte))
  1242. return 0;
  1243. entry = pte_to_swp_entry(pte);
  1244. return is_hwpoison_entry(entry);
  1245. }
  1246. EXPORT_SYMBOL_GPL(is_hwpoison_address);