memblock.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/memblock.h>
  16. #define MEMBLOCK_ALLOC_ANYWHERE 0
  17. struct memblock memblock;
  18. static int memblock_debug;
  19. static int __init early_memblock(char *p)
  20. {
  21. if (p && strstr(p, "debug"))
  22. memblock_debug = 1;
  23. return 0;
  24. }
  25. early_param("memblock", early_memblock);
  26. static void memblock_dump(struct memblock_region *region, char *name)
  27. {
  28. unsigned long long base, size;
  29. int i;
  30. pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
  31. for (i = 0; i < region->cnt; i++) {
  32. base = region->region[i].base;
  33. size = region->region[i].size;
  34. pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
  35. name, i, base, base + size - 1, size);
  36. }
  37. }
  38. void memblock_dump_all(void)
  39. {
  40. if (!memblock_debug)
  41. return;
  42. pr_info("MEMBLOCK configuration:\n");
  43. pr_info(" rmo_size = 0x%llx\n", (unsigned long long)memblock.rmo_size);
  44. pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size);
  45. memblock_dump(&memblock.memory, "memory");
  46. memblock_dump(&memblock.reserved, "reserved");
  47. }
  48. static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2,
  49. u64 size2)
  50. {
  51. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  52. }
  53. static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
  54. {
  55. if (base2 == base1 + size1)
  56. return 1;
  57. else if (base1 == base2 + size2)
  58. return -1;
  59. return 0;
  60. }
  61. static long memblock_regions_adjacent(struct memblock_region *rgn,
  62. unsigned long r1, unsigned long r2)
  63. {
  64. u64 base1 = rgn->region[r1].base;
  65. u64 size1 = rgn->region[r1].size;
  66. u64 base2 = rgn->region[r2].base;
  67. u64 size2 = rgn->region[r2].size;
  68. return memblock_addrs_adjacent(base1, size1, base2, size2);
  69. }
  70. static void memblock_remove_region(struct memblock_region *rgn, unsigned long r)
  71. {
  72. unsigned long i;
  73. for (i = r; i < rgn->cnt - 1; i++) {
  74. rgn->region[i].base = rgn->region[i + 1].base;
  75. rgn->region[i].size = rgn->region[i + 1].size;
  76. }
  77. rgn->cnt--;
  78. }
  79. /* Assumption: base addr of region 1 < base addr of region 2 */
  80. static void memblock_coalesce_regions(struct memblock_region *rgn,
  81. unsigned long r1, unsigned long r2)
  82. {
  83. rgn->region[r1].size += rgn->region[r2].size;
  84. memblock_remove_region(rgn, r2);
  85. }
  86. void __init memblock_init(void)
  87. {
  88. /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
  89. * This simplifies the memblock_add() code below...
  90. */
  91. memblock.memory.region[0].base = 0;
  92. memblock.memory.region[0].size = 0;
  93. memblock.memory.cnt = 1;
  94. /* Ditto. */
  95. memblock.reserved.region[0].base = 0;
  96. memblock.reserved.region[0].size = 0;
  97. memblock.reserved.cnt = 1;
  98. }
  99. void __init memblock_analyze(void)
  100. {
  101. int i;
  102. memblock.memory.size = 0;
  103. for (i = 0; i < memblock.memory.cnt; i++)
  104. memblock.memory.size += memblock.memory.region[i].size;
  105. }
  106. static long memblock_add_region(struct memblock_region *rgn, u64 base, u64 size)
  107. {
  108. unsigned long coalesced = 0;
  109. long adjacent, i;
  110. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  111. rgn->region[0].base = base;
  112. rgn->region[0].size = size;
  113. return 0;
  114. }
  115. /* First try and coalesce this MEMBLOCK with another. */
  116. for (i = 0; i < rgn->cnt; i++) {
  117. u64 rgnbase = rgn->region[i].base;
  118. u64 rgnsize = rgn->region[i].size;
  119. if ((rgnbase == base) && (rgnsize == size))
  120. /* Already have this region, so we're done */
  121. return 0;
  122. adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
  123. if (adjacent > 0) {
  124. rgn->region[i].base -= size;
  125. rgn->region[i].size += size;
  126. coalesced++;
  127. break;
  128. } else if (adjacent < 0) {
  129. rgn->region[i].size += size;
  130. coalesced++;
  131. break;
  132. }
  133. }
  134. if ((i < rgn->cnt - 1) && memblock_regions_adjacent(rgn, i, i+1)) {
  135. memblock_coalesce_regions(rgn, i, i+1);
  136. coalesced++;
  137. }
  138. if (coalesced)
  139. return coalesced;
  140. if (rgn->cnt >= MAX_MEMBLOCK_REGIONS)
  141. return -1;
  142. /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
  143. for (i = rgn->cnt - 1; i >= 0; i--) {
  144. if (base < rgn->region[i].base) {
  145. rgn->region[i+1].base = rgn->region[i].base;
  146. rgn->region[i+1].size = rgn->region[i].size;
  147. } else {
  148. rgn->region[i+1].base = base;
  149. rgn->region[i+1].size = size;
  150. break;
  151. }
  152. }
  153. if (base < rgn->region[0].base) {
  154. rgn->region[0].base = base;
  155. rgn->region[0].size = size;
  156. }
  157. rgn->cnt++;
  158. return 0;
  159. }
  160. long memblock_add(u64 base, u64 size)
  161. {
  162. struct memblock_region *_rgn = &memblock.memory;
  163. /* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */
  164. if (base == 0)
  165. memblock.rmo_size = size;
  166. return memblock_add_region(_rgn, base, size);
  167. }
  168. static long __memblock_remove(struct memblock_region *rgn, u64 base, u64 size)
  169. {
  170. u64 rgnbegin, rgnend;
  171. u64 end = base + size;
  172. int i;
  173. rgnbegin = rgnend = 0; /* supress gcc warnings */
  174. /* Find the region where (base, size) belongs to */
  175. for (i=0; i < rgn->cnt; i++) {
  176. rgnbegin = rgn->region[i].base;
  177. rgnend = rgnbegin + rgn->region[i].size;
  178. if ((rgnbegin <= base) && (end <= rgnend))
  179. break;
  180. }
  181. /* Didn't find the region */
  182. if (i == rgn->cnt)
  183. return -1;
  184. /* Check to see if we are removing entire region */
  185. if ((rgnbegin == base) && (rgnend == end)) {
  186. memblock_remove_region(rgn, i);
  187. return 0;
  188. }
  189. /* Check to see if region is matching at the front */
  190. if (rgnbegin == base) {
  191. rgn->region[i].base = end;
  192. rgn->region[i].size -= size;
  193. return 0;
  194. }
  195. /* Check to see if the region is matching at the end */
  196. if (rgnend == end) {
  197. rgn->region[i].size -= size;
  198. return 0;
  199. }
  200. /*
  201. * We need to split the entry - adjust the current one to the
  202. * beginging of the hole and add the region after hole.
  203. */
  204. rgn->region[i].size = base - rgn->region[i].base;
  205. return memblock_add_region(rgn, end, rgnend - end);
  206. }
  207. long memblock_remove(u64 base, u64 size)
  208. {
  209. return __memblock_remove(&memblock.memory, base, size);
  210. }
  211. long __init memblock_free(u64 base, u64 size)
  212. {
  213. return __memblock_remove(&memblock.reserved, base, size);
  214. }
  215. long __init memblock_reserve(u64 base, u64 size)
  216. {
  217. struct memblock_region *_rgn = &memblock.reserved;
  218. BUG_ON(0 == size);
  219. return memblock_add_region(_rgn, base, size);
  220. }
  221. long memblock_overlaps_region(struct memblock_region *rgn, u64 base, u64 size)
  222. {
  223. unsigned long i;
  224. for (i = 0; i < rgn->cnt; i++) {
  225. u64 rgnbase = rgn->region[i].base;
  226. u64 rgnsize = rgn->region[i].size;
  227. if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  228. break;
  229. }
  230. return (i < rgn->cnt) ? i : -1;
  231. }
  232. static u64 memblock_align_down(u64 addr, u64 size)
  233. {
  234. return addr & ~(size - 1);
  235. }
  236. static u64 memblock_align_up(u64 addr, u64 size)
  237. {
  238. return (addr + (size - 1)) & ~(size - 1);
  239. }
  240. static u64 __init memblock_alloc_nid_unreserved(u64 start, u64 end,
  241. u64 size, u64 align)
  242. {
  243. u64 base, res_base;
  244. long j;
  245. base = memblock_align_down((end - size), align);
  246. while (start <= base) {
  247. j = memblock_overlaps_region(&memblock.reserved, base, size);
  248. if (j < 0) {
  249. /* this area isn't reserved, take it */
  250. if (memblock_add_region(&memblock.reserved, base, size) < 0)
  251. base = ~(u64)0;
  252. return base;
  253. }
  254. res_base = memblock.reserved.region[j].base;
  255. if (res_base < size)
  256. break;
  257. base = memblock_align_down(res_base - size, align);
  258. }
  259. return ~(u64)0;
  260. }
  261. static u64 __init memblock_alloc_nid_region(struct memblock_property *mp,
  262. u64 (*nid_range)(u64, u64, int *),
  263. u64 size, u64 align, int nid)
  264. {
  265. u64 start, end;
  266. start = mp->base;
  267. end = start + mp->size;
  268. start = memblock_align_up(start, align);
  269. while (start < end) {
  270. u64 this_end;
  271. int this_nid;
  272. this_end = nid_range(start, end, &this_nid);
  273. if (this_nid == nid) {
  274. u64 ret = memblock_alloc_nid_unreserved(start, this_end,
  275. size, align);
  276. if (ret != ~(u64)0)
  277. return ret;
  278. }
  279. start = this_end;
  280. }
  281. return ~(u64)0;
  282. }
  283. u64 __init memblock_alloc_nid(u64 size, u64 align, int nid,
  284. u64 (*nid_range)(u64 start, u64 end, int *nid))
  285. {
  286. struct memblock_region *mem = &memblock.memory;
  287. int i;
  288. BUG_ON(0 == size);
  289. size = memblock_align_up(size, align);
  290. for (i = 0; i < mem->cnt; i++) {
  291. u64 ret = memblock_alloc_nid_region(&mem->region[i],
  292. nid_range,
  293. size, align, nid);
  294. if (ret != ~(u64)0)
  295. return ret;
  296. }
  297. return memblock_alloc(size, align);
  298. }
  299. u64 __init memblock_alloc(u64 size, u64 align)
  300. {
  301. return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
  302. }
  303. u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr)
  304. {
  305. u64 alloc;
  306. alloc = __memblock_alloc_base(size, align, max_addr);
  307. if (alloc == 0)
  308. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  309. (unsigned long long) size, (unsigned long long) max_addr);
  310. return alloc;
  311. }
  312. u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr)
  313. {
  314. long i, j;
  315. u64 base = 0;
  316. u64 res_base;
  317. BUG_ON(0 == size);
  318. size = memblock_align_up(size, align);
  319. /* On some platforms, make sure we allocate lowmem */
  320. /* Note that MEMBLOCK_REAL_LIMIT may be MEMBLOCK_ALLOC_ANYWHERE */
  321. if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
  322. max_addr = MEMBLOCK_REAL_LIMIT;
  323. for (i = memblock.memory.cnt - 1; i >= 0; i--) {
  324. u64 memblockbase = memblock.memory.region[i].base;
  325. u64 memblocksize = memblock.memory.region[i].size;
  326. if (memblocksize < size)
  327. continue;
  328. if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
  329. base = memblock_align_down(memblockbase + memblocksize - size, align);
  330. else if (memblockbase < max_addr) {
  331. base = min(memblockbase + memblocksize, max_addr);
  332. base = memblock_align_down(base - size, align);
  333. } else
  334. continue;
  335. while (base && memblockbase <= base) {
  336. j = memblock_overlaps_region(&memblock.reserved, base, size);
  337. if (j < 0) {
  338. /* this area isn't reserved, take it */
  339. if (memblock_add_region(&memblock.reserved, base, size) < 0)
  340. return 0;
  341. return base;
  342. }
  343. res_base = memblock.reserved.region[j].base;
  344. if (res_base < size)
  345. break;
  346. base = memblock_align_down(res_base - size, align);
  347. }
  348. }
  349. return 0;
  350. }
  351. /* You must call memblock_analyze() before this. */
  352. u64 __init memblock_phys_mem_size(void)
  353. {
  354. return memblock.memory.size;
  355. }
  356. u64 memblock_end_of_DRAM(void)
  357. {
  358. int idx = memblock.memory.cnt - 1;
  359. return (memblock.memory.region[idx].base + memblock.memory.region[idx].size);
  360. }
  361. /* You must call memblock_analyze() after this. */
  362. void __init memblock_enforce_memory_limit(u64 memory_limit)
  363. {
  364. unsigned long i;
  365. u64 limit;
  366. struct memblock_property *p;
  367. if (!memory_limit)
  368. return;
  369. /* Truncate the memblock regions to satisfy the memory limit. */
  370. limit = memory_limit;
  371. for (i = 0; i < memblock.memory.cnt; i++) {
  372. if (limit > memblock.memory.region[i].size) {
  373. limit -= memblock.memory.region[i].size;
  374. continue;
  375. }
  376. memblock.memory.region[i].size = limit;
  377. memblock.memory.cnt = i + 1;
  378. break;
  379. }
  380. if (memblock.memory.region[0].size < memblock.rmo_size)
  381. memblock.rmo_size = memblock.memory.region[0].size;
  382. memory_limit = memblock_end_of_DRAM();
  383. /* And truncate any reserves above the limit also. */
  384. for (i = 0; i < memblock.reserved.cnt; i++) {
  385. p = &memblock.reserved.region[i];
  386. if (p->base > memory_limit)
  387. p->size = 0;
  388. else if ((p->base + p->size) > memory_limit)
  389. p->size = memory_limit - p->base;
  390. if (p->size == 0) {
  391. memblock_remove_region(&memblock.reserved, i);
  392. i--;
  393. }
  394. }
  395. }
  396. int __init memblock_is_reserved(u64 addr)
  397. {
  398. int i;
  399. for (i = 0; i < memblock.reserved.cnt; i++) {
  400. u64 upper = memblock.reserved.region[i].base +
  401. memblock.reserved.region[i].size - 1;
  402. if ((addr >= memblock.reserved.region[i].base) && (addr <= upper))
  403. return 1;
  404. }
  405. return 0;
  406. }
  407. int memblock_is_region_reserved(u64 base, u64 size)
  408. {
  409. return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
  410. }
  411. /*
  412. * Given a <base, len>, find which memory regions belong to this range.
  413. * Adjust the request and return a contiguous chunk.
  414. */
  415. int memblock_find(struct memblock_property *res)
  416. {
  417. int i;
  418. u64 rstart, rend;
  419. rstart = res->base;
  420. rend = rstart + res->size - 1;
  421. for (i = 0; i < memblock.memory.cnt; i++) {
  422. u64 start = memblock.memory.region[i].base;
  423. u64 end = start + memblock.memory.region[i].size - 1;
  424. if (start > rend)
  425. return -1;
  426. if ((end >= rstart) && (start < rend)) {
  427. /* adjust the request */
  428. if (rstart < start)
  429. rstart = start;
  430. if (rend > end)
  431. rend = end;
  432. res->base = rstart;
  433. res->size = rend - rstart + 1;
  434. return 0;
  435. }
  436. }
  437. return -1;
  438. }