filemap.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515
  1. /*
  2. * linux/mm/filemap.c
  3. *
  4. * Copyright (C) 1994-1999 Linus Torvalds
  5. */
  6. /*
  7. * This file handles the generic file mmap semantics used by
  8. * most "normal" filesystems (but you don't /have/ to use this:
  9. * the NFS filesystem used to do this differently, for example)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/compiler.h>
  13. #include <linux/fs.h>
  14. #include <linux/uaccess.h>
  15. #include <linux/aio.h>
  16. #include <linux/capability.h>
  17. #include <linux/kernel_stat.h>
  18. #include <linux/gfp.h>
  19. #include <linux/mm.h>
  20. #include <linux/swap.h>
  21. #include <linux/mman.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/file.h>
  24. #include <linux/uio.h>
  25. #include <linux/hash.h>
  26. #include <linux/writeback.h>
  27. #include <linux/backing-dev.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/security.h>
  31. #include <linux/syscalls.h>
  32. #include <linux/cpuset.h>
  33. #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34. #include <linux/memcontrol.h>
  35. #include <linux/mm_inline.h> /* for page_is_file_cache() */
  36. #include "internal.h"
  37. /*
  38. * FIXME: remove all knowledge of the buffer layer from the core VM
  39. */
  40. #include <linux/buffer_head.h> /* for try_to_free_buffers */
  41. #include <asm/mman.h>
  42. /*
  43. * Shared mappings implemented 30.11.1994. It's not fully working yet,
  44. * though.
  45. *
  46. * Shared mappings now work. 15.8.1995 Bruno.
  47. *
  48. * finished 'unifying' the page and buffer cache and SMP-threaded the
  49. * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  50. *
  51. * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  52. */
  53. /*
  54. * Lock ordering:
  55. *
  56. * ->i_mmap_lock (truncate_pagecache)
  57. * ->private_lock (__free_pte->__set_page_dirty_buffers)
  58. * ->swap_lock (exclusive_swap_page, others)
  59. * ->mapping->tree_lock
  60. *
  61. * ->i_mutex
  62. * ->i_mmap_lock (truncate->unmap_mapping_range)
  63. *
  64. * ->mmap_sem
  65. * ->i_mmap_lock
  66. * ->page_table_lock or pte_lock (various, mainly in memory.c)
  67. * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
  68. *
  69. * ->mmap_sem
  70. * ->lock_page (access_process_vm)
  71. *
  72. * ->i_mutex (generic_file_buffered_write)
  73. * ->mmap_sem (fault_in_pages_readable->do_page_fault)
  74. *
  75. * ->i_mutex
  76. * ->i_alloc_sem (various)
  77. *
  78. * ->inode_lock
  79. * ->sb_lock (fs/fs-writeback.c)
  80. * ->mapping->tree_lock (__sync_single_inode)
  81. *
  82. * ->i_mmap_lock
  83. * ->anon_vma.lock (vma_adjust)
  84. *
  85. * ->anon_vma.lock
  86. * ->page_table_lock or pte_lock (anon_vma_prepare and various)
  87. *
  88. * ->page_table_lock or pte_lock
  89. * ->swap_lock (try_to_unmap_one)
  90. * ->private_lock (try_to_unmap_one)
  91. * ->tree_lock (try_to_unmap_one)
  92. * ->zone.lru_lock (follow_page->mark_page_accessed)
  93. * ->zone.lru_lock (check_pte_range->isolate_lru_page)
  94. * ->private_lock (page_remove_rmap->set_page_dirty)
  95. * ->tree_lock (page_remove_rmap->set_page_dirty)
  96. * ->inode_lock (page_remove_rmap->set_page_dirty)
  97. * ->inode_lock (zap_pte_range->set_page_dirty)
  98. * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
  99. *
  100. * ->task->proc_lock
  101. * ->dcache_lock (proc_pid_lookup)
  102. *
  103. * (code doesn't rely on that order, so you could switch it around)
  104. * ->tasklist_lock (memory_failure, collect_procs_ao)
  105. * ->i_mmap_lock
  106. */
  107. /*
  108. * Remove a page from the page cache and free it. Caller has to make
  109. * sure the page is locked and that nobody else uses it - or that usage
  110. * is safe. The caller must hold the mapping's tree_lock.
  111. */
  112. void __remove_from_page_cache(struct page *page)
  113. {
  114. struct address_space *mapping = page->mapping;
  115. radix_tree_delete(&mapping->page_tree, page->index);
  116. page->mapping = NULL;
  117. mapping->nrpages--;
  118. __dec_zone_page_state(page, NR_FILE_PAGES);
  119. if (PageSwapBacked(page))
  120. __dec_zone_page_state(page, NR_SHMEM);
  121. BUG_ON(page_mapped(page));
  122. /*
  123. * Some filesystems seem to re-dirty the page even after
  124. * the VM has canceled the dirty bit (eg ext3 journaling).
  125. *
  126. * Fix it up by doing a final dirty accounting check after
  127. * having removed the page entirely.
  128. */
  129. if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
  130. dec_zone_page_state(page, NR_FILE_DIRTY);
  131. dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  132. }
  133. }
  134. void remove_from_page_cache(struct page *page)
  135. {
  136. struct address_space *mapping = page->mapping;
  137. BUG_ON(!PageLocked(page));
  138. spin_lock_irq(&mapping->tree_lock);
  139. __remove_from_page_cache(page);
  140. spin_unlock_irq(&mapping->tree_lock);
  141. mem_cgroup_uncharge_cache_page(page);
  142. }
  143. EXPORT_SYMBOL(remove_from_page_cache);
  144. static int sync_page(void *word)
  145. {
  146. struct address_space *mapping;
  147. struct page *page;
  148. page = container_of((unsigned long *)word, struct page, flags);
  149. /*
  150. * page_mapping() is being called without PG_locked held.
  151. * Some knowledge of the state and use of the page is used to
  152. * reduce the requirements down to a memory barrier.
  153. * The danger here is of a stale page_mapping() return value
  154. * indicating a struct address_space different from the one it's
  155. * associated with when it is associated with one.
  156. * After smp_mb(), it's either the correct page_mapping() for
  157. * the page, or an old page_mapping() and the page's own
  158. * page_mapping() has gone NULL.
  159. * The ->sync_page() address_space operation must tolerate
  160. * page_mapping() going NULL. By an amazing coincidence,
  161. * this comes about because none of the users of the page
  162. * in the ->sync_page() methods make essential use of the
  163. * page_mapping(), merely passing the page down to the backing
  164. * device's unplug functions when it's non-NULL, which in turn
  165. * ignore it for all cases but swap, where only page_private(page) is
  166. * of interest. When page_mapping() does go NULL, the entire
  167. * call stack gracefully ignores the page and returns.
  168. * -- wli
  169. */
  170. smp_mb();
  171. mapping = page_mapping(page);
  172. if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
  173. mapping->a_ops->sync_page(page);
  174. io_schedule();
  175. return 0;
  176. }
  177. static int sync_page_killable(void *word)
  178. {
  179. sync_page(word);
  180. return fatal_signal_pending(current) ? -EINTR : 0;
  181. }
  182. /**
  183. * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
  184. * @mapping: address space structure to write
  185. * @start: offset in bytes where the range starts
  186. * @end: offset in bytes where the range ends (inclusive)
  187. * @sync_mode: enable synchronous operation
  188. *
  189. * Start writeback against all of a mapping's dirty pages that lie
  190. * within the byte offsets <start, end> inclusive.
  191. *
  192. * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
  193. * opposed to a regular memory cleansing writeback. The difference between
  194. * these two operations is that if a dirty page/buffer is encountered, it must
  195. * be waited upon, and not just skipped over.
  196. */
  197. int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  198. loff_t end, int sync_mode)
  199. {
  200. int ret;
  201. struct writeback_control wbc = {
  202. .sync_mode = sync_mode,
  203. .nr_to_write = LONG_MAX,
  204. .range_start = start,
  205. .range_end = end,
  206. };
  207. if (!mapping_cap_writeback_dirty(mapping))
  208. return 0;
  209. ret = do_writepages(mapping, &wbc);
  210. return ret;
  211. }
  212. static inline int __filemap_fdatawrite(struct address_space *mapping,
  213. int sync_mode)
  214. {
  215. return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
  216. }
  217. int filemap_fdatawrite(struct address_space *mapping)
  218. {
  219. return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
  220. }
  221. EXPORT_SYMBOL(filemap_fdatawrite);
  222. int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  223. loff_t end)
  224. {
  225. return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
  226. }
  227. EXPORT_SYMBOL(filemap_fdatawrite_range);
  228. /**
  229. * filemap_flush - mostly a non-blocking flush
  230. * @mapping: target address_space
  231. *
  232. * This is a mostly non-blocking flush. Not suitable for data-integrity
  233. * purposes - I/O may not be started against all dirty pages.
  234. */
  235. int filemap_flush(struct address_space *mapping)
  236. {
  237. return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
  238. }
  239. EXPORT_SYMBOL(filemap_flush);
  240. /**
  241. * filemap_fdatawait_range - wait for writeback to complete
  242. * @mapping: address space structure to wait for
  243. * @start_byte: offset in bytes where the range starts
  244. * @end_byte: offset in bytes where the range ends (inclusive)
  245. *
  246. * Walk the list of under-writeback pages of the given address space
  247. * in the given range and wait for all of them.
  248. */
  249. int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
  250. loff_t end_byte)
  251. {
  252. pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
  253. pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
  254. struct pagevec pvec;
  255. int nr_pages;
  256. int ret = 0;
  257. if (end_byte < start_byte)
  258. return 0;
  259. pagevec_init(&pvec, 0);
  260. while ((index <= end) &&
  261. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  262. PAGECACHE_TAG_WRITEBACK,
  263. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
  264. unsigned i;
  265. for (i = 0; i < nr_pages; i++) {
  266. struct page *page = pvec.pages[i];
  267. /* until radix tree lookup accepts end_index */
  268. if (page->index > end)
  269. continue;
  270. wait_on_page_writeback(page);
  271. if (PageError(page))
  272. ret = -EIO;
  273. }
  274. pagevec_release(&pvec);
  275. cond_resched();
  276. }
  277. /* Check for outstanding write errors */
  278. if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
  279. ret = -ENOSPC;
  280. if (test_and_clear_bit(AS_EIO, &mapping->flags))
  281. ret = -EIO;
  282. return ret;
  283. }
  284. EXPORT_SYMBOL(filemap_fdatawait_range);
  285. /**
  286. * filemap_fdatawait - wait for all under-writeback pages to complete
  287. * @mapping: address space structure to wait for
  288. *
  289. * Walk the list of under-writeback pages of the given address space
  290. * and wait for all of them.
  291. */
  292. int filemap_fdatawait(struct address_space *mapping)
  293. {
  294. loff_t i_size = i_size_read(mapping->host);
  295. if (i_size == 0)
  296. return 0;
  297. return filemap_fdatawait_range(mapping, 0, i_size - 1);
  298. }
  299. EXPORT_SYMBOL(filemap_fdatawait);
  300. int filemap_write_and_wait(struct address_space *mapping)
  301. {
  302. int err = 0;
  303. if (mapping->nrpages) {
  304. err = filemap_fdatawrite(mapping);
  305. /*
  306. * Even if the above returned error, the pages may be
  307. * written partially (e.g. -ENOSPC), so we wait for it.
  308. * But the -EIO is special case, it may indicate the worst
  309. * thing (e.g. bug) happened, so we avoid waiting for it.
  310. */
  311. if (err != -EIO) {
  312. int err2 = filemap_fdatawait(mapping);
  313. if (!err)
  314. err = err2;
  315. }
  316. }
  317. return err;
  318. }
  319. EXPORT_SYMBOL(filemap_write_and_wait);
  320. /**
  321. * filemap_write_and_wait_range - write out & wait on a file range
  322. * @mapping: the address_space for the pages
  323. * @lstart: offset in bytes where the range starts
  324. * @lend: offset in bytes where the range ends (inclusive)
  325. *
  326. * Write out and wait upon file offsets lstart->lend, inclusive.
  327. *
  328. * Note that `lend' is inclusive (describes the last byte to be written) so
  329. * that this function can be used to write to the very end-of-file (end = -1).
  330. */
  331. int filemap_write_and_wait_range(struct address_space *mapping,
  332. loff_t lstart, loff_t lend)
  333. {
  334. int err = 0;
  335. if (mapping->nrpages) {
  336. err = __filemap_fdatawrite_range(mapping, lstart, lend,
  337. WB_SYNC_ALL);
  338. /* See comment of filemap_write_and_wait() */
  339. if (err != -EIO) {
  340. int err2 = filemap_fdatawait_range(mapping,
  341. lstart, lend);
  342. if (!err)
  343. err = err2;
  344. }
  345. }
  346. return err;
  347. }
  348. EXPORT_SYMBOL(filemap_write_and_wait_range);
  349. /**
  350. * add_to_page_cache_locked - add a locked page to the pagecache
  351. * @page: page to add
  352. * @mapping: the page's address_space
  353. * @offset: page index
  354. * @gfp_mask: page allocation mode
  355. *
  356. * This function is used to add a page to the pagecache. It must be locked.
  357. * This function does not add the page to the LRU. The caller must do that.
  358. */
  359. int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  360. pgoff_t offset, gfp_t gfp_mask)
  361. {
  362. int error;
  363. VM_BUG_ON(!PageLocked(page));
  364. error = mem_cgroup_cache_charge(page, current->mm,
  365. gfp_mask & GFP_RECLAIM_MASK);
  366. if (error)
  367. goto out;
  368. error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
  369. if (error == 0) {
  370. page_cache_get(page);
  371. page->mapping = mapping;
  372. page->index = offset;
  373. spin_lock_irq(&mapping->tree_lock);
  374. error = radix_tree_insert(&mapping->page_tree, offset, page);
  375. if (likely(!error)) {
  376. mapping->nrpages++;
  377. __inc_zone_page_state(page, NR_FILE_PAGES);
  378. if (PageSwapBacked(page))
  379. __inc_zone_page_state(page, NR_SHMEM);
  380. spin_unlock_irq(&mapping->tree_lock);
  381. } else {
  382. page->mapping = NULL;
  383. spin_unlock_irq(&mapping->tree_lock);
  384. mem_cgroup_uncharge_cache_page(page);
  385. page_cache_release(page);
  386. }
  387. radix_tree_preload_end();
  388. } else
  389. mem_cgroup_uncharge_cache_page(page);
  390. out:
  391. return error;
  392. }
  393. EXPORT_SYMBOL(add_to_page_cache_locked);
  394. int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  395. pgoff_t offset, gfp_t gfp_mask)
  396. {
  397. int ret;
  398. /*
  399. * Splice_read and readahead add shmem/tmpfs pages into the page cache
  400. * before shmem_readpage has a chance to mark them as SwapBacked: they
  401. * need to go on the anon lru below, and mem_cgroup_cache_charge
  402. * (called in add_to_page_cache) needs to know where they're going too.
  403. */
  404. if (mapping_cap_swap_backed(mapping))
  405. SetPageSwapBacked(page);
  406. ret = add_to_page_cache(page, mapping, offset, gfp_mask);
  407. if (ret == 0) {
  408. if (page_is_file_cache(page))
  409. lru_cache_add_file(page);
  410. else
  411. lru_cache_add_anon(page);
  412. }
  413. return ret;
  414. }
  415. EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
  416. #ifdef CONFIG_NUMA
  417. struct page *__page_cache_alloc(gfp_t gfp)
  418. {
  419. int n;
  420. struct page *page;
  421. if (cpuset_do_page_mem_spread()) {
  422. get_mems_allowed();
  423. n = cpuset_mem_spread_node();
  424. page = alloc_pages_exact_node(n, gfp, 0);
  425. put_mems_allowed();
  426. return page;
  427. }
  428. return alloc_pages(gfp, 0);
  429. }
  430. EXPORT_SYMBOL(__page_cache_alloc);
  431. #endif
  432. static int __sleep_on_page_lock(void *word)
  433. {
  434. io_schedule();
  435. return 0;
  436. }
  437. /*
  438. * In order to wait for pages to become available there must be
  439. * waitqueues associated with pages. By using a hash table of
  440. * waitqueues where the bucket discipline is to maintain all
  441. * waiters on the same queue and wake all when any of the pages
  442. * become available, and for the woken contexts to check to be
  443. * sure the appropriate page became available, this saves space
  444. * at a cost of "thundering herd" phenomena during rare hash
  445. * collisions.
  446. */
  447. static wait_queue_head_t *page_waitqueue(struct page *page)
  448. {
  449. const struct zone *zone = page_zone(page);
  450. return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
  451. }
  452. static inline void wake_up_page(struct page *page, int bit)
  453. {
  454. __wake_up_bit(page_waitqueue(page), &page->flags, bit);
  455. }
  456. void wait_on_page_bit(struct page *page, int bit_nr)
  457. {
  458. DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  459. if (test_bit(bit_nr, &page->flags))
  460. __wait_on_bit(page_waitqueue(page), &wait, sync_page,
  461. TASK_UNINTERRUPTIBLE);
  462. }
  463. EXPORT_SYMBOL(wait_on_page_bit);
  464. /**
  465. * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
  466. * @page: Page defining the wait queue of interest
  467. * @waiter: Waiter to add to the queue
  468. *
  469. * Add an arbitrary @waiter to the wait queue for the nominated @page.
  470. */
  471. void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
  472. {
  473. wait_queue_head_t *q = page_waitqueue(page);
  474. unsigned long flags;
  475. spin_lock_irqsave(&q->lock, flags);
  476. __add_wait_queue(q, waiter);
  477. spin_unlock_irqrestore(&q->lock, flags);
  478. }
  479. EXPORT_SYMBOL_GPL(add_page_wait_queue);
  480. /**
  481. * unlock_page - unlock a locked page
  482. * @page: the page
  483. *
  484. * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
  485. * Also wakes sleepers in wait_on_page_writeback() because the wakeup
  486. * mechananism between PageLocked pages and PageWriteback pages is shared.
  487. * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
  488. *
  489. * The mb is necessary to enforce ordering between the clear_bit and the read
  490. * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
  491. */
  492. void unlock_page(struct page *page)
  493. {
  494. VM_BUG_ON(!PageLocked(page));
  495. clear_bit_unlock(PG_locked, &page->flags);
  496. smp_mb__after_clear_bit();
  497. wake_up_page(page, PG_locked);
  498. }
  499. EXPORT_SYMBOL(unlock_page);
  500. /**
  501. * end_page_writeback - end writeback against a page
  502. * @page: the page
  503. */
  504. void end_page_writeback(struct page *page)
  505. {
  506. if (TestClearPageReclaim(page))
  507. rotate_reclaimable_page(page);
  508. if (!test_clear_page_writeback(page))
  509. BUG();
  510. smp_mb__after_clear_bit();
  511. wake_up_page(page, PG_writeback);
  512. }
  513. EXPORT_SYMBOL(end_page_writeback);
  514. /**
  515. * __lock_page - get a lock on the page, assuming we need to sleep to get it
  516. * @page: the page to lock
  517. *
  518. * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
  519. * random driver's requestfn sets TASK_RUNNING, we could busywait. However
  520. * chances are that on the second loop, the block layer's plug list is empty,
  521. * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
  522. */
  523. void __lock_page(struct page *page)
  524. {
  525. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  526. __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
  527. TASK_UNINTERRUPTIBLE);
  528. }
  529. EXPORT_SYMBOL(__lock_page);
  530. int __lock_page_killable(struct page *page)
  531. {
  532. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  533. return __wait_on_bit_lock(page_waitqueue(page), &wait,
  534. sync_page_killable, TASK_KILLABLE);
  535. }
  536. EXPORT_SYMBOL_GPL(__lock_page_killable);
  537. /**
  538. * __lock_page_nosync - get a lock on the page, without calling sync_page()
  539. * @page: the page to lock
  540. *
  541. * Variant of lock_page that does not require the caller to hold a reference
  542. * on the page's mapping.
  543. */
  544. void __lock_page_nosync(struct page *page)
  545. {
  546. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  547. __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
  548. TASK_UNINTERRUPTIBLE);
  549. }
  550. /**
  551. * find_get_page - find and get a page reference
  552. * @mapping: the address_space to search
  553. * @offset: the page index
  554. *
  555. * Is there a pagecache struct page at the given (mapping, offset) tuple?
  556. * If yes, increment its refcount and return it; if no, return NULL.
  557. */
  558. struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
  559. {
  560. void **pagep;
  561. struct page *page;
  562. rcu_read_lock();
  563. repeat:
  564. page = NULL;
  565. pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
  566. if (pagep) {
  567. page = radix_tree_deref_slot(pagep);
  568. if (unlikely(!page || page == RADIX_TREE_RETRY))
  569. goto repeat;
  570. if (!page_cache_get_speculative(page))
  571. goto repeat;
  572. /*
  573. * Has the page moved?
  574. * This is part of the lockless pagecache protocol. See
  575. * include/linux/pagemap.h for details.
  576. */
  577. if (unlikely(page != *pagep)) {
  578. page_cache_release(page);
  579. goto repeat;
  580. }
  581. }
  582. rcu_read_unlock();
  583. return page;
  584. }
  585. EXPORT_SYMBOL(find_get_page);
  586. /**
  587. * find_lock_page - locate, pin and lock a pagecache page
  588. * @mapping: the address_space to search
  589. * @offset: the page index
  590. *
  591. * Locates the desired pagecache page, locks it, increments its reference
  592. * count and returns its address.
  593. *
  594. * Returns zero if the page was not present. find_lock_page() may sleep.
  595. */
  596. struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
  597. {
  598. struct page *page;
  599. repeat:
  600. page = find_get_page(mapping, offset);
  601. if (page) {
  602. lock_page(page);
  603. /* Has the page been truncated? */
  604. if (unlikely(page->mapping != mapping)) {
  605. unlock_page(page);
  606. page_cache_release(page);
  607. goto repeat;
  608. }
  609. VM_BUG_ON(page->index != offset);
  610. }
  611. return page;
  612. }
  613. EXPORT_SYMBOL(find_lock_page);
  614. /**
  615. * find_or_create_page - locate or add a pagecache page
  616. * @mapping: the page's address_space
  617. * @index: the page's index into the mapping
  618. * @gfp_mask: page allocation mode
  619. *
  620. * Locates a page in the pagecache. If the page is not present, a new page
  621. * is allocated using @gfp_mask and is added to the pagecache and to the VM's
  622. * LRU list. The returned page is locked and has its reference count
  623. * incremented.
  624. *
  625. * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
  626. * allocation!
  627. *
  628. * find_or_create_page() returns the desired page's address, or zero on
  629. * memory exhaustion.
  630. */
  631. struct page *find_or_create_page(struct address_space *mapping,
  632. pgoff_t index, gfp_t gfp_mask)
  633. {
  634. struct page *page;
  635. int err;
  636. repeat:
  637. page = find_lock_page(mapping, index);
  638. if (!page) {
  639. page = __page_cache_alloc(gfp_mask);
  640. if (!page)
  641. return NULL;
  642. /*
  643. * We want a regular kernel memory (not highmem or DMA etc)
  644. * allocation for the radix tree nodes, but we need to honour
  645. * the context-specific requirements the caller has asked for.
  646. * GFP_RECLAIM_MASK collects those requirements.
  647. */
  648. err = add_to_page_cache_lru(page, mapping, index,
  649. (gfp_mask & GFP_RECLAIM_MASK));
  650. if (unlikely(err)) {
  651. page_cache_release(page);
  652. page = NULL;
  653. if (err == -EEXIST)
  654. goto repeat;
  655. }
  656. }
  657. return page;
  658. }
  659. EXPORT_SYMBOL(find_or_create_page);
  660. /**
  661. * find_get_pages - gang pagecache lookup
  662. * @mapping: The address_space to search
  663. * @start: The starting page index
  664. * @nr_pages: The maximum number of pages
  665. * @pages: Where the resulting pages are placed
  666. *
  667. * find_get_pages() will search for and return a group of up to
  668. * @nr_pages pages in the mapping. The pages are placed at @pages.
  669. * find_get_pages() takes a reference against the returned pages.
  670. *
  671. * The search returns a group of mapping-contiguous pages with ascending
  672. * indexes. There may be holes in the indices due to not-present pages.
  673. *
  674. * find_get_pages() returns the number of pages which were found.
  675. */
  676. unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  677. unsigned int nr_pages, struct page **pages)
  678. {
  679. unsigned int i;
  680. unsigned int ret;
  681. unsigned int nr_found;
  682. rcu_read_lock();
  683. restart:
  684. nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
  685. (void ***)pages, start, nr_pages);
  686. ret = 0;
  687. for (i = 0; i < nr_found; i++) {
  688. struct page *page;
  689. repeat:
  690. page = radix_tree_deref_slot((void **)pages[i]);
  691. if (unlikely(!page))
  692. continue;
  693. /*
  694. * this can only trigger if nr_found == 1, making livelock
  695. * a non issue.
  696. */
  697. if (unlikely(page == RADIX_TREE_RETRY))
  698. goto restart;
  699. if (!page_cache_get_speculative(page))
  700. goto repeat;
  701. /* Has the page moved? */
  702. if (unlikely(page != *((void **)pages[i]))) {
  703. page_cache_release(page);
  704. goto repeat;
  705. }
  706. pages[ret] = page;
  707. ret++;
  708. }
  709. rcu_read_unlock();
  710. return ret;
  711. }
  712. /**
  713. * find_get_pages_contig - gang contiguous pagecache lookup
  714. * @mapping: The address_space to search
  715. * @index: The starting page index
  716. * @nr_pages: The maximum number of pages
  717. * @pages: Where the resulting pages are placed
  718. *
  719. * find_get_pages_contig() works exactly like find_get_pages(), except
  720. * that the returned number of pages are guaranteed to be contiguous.
  721. *
  722. * find_get_pages_contig() returns the number of pages which were found.
  723. */
  724. unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
  725. unsigned int nr_pages, struct page **pages)
  726. {
  727. unsigned int i;
  728. unsigned int ret;
  729. unsigned int nr_found;
  730. rcu_read_lock();
  731. restart:
  732. nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
  733. (void ***)pages, index, nr_pages);
  734. ret = 0;
  735. for (i = 0; i < nr_found; i++) {
  736. struct page *page;
  737. repeat:
  738. page = radix_tree_deref_slot((void **)pages[i]);
  739. if (unlikely(!page))
  740. continue;
  741. /*
  742. * this can only trigger if nr_found == 1, making livelock
  743. * a non issue.
  744. */
  745. if (unlikely(page == RADIX_TREE_RETRY))
  746. goto restart;
  747. if (page->mapping == NULL || page->index != index)
  748. break;
  749. if (!page_cache_get_speculative(page))
  750. goto repeat;
  751. /* Has the page moved? */
  752. if (unlikely(page != *((void **)pages[i]))) {
  753. page_cache_release(page);
  754. goto repeat;
  755. }
  756. pages[ret] = page;
  757. ret++;
  758. index++;
  759. }
  760. rcu_read_unlock();
  761. return ret;
  762. }
  763. EXPORT_SYMBOL(find_get_pages_contig);
  764. /**
  765. * find_get_pages_tag - find and return pages that match @tag
  766. * @mapping: the address_space to search
  767. * @index: the starting page index
  768. * @tag: the tag index
  769. * @nr_pages: the maximum number of pages
  770. * @pages: where the resulting pages are placed
  771. *
  772. * Like find_get_pages, except we only return pages which are tagged with
  773. * @tag. We update @index to index the next page for the traversal.
  774. */
  775. unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  776. int tag, unsigned int nr_pages, struct page **pages)
  777. {
  778. unsigned int i;
  779. unsigned int ret;
  780. unsigned int nr_found;
  781. rcu_read_lock();
  782. restart:
  783. nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
  784. (void ***)pages, *index, nr_pages, tag);
  785. ret = 0;
  786. for (i = 0; i < nr_found; i++) {
  787. struct page *page;
  788. repeat:
  789. page = radix_tree_deref_slot((void **)pages[i]);
  790. if (unlikely(!page))
  791. continue;
  792. /*
  793. * this can only trigger if nr_found == 1, making livelock
  794. * a non issue.
  795. */
  796. if (unlikely(page == RADIX_TREE_RETRY))
  797. goto restart;
  798. if (!page_cache_get_speculative(page))
  799. goto repeat;
  800. /* Has the page moved? */
  801. if (unlikely(page != *((void **)pages[i]))) {
  802. page_cache_release(page);
  803. goto repeat;
  804. }
  805. pages[ret] = page;
  806. ret++;
  807. }
  808. rcu_read_unlock();
  809. if (ret)
  810. *index = pages[ret - 1]->index + 1;
  811. return ret;
  812. }
  813. EXPORT_SYMBOL(find_get_pages_tag);
  814. /**
  815. * grab_cache_page_nowait - returns locked page at given index in given cache
  816. * @mapping: target address_space
  817. * @index: the page index
  818. *
  819. * Same as grab_cache_page(), but do not wait if the page is unavailable.
  820. * This is intended for speculative data generators, where the data can
  821. * be regenerated if the page couldn't be grabbed. This routine should
  822. * be safe to call while holding the lock for another page.
  823. *
  824. * Clear __GFP_FS when allocating the page to avoid recursion into the fs
  825. * and deadlock against the caller's locked page.
  826. */
  827. struct page *
  828. grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
  829. {
  830. struct page *page = find_get_page(mapping, index);
  831. if (page) {
  832. if (trylock_page(page))
  833. return page;
  834. page_cache_release(page);
  835. return NULL;
  836. }
  837. page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
  838. if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
  839. page_cache_release(page);
  840. page = NULL;
  841. }
  842. return page;
  843. }
  844. EXPORT_SYMBOL(grab_cache_page_nowait);
  845. /*
  846. * CD/DVDs are error prone. When a medium error occurs, the driver may fail
  847. * a _large_ part of the i/o request. Imagine the worst scenario:
  848. *
  849. * ---R__________________________________________B__________
  850. * ^ reading here ^ bad block(assume 4k)
  851. *
  852. * read(R) => miss => readahead(R...B) => media error => frustrating retries
  853. * => failing the whole request => read(R) => read(R+1) =>
  854. * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
  855. * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
  856. * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
  857. *
  858. * It is going insane. Fix it by quickly scaling down the readahead size.
  859. */
  860. static void shrink_readahead_size_eio(struct file *filp,
  861. struct file_ra_state *ra)
  862. {
  863. ra->ra_pages /= 4;
  864. }
  865. /**
  866. * do_generic_file_read - generic file read routine
  867. * @filp: the file to read
  868. * @ppos: current file position
  869. * @desc: read_descriptor
  870. * @actor: read method
  871. *
  872. * This is a generic file read routine, and uses the
  873. * mapping->a_ops->readpage() function for the actual low-level stuff.
  874. *
  875. * This is really ugly. But the goto's actually try to clarify some
  876. * of the logic when it comes to error handling etc.
  877. */
  878. static void do_generic_file_read(struct file *filp, loff_t *ppos,
  879. read_descriptor_t *desc, read_actor_t actor)
  880. {
  881. struct address_space *mapping = filp->f_mapping;
  882. struct inode *inode = mapping->host;
  883. struct file_ra_state *ra = &filp->f_ra;
  884. pgoff_t index;
  885. pgoff_t last_index;
  886. pgoff_t prev_index;
  887. unsigned long offset; /* offset into pagecache page */
  888. unsigned int prev_offset;
  889. int error;
  890. index = *ppos >> PAGE_CACHE_SHIFT;
  891. prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
  892. prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
  893. last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
  894. offset = *ppos & ~PAGE_CACHE_MASK;
  895. for (;;) {
  896. struct page *page;
  897. pgoff_t end_index;
  898. loff_t isize;
  899. unsigned long nr, ret;
  900. cond_resched();
  901. find_page:
  902. page = find_get_page(mapping, index);
  903. if (!page) {
  904. page_cache_sync_readahead(mapping,
  905. ra, filp,
  906. index, last_index - index);
  907. page = find_get_page(mapping, index);
  908. if (unlikely(page == NULL))
  909. goto no_cached_page;
  910. }
  911. if (PageReadahead(page)) {
  912. page_cache_async_readahead(mapping,
  913. ra, filp, page,
  914. index, last_index - index);
  915. }
  916. if (!PageUptodate(page)) {
  917. if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
  918. !mapping->a_ops->is_partially_uptodate)
  919. goto page_not_up_to_date;
  920. if (!trylock_page(page))
  921. goto page_not_up_to_date;
  922. if (!mapping->a_ops->is_partially_uptodate(page,
  923. desc, offset))
  924. goto page_not_up_to_date_locked;
  925. unlock_page(page);
  926. }
  927. page_ok:
  928. /*
  929. * i_size must be checked after we know the page is Uptodate.
  930. *
  931. * Checking i_size after the check allows us to calculate
  932. * the correct value for "nr", which means the zero-filled
  933. * part of the page is not copied back to userspace (unless
  934. * another truncate extends the file - this is desired though).
  935. */
  936. isize = i_size_read(inode);
  937. end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
  938. if (unlikely(!isize || index > end_index)) {
  939. page_cache_release(page);
  940. goto out;
  941. }
  942. /* nr is the maximum number of bytes to copy from this page */
  943. nr = PAGE_CACHE_SIZE;
  944. if (index == end_index) {
  945. nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
  946. if (nr <= offset) {
  947. page_cache_release(page);
  948. goto out;
  949. }
  950. }
  951. nr = nr - offset;
  952. /* If users can be writing to this page using arbitrary
  953. * virtual addresses, take care about potential aliasing
  954. * before reading the page on the kernel side.
  955. */
  956. if (mapping_writably_mapped(mapping))
  957. flush_dcache_page(page);
  958. /*
  959. * When a sequential read accesses a page several times,
  960. * only mark it as accessed the first time.
  961. */
  962. if (prev_index != index || offset != prev_offset)
  963. mark_page_accessed(page);
  964. prev_index = index;
  965. /*
  966. * Ok, we have the page, and it's up-to-date, so
  967. * now we can copy it to user space...
  968. *
  969. * The actor routine returns how many bytes were actually used..
  970. * NOTE! This may not be the same as how much of a user buffer
  971. * we filled up (we may be padding etc), so we can only update
  972. * "pos" here (the actor routine has to update the user buffer
  973. * pointers and the remaining count).
  974. */
  975. ret = actor(desc, page, offset, nr);
  976. offset += ret;
  977. index += offset >> PAGE_CACHE_SHIFT;
  978. offset &= ~PAGE_CACHE_MASK;
  979. prev_offset = offset;
  980. page_cache_release(page);
  981. if (ret == nr && desc->count)
  982. continue;
  983. goto out;
  984. page_not_up_to_date:
  985. /* Get exclusive access to the page ... */
  986. error = lock_page_killable(page);
  987. if (unlikely(error))
  988. goto readpage_error;
  989. page_not_up_to_date_locked:
  990. /* Did it get truncated before we got the lock? */
  991. if (!page->mapping) {
  992. unlock_page(page);
  993. page_cache_release(page);
  994. continue;
  995. }
  996. /* Did somebody else fill it already? */
  997. if (PageUptodate(page)) {
  998. unlock_page(page);
  999. goto page_ok;
  1000. }
  1001. readpage:
  1002. /*
  1003. * A previous I/O error may have been due to temporary
  1004. * failures, eg. multipath errors.
  1005. * PG_error will be set again if readpage fails.
  1006. */
  1007. ClearPageError(page);
  1008. /* Start the actual read. The read will unlock the page. */
  1009. error = mapping->a_ops->readpage(filp, page);
  1010. if (unlikely(error)) {
  1011. if (error == AOP_TRUNCATED_PAGE) {
  1012. page_cache_release(page);
  1013. goto find_page;
  1014. }
  1015. goto readpage_error;
  1016. }
  1017. if (!PageUptodate(page)) {
  1018. error = lock_page_killable(page);
  1019. if (unlikely(error))
  1020. goto readpage_error;
  1021. if (!PageUptodate(page)) {
  1022. if (page->mapping == NULL) {
  1023. /*
  1024. * invalidate_mapping_pages got it
  1025. */
  1026. unlock_page(page);
  1027. page_cache_release(page);
  1028. goto find_page;
  1029. }
  1030. unlock_page(page);
  1031. shrink_readahead_size_eio(filp, ra);
  1032. error = -EIO;
  1033. goto readpage_error;
  1034. }
  1035. unlock_page(page);
  1036. }
  1037. goto page_ok;
  1038. readpage_error:
  1039. /* UHHUH! A synchronous read error occurred. Report it */
  1040. desc->error = error;
  1041. page_cache_release(page);
  1042. goto out;
  1043. no_cached_page:
  1044. /*
  1045. * Ok, it wasn't cached, so we need to create a new
  1046. * page..
  1047. */
  1048. page = page_cache_alloc_cold(mapping);
  1049. if (!page) {
  1050. desc->error = -ENOMEM;
  1051. goto out;
  1052. }
  1053. error = add_to_page_cache_lru(page, mapping,
  1054. index, GFP_KERNEL);
  1055. if (error) {
  1056. page_cache_release(page);
  1057. if (error == -EEXIST)
  1058. goto find_page;
  1059. desc->error = error;
  1060. goto out;
  1061. }
  1062. goto readpage;
  1063. }
  1064. out:
  1065. ra->prev_pos = prev_index;
  1066. ra->prev_pos <<= PAGE_CACHE_SHIFT;
  1067. ra->prev_pos |= prev_offset;
  1068. *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
  1069. file_accessed(filp);
  1070. }
  1071. int file_read_actor(read_descriptor_t *desc, struct page *page,
  1072. unsigned long offset, unsigned long size)
  1073. {
  1074. char *kaddr;
  1075. unsigned long left, count = desc->count;
  1076. if (size > count)
  1077. size = count;
  1078. /*
  1079. * Faults on the destination of a read are common, so do it before
  1080. * taking the kmap.
  1081. */
  1082. if (!fault_in_pages_writeable(desc->arg.buf, size)) {
  1083. kaddr = kmap_atomic(page, KM_USER0);
  1084. left = __copy_to_user_inatomic(desc->arg.buf,
  1085. kaddr + offset, size);
  1086. kunmap_atomic(kaddr, KM_USER0);
  1087. if (left == 0)
  1088. goto success;
  1089. }
  1090. /* Do it the slow way */
  1091. kaddr = kmap(page);
  1092. left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
  1093. kunmap(page);
  1094. if (left) {
  1095. size -= left;
  1096. desc->error = -EFAULT;
  1097. }
  1098. success:
  1099. desc->count = count - size;
  1100. desc->written += size;
  1101. desc->arg.buf += size;
  1102. return size;
  1103. }
  1104. /*
  1105. * Performs necessary checks before doing a write
  1106. * @iov: io vector request
  1107. * @nr_segs: number of segments in the iovec
  1108. * @count: number of bytes to write
  1109. * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
  1110. *
  1111. * Adjust number of segments and amount of bytes to write (nr_segs should be
  1112. * properly initialized first). Returns appropriate error code that caller
  1113. * should return or zero in case that write should be allowed.
  1114. */
  1115. int generic_segment_checks(const struct iovec *iov,
  1116. unsigned long *nr_segs, size_t *count, int access_flags)
  1117. {
  1118. unsigned long seg;
  1119. size_t cnt = 0;
  1120. for (seg = 0; seg < *nr_segs; seg++) {
  1121. const struct iovec *iv = &iov[seg];
  1122. /*
  1123. * If any segment has a negative length, or the cumulative
  1124. * length ever wraps negative then return -EINVAL.
  1125. */
  1126. cnt += iv->iov_len;
  1127. if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
  1128. return -EINVAL;
  1129. if (access_ok(access_flags, iv->iov_base, iv->iov_len))
  1130. continue;
  1131. if (seg == 0)
  1132. return -EFAULT;
  1133. *nr_segs = seg;
  1134. cnt -= iv->iov_len; /* This segment is no good */
  1135. break;
  1136. }
  1137. *count = cnt;
  1138. return 0;
  1139. }
  1140. EXPORT_SYMBOL(generic_segment_checks);
  1141. /**
  1142. * generic_file_aio_read - generic filesystem read routine
  1143. * @iocb: kernel I/O control block
  1144. * @iov: io vector request
  1145. * @nr_segs: number of segments in the iovec
  1146. * @pos: current file position
  1147. *
  1148. * This is the "read()" routine for all filesystems
  1149. * that can use the page cache directly.
  1150. */
  1151. ssize_t
  1152. generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
  1153. unsigned long nr_segs, loff_t pos)
  1154. {
  1155. struct file *filp = iocb->ki_filp;
  1156. ssize_t retval;
  1157. unsigned long seg = 0;
  1158. size_t count;
  1159. loff_t *ppos = &iocb->ki_pos;
  1160. count = 0;
  1161. retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
  1162. if (retval)
  1163. return retval;
  1164. /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  1165. if (filp->f_flags & O_DIRECT) {
  1166. loff_t size;
  1167. struct address_space *mapping;
  1168. struct inode *inode;
  1169. mapping = filp->f_mapping;
  1170. inode = mapping->host;
  1171. if (!count)
  1172. goto out; /* skip atime */
  1173. size = i_size_read(inode);
  1174. if (pos < size) {
  1175. retval = filemap_write_and_wait_range(mapping, pos,
  1176. pos + iov_length(iov, nr_segs) - 1);
  1177. if (!retval) {
  1178. retval = mapping->a_ops->direct_IO(READ, iocb,
  1179. iov, pos, nr_segs);
  1180. }
  1181. if (retval > 0) {
  1182. *ppos = pos + retval;
  1183. count -= retval;
  1184. }
  1185. /*
  1186. * Btrfs can have a short DIO read if we encounter
  1187. * compressed extents, so if there was an error, or if
  1188. * we've already read everything we wanted to, or if
  1189. * there was a short read because we hit EOF, go ahead
  1190. * and return. Otherwise fallthrough to buffered io for
  1191. * the rest of the read.
  1192. */
  1193. if (retval < 0 || !count || *ppos >= size) {
  1194. file_accessed(filp);
  1195. goto out;
  1196. }
  1197. }
  1198. }
  1199. count = retval;
  1200. for (seg = 0; seg < nr_segs; seg++) {
  1201. read_descriptor_t desc;
  1202. loff_t offset = 0;
  1203. /*
  1204. * If we did a short DIO read we need to skip the section of the
  1205. * iov that we've already read data into.
  1206. */
  1207. if (count) {
  1208. if (count > iov[seg].iov_len) {
  1209. count -= iov[seg].iov_len;
  1210. continue;
  1211. }
  1212. offset = count;
  1213. count = 0;
  1214. }
  1215. desc.written = 0;
  1216. desc.arg.buf = iov[seg].iov_base + offset;
  1217. desc.count = iov[seg].iov_len - offset;
  1218. if (desc.count == 0)
  1219. continue;
  1220. desc.error = 0;
  1221. do_generic_file_read(filp, ppos, &desc, file_read_actor);
  1222. retval += desc.written;
  1223. if (desc.error) {
  1224. retval = retval ?: desc.error;
  1225. break;
  1226. }
  1227. if (desc.count > 0)
  1228. break;
  1229. }
  1230. out:
  1231. return retval;
  1232. }
  1233. EXPORT_SYMBOL(generic_file_aio_read);
  1234. static ssize_t
  1235. do_readahead(struct address_space *mapping, struct file *filp,
  1236. pgoff_t index, unsigned long nr)
  1237. {
  1238. if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
  1239. return -EINVAL;
  1240. force_page_cache_readahead(mapping, filp, index, nr);
  1241. return 0;
  1242. }
  1243. SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
  1244. {
  1245. ssize_t ret;
  1246. struct file *file;
  1247. ret = -EBADF;
  1248. file = fget(fd);
  1249. if (file) {
  1250. if (file->f_mode & FMODE_READ) {
  1251. struct address_space *mapping = file->f_mapping;
  1252. pgoff_t start = offset >> PAGE_CACHE_SHIFT;
  1253. pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
  1254. unsigned long len = end - start + 1;
  1255. ret = do_readahead(mapping, file, start, len);
  1256. }
  1257. fput(file);
  1258. }
  1259. return ret;
  1260. }
  1261. #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
  1262. asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
  1263. {
  1264. return SYSC_readahead((int) fd, offset, (size_t) count);
  1265. }
  1266. SYSCALL_ALIAS(sys_readahead, SyS_readahead);
  1267. #endif
  1268. #ifdef CONFIG_MMU
  1269. /**
  1270. * page_cache_read - adds requested page to the page cache if not already there
  1271. * @file: file to read
  1272. * @offset: page index
  1273. *
  1274. * This adds the requested page to the page cache if it isn't already there,
  1275. * and schedules an I/O to read in its contents from disk.
  1276. */
  1277. static int page_cache_read(struct file *file, pgoff_t offset)
  1278. {
  1279. struct address_space *mapping = file->f_mapping;
  1280. struct page *page;
  1281. int ret;
  1282. do {
  1283. page = page_cache_alloc_cold(mapping);
  1284. if (!page)
  1285. return -ENOMEM;
  1286. ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
  1287. if (ret == 0)
  1288. ret = mapping->a_ops->readpage(file, page);
  1289. else if (ret == -EEXIST)
  1290. ret = 0; /* losing race to add is OK */
  1291. page_cache_release(page);
  1292. } while (ret == AOP_TRUNCATED_PAGE);
  1293. return ret;
  1294. }
  1295. #define MMAP_LOTSAMISS (100)
  1296. /*
  1297. * Synchronous readahead happens when we don't even find
  1298. * a page in the page cache at all.
  1299. */
  1300. static void do_sync_mmap_readahead(struct vm_area_struct *vma,
  1301. struct file_ra_state *ra,
  1302. struct file *file,
  1303. pgoff_t offset)
  1304. {
  1305. unsigned long ra_pages;
  1306. struct address_space *mapping = file->f_mapping;
  1307. /* If we don't want any read-ahead, don't bother */
  1308. if (VM_RandomReadHint(vma))
  1309. return;
  1310. if (VM_SequentialReadHint(vma) ||
  1311. offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
  1312. page_cache_sync_readahead(mapping, ra, file, offset,
  1313. ra->ra_pages);
  1314. return;
  1315. }
  1316. if (ra->mmap_miss < INT_MAX)
  1317. ra->mmap_miss++;
  1318. /*
  1319. * Do we miss much more than hit in this file? If so,
  1320. * stop bothering with read-ahead. It will only hurt.
  1321. */
  1322. if (ra->mmap_miss > MMAP_LOTSAMISS)
  1323. return;
  1324. /*
  1325. * mmap read-around
  1326. */
  1327. ra_pages = max_sane_readahead(ra->ra_pages);
  1328. if (ra_pages) {
  1329. ra->start = max_t(long, 0, offset - ra_pages/2);
  1330. ra->size = ra_pages;
  1331. ra->async_size = 0;
  1332. ra_submit(ra, mapping, file);
  1333. }
  1334. }
  1335. /*
  1336. * Asynchronous readahead happens when we find the page and PG_readahead,
  1337. * so we want to possibly extend the readahead further..
  1338. */
  1339. static void do_async_mmap_readahead(struct vm_area_struct *vma,
  1340. struct file_ra_state *ra,
  1341. struct file *file,
  1342. struct page *page,
  1343. pgoff_t offset)
  1344. {
  1345. struct address_space *mapping = file->f_mapping;
  1346. /* If we don't want any read-ahead, don't bother */
  1347. if (VM_RandomReadHint(vma))
  1348. return;
  1349. if (ra->mmap_miss > 0)
  1350. ra->mmap_miss--;
  1351. if (PageReadahead(page))
  1352. page_cache_async_readahead(mapping, ra, file,
  1353. page, offset, ra->ra_pages);
  1354. }
  1355. /**
  1356. * filemap_fault - read in file data for page fault handling
  1357. * @vma: vma in which the fault was taken
  1358. * @vmf: struct vm_fault containing details of the fault
  1359. *
  1360. * filemap_fault() is invoked via the vma operations vector for a
  1361. * mapped memory region to read in file data during a page fault.
  1362. *
  1363. * The goto's are kind of ugly, but this streamlines the normal case of having
  1364. * it in the page cache, and handles the special cases reasonably without
  1365. * having a lot of duplicated code.
  1366. */
  1367. int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1368. {
  1369. int error;
  1370. struct file *file = vma->vm_file;
  1371. struct address_space *mapping = file->f_mapping;
  1372. struct file_ra_state *ra = &file->f_ra;
  1373. struct inode *inode = mapping->host;
  1374. pgoff_t offset = vmf->pgoff;
  1375. struct page *page;
  1376. pgoff_t size;
  1377. int ret = 0;
  1378. size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1379. if (offset >= size)
  1380. return VM_FAULT_SIGBUS;
  1381. /*
  1382. * Do we have something in the page cache already?
  1383. */
  1384. page = find_get_page(mapping, offset);
  1385. if (likely(page)) {
  1386. /*
  1387. * We found the page, so try async readahead before
  1388. * waiting for the lock.
  1389. */
  1390. do_async_mmap_readahead(vma, ra, file, page, offset);
  1391. lock_page(page);
  1392. /* Did it get truncated? */
  1393. if (unlikely(page->mapping != mapping)) {
  1394. unlock_page(page);
  1395. put_page(page);
  1396. goto no_cached_page;
  1397. }
  1398. } else {
  1399. /* No page in the page cache at all */
  1400. do_sync_mmap_readahead(vma, ra, file, offset);
  1401. count_vm_event(PGMAJFAULT);
  1402. ret = VM_FAULT_MAJOR;
  1403. retry_find:
  1404. page = find_lock_page(mapping, offset);
  1405. if (!page)
  1406. goto no_cached_page;
  1407. }
  1408. /*
  1409. * We have a locked page in the page cache, now we need to check
  1410. * that it's up-to-date. If not, it is going to be due to an error.
  1411. */
  1412. if (unlikely(!PageUptodate(page)))
  1413. goto page_not_uptodate;
  1414. /*
  1415. * Found the page and have a reference on it.
  1416. * We must recheck i_size under page lock.
  1417. */
  1418. size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1419. if (unlikely(offset >= size)) {
  1420. unlock_page(page);
  1421. page_cache_release(page);
  1422. return VM_FAULT_SIGBUS;
  1423. }
  1424. ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
  1425. vmf->page = page;
  1426. return ret | VM_FAULT_LOCKED;
  1427. no_cached_page:
  1428. /*
  1429. * We're only likely to ever get here if MADV_RANDOM is in
  1430. * effect.
  1431. */
  1432. error = page_cache_read(file, offset);
  1433. /*
  1434. * The page we want has now been added to the page cache.
  1435. * In the unlikely event that someone removed it in the
  1436. * meantime, we'll just come back here and read it again.
  1437. */
  1438. if (error >= 0)
  1439. goto retry_find;
  1440. /*
  1441. * An error return from page_cache_read can result if the
  1442. * system is low on memory, or a problem occurs while trying
  1443. * to schedule I/O.
  1444. */
  1445. if (error == -ENOMEM)
  1446. return VM_FAULT_OOM;
  1447. return VM_FAULT_SIGBUS;
  1448. page_not_uptodate:
  1449. /*
  1450. * Umm, take care of errors if the page isn't up-to-date.
  1451. * Try to re-read it _once_. We do this synchronously,
  1452. * because there really aren't any performance issues here
  1453. * and we need to check for errors.
  1454. */
  1455. ClearPageError(page);
  1456. error = mapping->a_ops->readpage(file, page);
  1457. if (!error) {
  1458. wait_on_page_locked(page);
  1459. if (!PageUptodate(page))
  1460. error = -EIO;
  1461. }
  1462. page_cache_release(page);
  1463. if (!error || error == AOP_TRUNCATED_PAGE)
  1464. goto retry_find;
  1465. /* Things didn't work out. Return zero to tell the mm layer so. */
  1466. shrink_readahead_size_eio(file, ra);
  1467. return VM_FAULT_SIGBUS;
  1468. }
  1469. EXPORT_SYMBOL(filemap_fault);
  1470. const struct vm_operations_struct generic_file_vm_ops = {
  1471. .fault = filemap_fault,
  1472. };
  1473. /* This is used for a general mmap of a disk file */
  1474. int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  1475. {
  1476. struct address_space *mapping = file->f_mapping;
  1477. if (!mapping->a_ops->readpage)
  1478. return -ENOEXEC;
  1479. file_accessed(file);
  1480. vma->vm_ops = &generic_file_vm_ops;
  1481. vma->vm_flags |= VM_CAN_NONLINEAR;
  1482. return 0;
  1483. }
  1484. /*
  1485. * This is for filesystems which do not implement ->writepage.
  1486. */
  1487. int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
  1488. {
  1489. if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
  1490. return -EINVAL;
  1491. return generic_file_mmap(file, vma);
  1492. }
  1493. #else
  1494. int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  1495. {
  1496. return -ENOSYS;
  1497. }
  1498. int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
  1499. {
  1500. return -ENOSYS;
  1501. }
  1502. #endif /* CONFIG_MMU */
  1503. EXPORT_SYMBOL(generic_file_mmap);
  1504. EXPORT_SYMBOL(generic_file_readonly_mmap);
  1505. static struct page *__read_cache_page(struct address_space *mapping,
  1506. pgoff_t index,
  1507. int (*filler)(void *,struct page*),
  1508. void *data,
  1509. gfp_t gfp)
  1510. {
  1511. struct page *page;
  1512. int err;
  1513. repeat:
  1514. page = find_get_page(mapping, index);
  1515. if (!page) {
  1516. page = __page_cache_alloc(gfp | __GFP_COLD);
  1517. if (!page)
  1518. return ERR_PTR(-ENOMEM);
  1519. err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
  1520. if (unlikely(err)) {
  1521. page_cache_release(page);
  1522. if (err == -EEXIST)
  1523. goto repeat;
  1524. /* Presumably ENOMEM for radix tree node */
  1525. return ERR_PTR(err);
  1526. }
  1527. err = filler(data, page);
  1528. if (err < 0) {
  1529. page_cache_release(page);
  1530. page = ERR_PTR(err);
  1531. }
  1532. }
  1533. return page;
  1534. }
  1535. static struct page *do_read_cache_page(struct address_space *mapping,
  1536. pgoff_t index,
  1537. int (*filler)(void *,struct page*),
  1538. void *data,
  1539. gfp_t gfp)
  1540. {
  1541. struct page *page;
  1542. int err;
  1543. retry:
  1544. page = __read_cache_page(mapping, index, filler, data, gfp);
  1545. if (IS_ERR(page))
  1546. return page;
  1547. if (PageUptodate(page))
  1548. goto out;
  1549. lock_page(page);
  1550. if (!page->mapping) {
  1551. unlock_page(page);
  1552. page_cache_release(page);
  1553. goto retry;
  1554. }
  1555. if (PageUptodate(page)) {
  1556. unlock_page(page);
  1557. goto out;
  1558. }
  1559. err = filler(data, page);
  1560. if (err < 0) {
  1561. page_cache_release(page);
  1562. return ERR_PTR(err);
  1563. }
  1564. out:
  1565. mark_page_accessed(page);
  1566. return page;
  1567. }
  1568. /**
  1569. * read_cache_page_async - read into page cache, fill it if needed
  1570. * @mapping: the page's address_space
  1571. * @index: the page index
  1572. * @filler: function to perform the read
  1573. * @data: destination for read data
  1574. *
  1575. * Same as read_cache_page, but don't wait for page to become unlocked
  1576. * after submitting it to the filler.
  1577. *
  1578. * Read into the page cache. If a page already exists, and PageUptodate() is
  1579. * not set, try to fill the page but don't wait for it to become unlocked.
  1580. *
  1581. * If the page does not get brought uptodate, return -EIO.
  1582. */
  1583. struct page *read_cache_page_async(struct address_space *mapping,
  1584. pgoff_t index,
  1585. int (*filler)(void *,struct page*),
  1586. void *data)
  1587. {
  1588. return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
  1589. }
  1590. EXPORT_SYMBOL(read_cache_page_async);
  1591. static struct page *wait_on_page_read(struct page *page)
  1592. {
  1593. if (!IS_ERR(page)) {
  1594. wait_on_page_locked(page);
  1595. if (!PageUptodate(page)) {
  1596. page_cache_release(page);
  1597. page = ERR_PTR(-EIO);
  1598. }
  1599. }
  1600. return page;
  1601. }
  1602. /**
  1603. * read_cache_page_gfp - read into page cache, using specified page allocation flags.
  1604. * @mapping: the page's address_space
  1605. * @index: the page index
  1606. * @gfp: the page allocator flags to use if allocating
  1607. *
  1608. * This is the same as "read_mapping_page(mapping, index, NULL)", but with
  1609. * any new page allocations done using the specified allocation flags. Note
  1610. * that the Radix tree operations will still use GFP_KERNEL, so you can't
  1611. * expect to do this atomically or anything like that - but you can pass in
  1612. * other page requirements.
  1613. *
  1614. * If the page does not get brought uptodate, return -EIO.
  1615. */
  1616. struct page *read_cache_page_gfp(struct address_space *mapping,
  1617. pgoff_t index,
  1618. gfp_t gfp)
  1619. {
  1620. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  1621. return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
  1622. }
  1623. EXPORT_SYMBOL(read_cache_page_gfp);
  1624. /**
  1625. * read_cache_page - read into page cache, fill it if needed
  1626. * @mapping: the page's address_space
  1627. * @index: the page index
  1628. * @filler: function to perform the read
  1629. * @data: destination for read data
  1630. *
  1631. * Read into the page cache. If a page already exists, and PageUptodate() is
  1632. * not set, try to fill the page then wait for it to become unlocked.
  1633. *
  1634. * If the page does not get brought uptodate, return -EIO.
  1635. */
  1636. struct page *read_cache_page(struct address_space *mapping,
  1637. pgoff_t index,
  1638. int (*filler)(void *,struct page*),
  1639. void *data)
  1640. {
  1641. return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
  1642. }
  1643. EXPORT_SYMBOL(read_cache_page);
  1644. /*
  1645. * The logic we want is
  1646. *
  1647. * if suid or (sgid and xgrp)
  1648. * remove privs
  1649. */
  1650. int should_remove_suid(struct dentry *dentry)
  1651. {
  1652. mode_t mode = dentry->d_inode->i_mode;
  1653. int kill = 0;
  1654. /* suid always must be killed */
  1655. if (unlikely(mode & S_ISUID))
  1656. kill = ATTR_KILL_SUID;
  1657. /*
  1658. * sgid without any exec bits is just a mandatory locking mark; leave
  1659. * it alone. If some exec bits are set, it's a real sgid; kill it.
  1660. */
  1661. if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
  1662. kill |= ATTR_KILL_SGID;
  1663. if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
  1664. return kill;
  1665. return 0;
  1666. }
  1667. EXPORT_SYMBOL(should_remove_suid);
  1668. static int __remove_suid(struct dentry *dentry, int kill)
  1669. {
  1670. struct iattr newattrs;
  1671. newattrs.ia_valid = ATTR_FORCE | kill;
  1672. return notify_change(dentry, &newattrs);
  1673. }
  1674. int file_remove_suid(struct file *file)
  1675. {
  1676. struct dentry *dentry = file->f_path.dentry;
  1677. int killsuid = should_remove_suid(dentry);
  1678. int killpriv = security_inode_need_killpriv(dentry);
  1679. int error = 0;
  1680. if (killpriv < 0)
  1681. return killpriv;
  1682. if (killpriv)
  1683. error = security_inode_killpriv(dentry);
  1684. if (!error && killsuid)
  1685. error = __remove_suid(dentry, killsuid);
  1686. return error;
  1687. }
  1688. EXPORT_SYMBOL(file_remove_suid);
  1689. static size_t __iovec_copy_from_user_inatomic(char *vaddr,
  1690. const struct iovec *iov, size_t base, size_t bytes)
  1691. {
  1692. size_t copied = 0, left = 0;
  1693. while (bytes) {
  1694. char __user *buf = iov->iov_base + base;
  1695. int copy = min(bytes, iov->iov_len - base);
  1696. base = 0;
  1697. left = __copy_from_user_inatomic(vaddr, buf, copy);
  1698. copied += copy;
  1699. bytes -= copy;
  1700. vaddr += copy;
  1701. iov++;
  1702. if (unlikely(left))
  1703. break;
  1704. }
  1705. return copied - left;
  1706. }
  1707. /*
  1708. * Copy as much as we can into the page and return the number of bytes which
  1709. * were successfully copied. If a fault is encountered then return the number of
  1710. * bytes which were copied.
  1711. */
  1712. size_t iov_iter_copy_from_user_atomic(struct page *page,
  1713. struct iov_iter *i, unsigned long offset, size_t bytes)
  1714. {
  1715. char *kaddr;
  1716. size_t copied;
  1717. BUG_ON(!in_atomic());
  1718. kaddr = kmap_atomic(page, KM_USER0);
  1719. if (likely(i->nr_segs == 1)) {
  1720. int left;
  1721. char __user *buf = i->iov->iov_base + i->iov_offset;
  1722. left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
  1723. copied = bytes - left;
  1724. } else {
  1725. copied = __iovec_copy_from_user_inatomic(kaddr + offset,
  1726. i->iov, i->iov_offset, bytes);
  1727. }
  1728. kunmap_atomic(kaddr, KM_USER0);
  1729. return copied;
  1730. }
  1731. EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
  1732. /*
  1733. * This has the same sideeffects and return value as
  1734. * iov_iter_copy_from_user_atomic().
  1735. * The difference is that it attempts to resolve faults.
  1736. * Page must not be locked.
  1737. */
  1738. size_t iov_iter_copy_from_user(struct page *page,
  1739. struct iov_iter *i, unsigned long offset, size_t bytes)
  1740. {
  1741. char *kaddr;
  1742. size_t copied;
  1743. kaddr = kmap(page);
  1744. if (likely(i->nr_segs == 1)) {
  1745. int left;
  1746. char __user *buf = i->iov->iov_base + i->iov_offset;
  1747. left = __copy_from_user(kaddr + offset, buf, bytes);
  1748. copied = bytes - left;
  1749. } else {
  1750. copied = __iovec_copy_from_user_inatomic(kaddr + offset,
  1751. i->iov, i->iov_offset, bytes);
  1752. }
  1753. kunmap(page);
  1754. return copied;
  1755. }
  1756. EXPORT_SYMBOL(iov_iter_copy_from_user);
  1757. void iov_iter_advance(struct iov_iter *i, size_t bytes)
  1758. {
  1759. BUG_ON(i->count < bytes);
  1760. if (likely(i->nr_segs == 1)) {
  1761. i->iov_offset += bytes;
  1762. i->count -= bytes;
  1763. } else {
  1764. const struct iovec *iov = i->iov;
  1765. size_t base = i->iov_offset;
  1766. /*
  1767. * The !iov->iov_len check ensures we skip over unlikely
  1768. * zero-length segments (without overruning the iovec).
  1769. */
  1770. while (bytes || unlikely(i->count && !iov->iov_len)) {
  1771. int copy;
  1772. copy = min(bytes, iov->iov_len - base);
  1773. BUG_ON(!i->count || i->count < copy);
  1774. i->count -= copy;
  1775. bytes -= copy;
  1776. base += copy;
  1777. if (iov->iov_len == base) {
  1778. iov++;
  1779. base = 0;
  1780. }
  1781. }
  1782. i->iov = iov;
  1783. i->iov_offset = base;
  1784. }
  1785. }
  1786. EXPORT_SYMBOL(iov_iter_advance);
  1787. /*
  1788. * Fault in the first iovec of the given iov_iter, to a maximum length
  1789. * of bytes. Returns 0 on success, or non-zero if the memory could not be
  1790. * accessed (ie. because it is an invalid address).
  1791. *
  1792. * writev-intensive code may want this to prefault several iovecs -- that
  1793. * would be possible (callers must not rely on the fact that _only_ the
  1794. * first iovec will be faulted with the current implementation).
  1795. */
  1796. int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
  1797. {
  1798. char __user *buf = i->iov->iov_base + i->iov_offset;
  1799. bytes = min(bytes, i->iov->iov_len - i->iov_offset);
  1800. return fault_in_pages_readable(buf, bytes);
  1801. }
  1802. EXPORT_SYMBOL(iov_iter_fault_in_readable);
  1803. /*
  1804. * Return the count of just the current iov_iter segment.
  1805. */
  1806. size_t iov_iter_single_seg_count(struct iov_iter *i)
  1807. {
  1808. const struct iovec *iov = i->iov;
  1809. if (i->nr_segs == 1)
  1810. return i->count;
  1811. else
  1812. return min(i->count, iov->iov_len - i->iov_offset);
  1813. }
  1814. EXPORT_SYMBOL(iov_iter_single_seg_count);
  1815. /*
  1816. * Performs necessary checks before doing a write
  1817. *
  1818. * Can adjust writing position or amount of bytes to write.
  1819. * Returns appropriate error code that caller should return or
  1820. * zero in case that write should be allowed.
  1821. */
  1822. inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
  1823. {
  1824. struct inode *inode = file->f_mapping->host;
  1825. unsigned long limit = rlimit(RLIMIT_FSIZE);
  1826. if (unlikely(*pos < 0))
  1827. return -EINVAL;
  1828. if (!isblk) {
  1829. /* FIXME: this is for backwards compatibility with 2.4 */
  1830. if (file->f_flags & O_APPEND)
  1831. *pos = i_size_read(inode);
  1832. if (limit != RLIM_INFINITY) {
  1833. if (*pos >= limit) {
  1834. send_sig(SIGXFSZ, current, 0);
  1835. return -EFBIG;
  1836. }
  1837. if (*count > limit - (typeof(limit))*pos) {
  1838. *count = limit - (typeof(limit))*pos;
  1839. }
  1840. }
  1841. }
  1842. /*
  1843. * LFS rule
  1844. */
  1845. if (unlikely(*pos + *count > MAX_NON_LFS &&
  1846. !(file->f_flags & O_LARGEFILE))) {
  1847. if (*pos >= MAX_NON_LFS) {
  1848. return -EFBIG;
  1849. }
  1850. if (*count > MAX_NON_LFS - (unsigned long)*pos) {
  1851. *count = MAX_NON_LFS - (unsigned long)*pos;
  1852. }
  1853. }
  1854. /*
  1855. * Are we about to exceed the fs block limit ?
  1856. *
  1857. * If we have written data it becomes a short write. If we have
  1858. * exceeded without writing data we send a signal and return EFBIG.
  1859. * Linus frestrict idea will clean these up nicely..
  1860. */
  1861. if (likely(!isblk)) {
  1862. if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
  1863. if (*count || *pos > inode->i_sb->s_maxbytes) {
  1864. return -EFBIG;
  1865. }
  1866. /* zero-length writes at ->s_maxbytes are OK */
  1867. }
  1868. if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
  1869. *count = inode->i_sb->s_maxbytes - *pos;
  1870. } else {
  1871. #ifdef CONFIG_BLOCK
  1872. loff_t isize;
  1873. if (bdev_read_only(I_BDEV(inode)))
  1874. return -EPERM;
  1875. isize = i_size_read(inode);
  1876. if (*pos >= isize) {
  1877. if (*count || *pos > isize)
  1878. return -ENOSPC;
  1879. }
  1880. if (*pos + *count > isize)
  1881. *count = isize - *pos;
  1882. #else
  1883. return -EPERM;
  1884. #endif
  1885. }
  1886. return 0;
  1887. }
  1888. EXPORT_SYMBOL(generic_write_checks);
  1889. int pagecache_write_begin(struct file *file, struct address_space *mapping,
  1890. loff_t pos, unsigned len, unsigned flags,
  1891. struct page **pagep, void **fsdata)
  1892. {
  1893. const struct address_space_operations *aops = mapping->a_ops;
  1894. return aops->write_begin(file, mapping, pos, len, flags,
  1895. pagep, fsdata);
  1896. }
  1897. EXPORT_SYMBOL(pagecache_write_begin);
  1898. int pagecache_write_end(struct file *file, struct address_space *mapping,
  1899. loff_t pos, unsigned len, unsigned copied,
  1900. struct page *page, void *fsdata)
  1901. {
  1902. const struct address_space_operations *aops = mapping->a_ops;
  1903. mark_page_accessed(page);
  1904. return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
  1905. }
  1906. EXPORT_SYMBOL(pagecache_write_end);
  1907. ssize_t
  1908. generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  1909. unsigned long *nr_segs, loff_t pos, loff_t *ppos,
  1910. size_t count, size_t ocount)
  1911. {
  1912. struct file *file = iocb->ki_filp;
  1913. struct address_space *mapping = file->f_mapping;
  1914. struct inode *inode = mapping->host;
  1915. ssize_t written;
  1916. size_t write_len;
  1917. pgoff_t end;
  1918. if (count != ocount)
  1919. *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
  1920. write_len = iov_length(iov, *nr_segs);
  1921. end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
  1922. written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
  1923. if (written)
  1924. goto out;
  1925. /*
  1926. * After a write we want buffered reads to be sure to go to disk to get
  1927. * the new data. We invalidate clean cached page from the region we're
  1928. * about to write. We do this *before* the write so that we can return
  1929. * without clobbering -EIOCBQUEUED from ->direct_IO().
  1930. */
  1931. if (mapping->nrpages) {
  1932. written = invalidate_inode_pages2_range(mapping,
  1933. pos >> PAGE_CACHE_SHIFT, end);
  1934. /*
  1935. * If a page can not be invalidated, return 0 to fall back
  1936. * to buffered write.
  1937. */
  1938. if (written) {
  1939. if (written == -EBUSY)
  1940. return 0;
  1941. goto out;
  1942. }
  1943. }
  1944. written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
  1945. /*
  1946. * Finally, try again to invalidate clean pages which might have been
  1947. * cached by non-direct readahead, or faulted in by get_user_pages()
  1948. * if the source of the write was an mmap'ed region of the file
  1949. * we're writing. Either one is a pretty crazy thing to do,
  1950. * so we don't support it 100%. If this invalidation
  1951. * fails, tough, the write still worked...
  1952. */
  1953. if (mapping->nrpages) {
  1954. invalidate_inode_pages2_range(mapping,
  1955. pos >> PAGE_CACHE_SHIFT, end);
  1956. }
  1957. if (written > 0) {
  1958. loff_t end = pos + written;
  1959. if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
  1960. i_size_write(inode, end);
  1961. mark_inode_dirty(inode);
  1962. }
  1963. *ppos = end;
  1964. }
  1965. out:
  1966. return written;
  1967. }
  1968. EXPORT_SYMBOL(generic_file_direct_write);
  1969. /*
  1970. * Find or create a page at the given pagecache position. Return the locked
  1971. * page. This function is specifically for buffered writes.
  1972. */
  1973. struct page *grab_cache_page_write_begin(struct address_space *mapping,
  1974. pgoff_t index, unsigned flags)
  1975. {
  1976. int status;
  1977. struct page *page;
  1978. gfp_t gfp_notmask = 0;
  1979. if (flags & AOP_FLAG_NOFS)
  1980. gfp_notmask = __GFP_FS;
  1981. repeat:
  1982. page = find_lock_page(mapping, index);
  1983. if (likely(page))
  1984. return page;
  1985. page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
  1986. if (!page)
  1987. return NULL;
  1988. status = add_to_page_cache_lru(page, mapping, index,
  1989. GFP_KERNEL & ~gfp_notmask);
  1990. if (unlikely(status)) {
  1991. page_cache_release(page);
  1992. if (status == -EEXIST)
  1993. goto repeat;
  1994. return NULL;
  1995. }
  1996. return page;
  1997. }
  1998. EXPORT_SYMBOL(grab_cache_page_write_begin);
  1999. static ssize_t generic_perform_write(struct file *file,
  2000. struct iov_iter *i, loff_t pos)
  2001. {
  2002. struct address_space *mapping = file->f_mapping;
  2003. const struct address_space_operations *a_ops = mapping->a_ops;
  2004. long status = 0;
  2005. ssize_t written = 0;
  2006. unsigned int flags = 0;
  2007. /*
  2008. * Copies from kernel address space cannot fail (NFSD is a big user).
  2009. */
  2010. if (segment_eq(get_fs(), KERNEL_DS))
  2011. flags |= AOP_FLAG_UNINTERRUPTIBLE;
  2012. do {
  2013. struct page *page;
  2014. unsigned long offset; /* Offset into pagecache page */
  2015. unsigned long bytes; /* Bytes to write to page */
  2016. size_t copied; /* Bytes copied from user */
  2017. void *fsdata;
  2018. offset = (pos & (PAGE_CACHE_SIZE - 1));
  2019. bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
  2020. iov_iter_count(i));
  2021. again:
  2022. /*
  2023. * Bring in the user page that we will copy from _first_.
  2024. * Otherwise there's a nasty deadlock on copying from the
  2025. * same page as we're writing to, without it being marked
  2026. * up-to-date.
  2027. *
  2028. * Not only is this an optimisation, but it is also required
  2029. * to check that the address is actually valid, when atomic
  2030. * usercopies are used, below.
  2031. */
  2032. if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
  2033. status = -EFAULT;
  2034. break;
  2035. }
  2036. status = a_ops->write_begin(file, mapping, pos, bytes, flags,
  2037. &page, &fsdata);
  2038. if (unlikely(status))
  2039. break;
  2040. if (mapping_writably_mapped(mapping))
  2041. flush_dcache_page(page);
  2042. pagefault_disable();
  2043. copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
  2044. pagefault_enable();
  2045. flush_dcache_page(page);
  2046. mark_page_accessed(page);
  2047. status = a_ops->write_end(file, mapping, pos, bytes, copied,
  2048. page, fsdata);
  2049. if (unlikely(status < 0))
  2050. break;
  2051. copied = status;
  2052. cond_resched();
  2053. iov_iter_advance(i, copied);
  2054. if (unlikely(copied == 0)) {
  2055. /*
  2056. * If we were unable to copy any data at all, we must
  2057. * fall back to a single segment length write.
  2058. *
  2059. * If we didn't fallback here, we could livelock
  2060. * because not all segments in the iov can be copied at
  2061. * once without a pagefault.
  2062. */
  2063. bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
  2064. iov_iter_single_seg_count(i));
  2065. goto again;
  2066. }
  2067. pos += copied;
  2068. written += copied;
  2069. balance_dirty_pages_ratelimited(mapping);
  2070. } while (iov_iter_count(i));
  2071. return written ? written : status;
  2072. }
  2073. ssize_t
  2074. generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
  2075. unsigned long nr_segs, loff_t pos, loff_t *ppos,
  2076. size_t count, ssize_t written)
  2077. {
  2078. struct file *file = iocb->ki_filp;
  2079. ssize_t status;
  2080. struct iov_iter i;
  2081. iov_iter_init(&i, iov, nr_segs, count, written);
  2082. status = generic_perform_write(file, &i, pos);
  2083. if (likely(status >= 0)) {
  2084. written += status;
  2085. *ppos = pos + status;
  2086. }
  2087. return written ? written : status;
  2088. }
  2089. EXPORT_SYMBOL(generic_file_buffered_write);
  2090. /**
  2091. * __generic_file_aio_write - write data to a file
  2092. * @iocb: IO state structure (file, offset, etc.)
  2093. * @iov: vector with data to write
  2094. * @nr_segs: number of segments in the vector
  2095. * @ppos: position where to write
  2096. *
  2097. * This function does all the work needed for actually writing data to a
  2098. * file. It does all basic checks, removes SUID from the file, updates
  2099. * modification times and calls proper subroutines depending on whether we
  2100. * do direct IO or a standard buffered write.
  2101. *
  2102. * It expects i_mutex to be grabbed unless we work on a block device or similar
  2103. * object which does not need locking at all.
  2104. *
  2105. * This function does *not* take care of syncing data in case of O_SYNC write.
  2106. * A caller has to handle it. This is mainly due to the fact that we want to
  2107. * avoid syncing under i_mutex.
  2108. */
  2109. ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
  2110. unsigned long nr_segs, loff_t *ppos)
  2111. {
  2112. struct file *file = iocb->ki_filp;
  2113. struct address_space * mapping = file->f_mapping;
  2114. size_t ocount; /* original count */
  2115. size_t count; /* after file limit checks */
  2116. struct inode *inode = mapping->host;
  2117. loff_t pos;
  2118. ssize_t written;
  2119. ssize_t err;
  2120. ocount = 0;
  2121. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  2122. if (err)
  2123. return err;
  2124. count = ocount;
  2125. pos = *ppos;
  2126. vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
  2127. /* We can write back this queue in page reclaim */
  2128. current->backing_dev_info = mapping->backing_dev_info;
  2129. written = 0;
  2130. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  2131. if (err)
  2132. goto out;
  2133. if (count == 0)
  2134. goto out;
  2135. err = file_remove_suid(file);
  2136. if (err)
  2137. goto out;
  2138. file_update_time(file);
  2139. /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  2140. if (unlikely(file->f_flags & O_DIRECT)) {
  2141. loff_t endbyte;
  2142. ssize_t written_buffered;
  2143. written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
  2144. ppos, count, ocount);
  2145. if (written < 0 || written == count)
  2146. goto out;
  2147. /*
  2148. * direct-io write to a hole: fall through to buffered I/O
  2149. * for completing the rest of the request.
  2150. */
  2151. pos += written;
  2152. count -= written;
  2153. written_buffered = generic_file_buffered_write(iocb, iov,
  2154. nr_segs, pos, ppos, count,
  2155. written);
  2156. /*
  2157. * If generic_file_buffered_write() retuned a synchronous error
  2158. * then we want to return the number of bytes which were
  2159. * direct-written, or the error code if that was zero. Note
  2160. * that this differs from normal direct-io semantics, which
  2161. * will return -EFOO even if some bytes were written.
  2162. */
  2163. if (written_buffered < 0) {
  2164. err = written_buffered;
  2165. goto out;
  2166. }
  2167. /*
  2168. * We need to ensure that the page cache pages are written to
  2169. * disk and invalidated to preserve the expected O_DIRECT
  2170. * semantics.
  2171. */
  2172. endbyte = pos + written_buffered - written - 1;
  2173. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  2174. if (err == 0) {
  2175. written = written_buffered;
  2176. invalidate_mapping_pages(mapping,
  2177. pos >> PAGE_CACHE_SHIFT,
  2178. endbyte >> PAGE_CACHE_SHIFT);
  2179. } else {
  2180. /*
  2181. * We don't know how much we wrote, so just return
  2182. * the number of bytes which were direct-written
  2183. */
  2184. }
  2185. } else {
  2186. written = generic_file_buffered_write(iocb, iov, nr_segs,
  2187. pos, ppos, count, written);
  2188. }
  2189. out:
  2190. current->backing_dev_info = NULL;
  2191. return written ? written : err;
  2192. }
  2193. EXPORT_SYMBOL(__generic_file_aio_write);
  2194. /**
  2195. * generic_file_aio_write - write data to a file
  2196. * @iocb: IO state structure
  2197. * @iov: vector with data to write
  2198. * @nr_segs: number of segments in the vector
  2199. * @pos: position in file where to write
  2200. *
  2201. * This is a wrapper around __generic_file_aio_write() to be used by most
  2202. * filesystems. It takes care of syncing the file in case of O_SYNC file
  2203. * and acquires i_mutex as needed.
  2204. */
  2205. ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
  2206. unsigned long nr_segs, loff_t pos)
  2207. {
  2208. struct file *file = iocb->ki_filp;
  2209. struct inode *inode = file->f_mapping->host;
  2210. ssize_t ret;
  2211. BUG_ON(iocb->ki_pos != pos);
  2212. mutex_lock(&inode->i_mutex);
  2213. ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
  2214. mutex_unlock(&inode->i_mutex);
  2215. if (ret > 0 || ret == -EIOCBQUEUED) {
  2216. ssize_t err;
  2217. err = generic_write_sync(file, pos, ret);
  2218. if (err < 0 && ret > 0)
  2219. ret = err;
  2220. }
  2221. return ret;
  2222. }
  2223. EXPORT_SYMBOL(generic_file_aio_write);
  2224. /**
  2225. * try_to_release_page() - release old fs-specific metadata on a page
  2226. *
  2227. * @page: the page which the kernel is trying to free
  2228. * @gfp_mask: memory allocation flags (and I/O mode)
  2229. *
  2230. * The address_space is to try to release any data against the page
  2231. * (presumably at page->private). If the release was successful, return `1'.
  2232. * Otherwise return zero.
  2233. *
  2234. * This may also be called if PG_fscache is set on a page, indicating that the
  2235. * page is known to the local caching routines.
  2236. *
  2237. * The @gfp_mask argument specifies whether I/O may be performed to release
  2238. * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
  2239. *
  2240. */
  2241. int try_to_release_page(struct page *page, gfp_t gfp_mask)
  2242. {
  2243. struct address_space * const mapping = page->mapping;
  2244. BUG_ON(!PageLocked(page));
  2245. if (PageWriteback(page))
  2246. return 0;
  2247. if (mapping && mapping->a_ops->releasepage)
  2248. return mapping->a_ops->releasepage(page, gfp_mask);
  2249. return try_to_free_buffers(page);
  2250. }
  2251. EXPORT_SYMBOL(try_to_release_page);