swiotlb.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <linux/gfp.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/scatterlist.h>
  34. #include <linux/init.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/iommu-helper.h>
  37. #define OFFSET(val,align) ((unsigned long) \
  38. ( (val) & ( (align) - 1)))
  39. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  40. /*
  41. * Minimum IO TLB size to bother booting with. Systems with mainly
  42. * 64bit capable cards will only lightly use the swiotlb. If we can't
  43. * allocate a contiguous 1MB, we're probably in trouble anyway.
  44. */
  45. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  46. int swiotlb_force;
  47. /*
  48. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  49. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  50. * API.
  51. */
  52. static char *io_tlb_start, *io_tlb_end;
  53. /*
  54. * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
  55. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  56. */
  57. static unsigned long io_tlb_nslabs;
  58. /*
  59. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  60. */
  61. static unsigned long io_tlb_overflow = 32*1024;
  62. void *io_tlb_overflow_buffer;
  63. /*
  64. * This is a free list describing the number of free entries available from
  65. * each index
  66. */
  67. static unsigned int *io_tlb_list;
  68. static unsigned int io_tlb_index;
  69. /*
  70. * We need to save away the original address corresponding to a mapped entry
  71. * for the sync operations.
  72. */
  73. static phys_addr_t *io_tlb_orig_addr;
  74. /*
  75. * Protect the above data structures in the map and unmap calls
  76. */
  77. static DEFINE_SPINLOCK(io_tlb_lock);
  78. static int late_alloc;
  79. static int __init
  80. setup_io_tlb_npages(char *str)
  81. {
  82. if (isdigit(*str)) {
  83. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  84. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  85. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  86. }
  87. if (*str == ',')
  88. ++str;
  89. if (!strcmp(str, "force"))
  90. swiotlb_force = 1;
  91. return 1;
  92. }
  93. __setup("swiotlb=", setup_io_tlb_npages);
  94. /* make io_tlb_overflow tunable too? */
  95. /* Note that this doesn't work with highmem page */
  96. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  97. volatile void *address)
  98. {
  99. return phys_to_dma(hwdev, virt_to_phys(address));
  100. }
  101. void swiotlb_print_info(void)
  102. {
  103. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  104. phys_addr_t pstart, pend;
  105. pstart = virt_to_phys(io_tlb_start);
  106. pend = virt_to_phys(io_tlb_end);
  107. printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
  108. bytes >> 20, io_tlb_start, io_tlb_end);
  109. printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
  110. (unsigned long long)pstart,
  111. (unsigned long long)pend);
  112. }
  113. void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
  114. {
  115. unsigned long i, bytes;
  116. bytes = nslabs << IO_TLB_SHIFT;
  117. io_tlb_nslabs = nslabs;
  118. io_tlb_start = tlb;
  119. io_tlb_end = io_tlb_start + bytes;
  120. /*
  121. * Allocate and initialize the free list array. This array is used
  122. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  123. * between io_tlb_start and io_tlb_end.
  124. */
  125. io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
  126. for (i = 0; i < io_tlb_nslabs; i++)
  127. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  128. io_tlb_index = 0;
  129. io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
  130. /*
  131. * Get the overflow emergency buffer
  132. */
  133. io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
  134. if (!io_tlb_overflow_buffer)
  135. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  136. if (verbose)
  137. swiotlb_print_info();
  138. }
  139. /*
  140. * Statically reserve bounce buffer space and initialize bounce buffer data
  141. * structures for the software IO TLB used to implement the DMA API.
  142. */
  143. void __init
  144. swiotlb_init_with_default_size(size_t default_size, int verbose)
  145. {
  146. unsigned long bytes;
  147. if (!io_tlb_nslabs) {
  148. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  149. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  150. }
  151. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  152. /*
  153. * Get IO TLB memory from the low pages
  154. */
  155. io_tlb_start = alloc_bootmem_low_pages(bytes);
  156. if (!io_tlb_start)
  157. panic("Cannot allocate SWIOTLB buffer");
  158. swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
  159. }
  160. void __init
  161. swiotlb_init(int verbose)
  162. {
  163. swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
  164. }
  165. /*
  166. * Systems with larger DMA zones (those that don't support ISA) can
  167. * initialize the swiotlb later using the slab allocator if needed.
  168. * This should be just like above, but with some error catching.
  169. */
  170. int
  171. swiotlb_late_init_with_default_size(size_t default_size)
  172. {
  173. unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
  174. unsigned int order;
  175. if (!io_tlb_nslabs) {
  176. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  177. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  178. }
  179. /*
  180. * Get IO TLB memory from the low pages
  181. */
  182. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  183. io_tlb_nslabs = SLABS_PER_PAGE << order;
  184. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  185. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  186. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  187. order);
  188. if (io_tlb_start)
  189. break;
  190. order--;
  191. }
  192. if (!io_tlb_start)
  193. goto cleanup1;
  194. if (order != get_order(bytes)) {
  195. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  196. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  197. io_tlb_nslabs = SLABS_PER_PAGE << order;
  198. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  199. }
  200. io_tlb_end = io_tlb_start + bytes;
  201. memset(io_tlb_start, 0, bytes);
  202. /*
  203. * Allocate and initialize the free list array. This array is used
  204. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  205. * between io_tlb_start and io_tlb_end.
  206. */
  207. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  208. get_order(io_tlb_nslabs * sizeof(int)));
  209. if (!io_tlb_list)
  210. goto cleanup2;
  211. for (i = 0; i < io_tlb_nslabs; i++)
  212. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  213. io_tlb_index = 0;
  214. io_tlb_orig_addr = (phys_addr_t *)
  215. __get_free_pages(GFP_KERNEL,
  216. get_order(io_tlb_nslabs *
  217. sizeof(phys_addr_t)));
  218. if (!io_tlb_orig_addr)
  219. goto cleanup3;
  220. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  221. /*
  222. * Get the overflow emergency buffer
  223. */
  224. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  225. get_order(io_tlb_overflow));
  226. if (!io_tlb_overflow_buffer)
  227. goto cleanup4;
  228. swiotlb_print_info();
  229. late_alloc = 1;
  230. return 0;
  231. cleanup4:
  232. free_pages((unsigned long)io_tlb_orig_addr,
  233. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  234. io_tlb_orig_addr = NULL;
  235. cleanup3:
  236. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  237. sizeof(int)));
  238. io_tlb_list = NULL;
  239. cleanup2:
  240. io_tlb_end = NULL;
  241. free_pages((unsigned long)io_tlb_start, order);
  242. io_tlb_start = NULL;
  243. cleanup1:
  244. io_tlb_nslabs = req_nslabs;
  245. return -ENOMEM;
  246. }
  247. void __init swiotlb_free(void)
  248. {
  249. if (!io_tlb_overflow_buffer)
  250. return;
  251. if (late_alloc) {
  252. free_pages((unsigned long)io_tlb_overflow_buffer,
  253. get_order(io_tlb_overflow));
  254. free_pages((unsigned long)io_tlb_orig_addr,
  255. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  256. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  257. sizeof(int)));
  258. free_pages((unsigned long)io_tlb_start,
  259. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  260. } else {
  261. free_bootmem_late(__pa(io_tlb_overflow_buffer),
  262. io_tlb_overflow);
  263. free_bootmem_late(__pa(io_tlb_orig_addr),
  264. io_tlb_nslabs * sizeof(phys_addr_t));
  265. free_bootmem_late(__pa(io_tlb_list),
  266. io_tlb_nslabs * sizeof(int));
  267. free_bootmem_late(__pa(io_tlb_start),
  268. io_tlb_nslabs << IO_TLB_SHIFT);
  269. }
  270. }
  271. static int is_swiotlb_buffer(phys_addr_t paddr)
  272. {
  273. return paddr >= virt_to_phys(io_tlb_start) &&
  274. paddr < virt_to_phys(io_tlb_end);
  275. }
  276. /*
  277. * Bounce: copy the swiotlb buffer back to the original dma location
  278. */
  279. void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  280. enum dma_data_direction dir)
  281. {
  282. unsigned long pfn = PFN_DOWN(phys);
  283. if (PageHighMem(pfn_to_page(pfn))) {
  284. /* The buffer does not have a mapping. Map it in and copy */
  285. unsigned int offset = phys & ~PAGE_MASK;
  286. char *buffer;
  287. unsigned int sz = 0;
  288. unsigned long flags;
  289. while (size) {
  290. sz = min_t(size_t, PAGE_SIZE - offset, size);
  291. local_irq_save(flags);
  292. buffer = kmap_atomic(pfn_to_page(pfn),
  293. KM_BOUNCE_READ);
  294. if (dir == DMA_TO_DEVICE)
  295. memcpy(dma_addr, buffer + offset, sz);
  296. else
  297. memcpy(buffer + offset, dma_addr, sz);
  298. kunmap_atomic(buffer, KM_BOUNCE_READ);
  299. local_irq_restore(flags);
  300. size -= sz;
  301. pfn++;
  302. dma_addr += sz;
  303. offset = 0;
  304. }
  305. } else {
  306. if (dir == DMA_TO_DEVICE)
  307. memcpy(dma_addr, phys_to_virt(phys), size);
  308. else
  309. memcpy(phys_to_virt(phys), dma_addr, size);
  310. }
  311. }
  312. EXPORT_SYMBOL_GPL(swiotlb_bounce);
  313. void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
  314. phys_addr_t phys, size_t size,
  315. enum dma_data_direction dir)
  316. {
  317. unsigned long flags;
  318. char *dma_addr;
  319. unsigned int nslots, stride, index, wrap;
  320. int i;
  321. unsigned long mask;
  322. unsigned long offset_slots;
  323. unsigned long max_slots;
  324. mask = dma_get_seg_boundary(hwdev);
  325. tbl_dma_addr &= mask;
  326. offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  327. /*
  328. * Carefully handle integer overflow which can occur when mask == ~0UL.
  329. */
  330. max_slots = mask + 1
  331. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  332. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  333. /*
  334. * For mappings greater than a page, we limit the stride (and
  335. * hence alignment) to a page size.
  336. */
  337. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  338. if (size > PAGE_SIZE)
  339. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  340. else
  341. stride = 1;
  342. BUG_ON(!nslots);
  343. /*
  344. * Find suitable number of IO TLB entries size that will fit this
  345. * request and allocate a buffer from that IO TLB pool.
  346. */
  347. spin_lock_irqsave(&io_tlb_lock, flags);
  348. index = ALIGN(io_tlb_index, stride);
  349. if (index >= io_tlb_nslabs)
  350. index = 0;
  351. wrap = index;
  352. do {
  353. while (iommu_is_span_boundary(index, nslots, offset_slots,
  354. max_slots)) {
  355. index += stride;
  356. if (index >= io_tlb_nslabs)
  357. index = 0;
  358. if (index == wrap)
  359. goto not_found;
  360. }
  361. /*
  362. * If we find a slot that indicates we have 'nslots' number of
  363. * contiguous buffers, we allocate the buffers from that slot
  364. * and mark the entries as '0' indicating unavailable.
  365. */
  366. if (io_tlb_list[index] >= nslots) {
  367. int count = 0;
  368. for (i = index; i < (int) (index + nslots); i++)
  369. io_tlb_list[i] = 0;
  370. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  371. io_tlb_list[i] = ++count;
  372. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  373. /*
  374. * Update the indices to avoid searching in the next
  375. * round.
  376. */
  377. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  378. ? (index + nslots) : 0);
  379. goto found;
  380. }
  381. index += stride;
  382. if (index >= io_tlb_nslabs)
  383. index = 0;
  384. } while (index != wrap);
  385. not_found:
  386. spin_unlock_irqrestore(&io_tlb_lock, flags);
  387. return NULL;
  388. found:
  389. spin_unlock_irqrestore(&io_tlb_lock, flags);
  390. /*
  391. * Save away the mapping from the original address to the DMA address.
  392. * This is needed when we sync the memory. Then we sync the buffer if
  393. * needed.
  394. */
  395. for (i = 0; i < nslots; i++)
  396. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  397. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  398. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  399. return dma_addr;
  400. }
  401. EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
  402. /*
  403. * Allocates bounce buffer and returns its kernel virtual address.
  404. */
  405. static void *
  406. map_single(struct device *hwdev, phys_addr_t phys, size_t size,
  407. enum dma_data_direction dir)
  408. {
  409. dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
  410. return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
  411. }
  412. /*
  413. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  414. */
  415. void
  416. swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
  417. enum dma_data_direction dir)
  418. {
  419. unsigned long flags;
  420. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  421. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  422. phys_addr_t phys = io_tlb_orig_addr[index];
  423. /*
  424. * First, sync the memory before unmapping the entry
  425. */
  426. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  427. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  428. /*
  429. * Return the buffer to the free list by setting the corresponding
  430. * entries to indicate the number of contiguous entries available.
  431. * While returning the entries to the free list, we merge the entries
  432. * with slots below and above the pool being returned.
  433. */
  434. spin_lock_irqsave(&io_tlb_lock, flags);
  435. {
  436. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  437. io_tlb_list[index + nslots] : 0);
  438. /*
  439. * Step 1: return the slots to the free list, merging the
  440. * slots with superceeding slots
  441. */
  442. for (i = index + nslots - 1; i >= index; i--)
  443. io_tlb_list[i] = ++count;
  444. /*
  445. * Step 2: merge the returned slots with the preceding slots,
  446. * if available (non zero)
  447. */
  448. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  449. io_tlb_list[i] = ++count;
  450. }
  451. spin_unlock_irqrestore(&io_tlb_lock, flags);
  452. }
  453. EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
  454. void
  455. swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
  456. enum dma_data_direction dir,
  457. enum dma_sync_target target)
  458. {
  459. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  460. phys_addr_t phys = io_tlb_orig_addr[index];
  461. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  462. switch (target) {
  463. case SYNC_FOR_CPU:
  464. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  465. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  466. else
  467. BUG_ON(dir != DMA_TO_DEVICE);
  468. break;
  469. case SYNC_FOR_DEVICE:
  470. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  471. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  472. else
  473. BUG_ON(dir != DMA_FROM_DEVICE);
  474. break;
  475. default:
  476. BUG();
  477. }
  478. }
  479. EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
  480. void *
  481. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  482. dma_addr_t *dma_handle, gfp_t flags)
  483. {
  484. dma_addr_t dev_addr;
  485. void *ret;
  486. int order = get_order(size);
  487. u64 dma_mask = DMA_BIT_MASK(32);
  488. if (hwdev && hwdev->coherent_dma_mask)
  489. dma_mask = hwdev->coherent_dma_mask;
  490. ret = (void *)__get_free_pages(flags, order);
  491. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
  492. /*
  493. * The allocated memory isn't reachable by the device.
  494. */
  495. free_pages((unsigned long) ret, order);
  496. ret = NULL;
  497. }
  498. if (!ret) {
  499. /*
  500. * We are either out of memory or the device can't DMA to
  501. * GFP_DMA memory; fall back on map_single(), which
  502. * will grab memory from the lowest available address range.
  503. */
  504. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  505. if (!ret)
  506. return NULL;
  507. }
  508. memset(ret, 0, size);
  509. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  510. /* Confirm address can be DMA'd by device */
  511. if (dev_addr + size - 1 > dma_mask) {
  512. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  513. (unsigned long long)dma_mask,
  514. (unsigned long long)dev_addr);
  515. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  516. swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  517. return NULL;
  518. }
  519. *dma_handle = dev_addr;
  520. return ret;
  521. }
  522. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  523. void
  524. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  525. dma_addr_t dev_addr)
  526. {
  527. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  528. WARN_ON(irqs_disabled());
  529. if (!is_swiotlb_buffer(paddr))
  530. free_pages((unsigned long)vaddr, get_order(size));
  531. else
  532. /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
  533. swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  534. }
  535. EXPORT_SYMBOL(swiotlb_free_coherent);
  536. static void
  537. swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
  538. int do_panic)
  539. {
  540. /*
  541. * Ran out of IOMMU space for this operation. This is very bad.
  542. * Unfortunately the drivers cannot handle this operation properly.
  543. * unless they check for dma_mapping_error (most don't)
  544. * When the mapping is small enough return a static buffer to limit
  545. * the damage, or panic when the transfer is too big.
  546. */
  547. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  548. "device %s\n", size, dev ? dev_name(dev) : "?");
  549. if (size <= io_tlb_overflow || !do_panic)
  550. return;
  551. if (dir == DMA_BIDIRECTIONAL)
  552. panic("DMA: Random memory could be DMA accessed\n");
  553. if (dir == DMA_FROM_DEVICE)
  554. panic("DMA: Random memory could be DMA written\n");
  555. if (dir == DMA_TO_DEVICE)
  556. panic("DMA: Random memory could be DMA read\n");
  557. }
  558. /*
  559. * Map a single buffer of the indicated size for DMA in streaming mode. The
  560. * physical address to use is returned.
  561. *
  562. * Once the device is given the dma address, the device owns this memory until
  563. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  564. */
  565. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  566. unsigned long offset, size_t size,
  567. enum dma_data_direction dir,
  568. struct dma_attrs *attrs)
  569. {
  570. phys_addr_t phys = page_to_phys(page) + offset;
  571. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  572. void *map;
  573. BUG_ON(dir == DMA_NONE);
  574. /*
  575. * If the address happens to be in the device's DMA window,
  576. * we can safely return the device addr and not worry about bounce
  577. * buffering it.
  578. */
  579. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  580. return dev_addr;
  581. /*
  582. * Oh well, have to allocate and map a bounce buffer.
  583. */
  584. map = map_single(dev, phys, size, dir);
  585. if (!map) {
  586. swiotlb_full(dev, size, dir, 1);
  587. map = io_tlb_overflow_buffer;
  588. }
  589. dev_addr = swiotlb_virt_to_bus(dev, map);
  590. /*
  591. * Ensure that the address returned is DMA'ble
  592. */
  593. if (!dma_capable(dev, dev_addr, size))
  594. panic("map_single: bounce buffer is not DMA'ble");
  595. return dev_addr;
  596. }
  597. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  598. /*
  599. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  600. * match what was provided for in a previous swiotlb_map_page call. All
  601. * other usages are undefined.
  602. *
  603. * After this call, reads by the cpu to the buffer are guaranteed to see
  604. * whatever the device wrote there.
  605. */
  606. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  607. size_t size, enum dma_data_direction dir)
  608. {
  609. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  610. BUG_ON(dir == DMA_NONE);
  611. if (is_swiotlb_buffer(paddr)) {
  612. swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  613. return;
  614. }
  615. if (dir != DMA_FROM_DEVICE)
  616. return;
  617. /*
  618. * phys_to_virt doesn't work with hihgmem page but we could
  619. * call dma_mark_clean() with hihgmem page here. However, we
  620. * are fine since dma_mark_clean() is null on POWERPC. We can
  621. * make dma_mark_clean() take a physical address if necessary.
  622. */
  623. dma_mark_clean(phys_to_virt(paddr), size);
  624. }
  625. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  626. size_t size, enum dma_data_direction dir,
  627. struct dma_attrs *attrs)
  628. {
  629. unmap_single(hwdev, dev_addr, size, dir);
  630. }
  631. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  632. /*
  633. * Make physical memory consistent for a single streaming mode DMA translation
  634. * after a transfer.
  635. *
  636. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  637. * using the cpu, yet do not wish to teardown the dma mapping, you must
  638. * call this function before doing so. At the next point you give the dma
  639. * address back to the card, you must first perform a
  640. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  641. */
  642. static void
  643. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  644. size_t size, enum dma_data_direction dir,
  645. enum dma_sync_target target)
  646. {
  647. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  648. BUG_ON(dir == DMA_NONE);
  649. if (is_swiotlb_buffer(paddr)) {
  650. swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
  651. target);
  652. return;
  653. }
  654. if (dir != DMA_FROM_DEVICE)
  655. return;
  656. dma_mark_clean(phys_to_virt(paddr), size);
  657. }
  658. void
  659. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  660. size_t size, enum dma_data_direction dir)
  661. {
  662. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  663. }
  664. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  665. void
  666. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  667. size_t size, enum dma_data_direction dir)
  668. {
  669. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  670. }
  671. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  672. /*
  673. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  674. * This is the scatter-gather version of the above swiotlb_map_page
  675. * interface. Here the scatter gather list elements are each tagged with the
  676. * appropriate dma address and length. They are obtained via
  677. * sg_dma_{address,length}(SG).
  678. *
  679. * NOTE: An implementation may be able to use a smaller number of
  680. * DMA address/length pairs than there are SG table elements.
  681. * (for example via virtual mapping capabilities)
  682. * The routine returns the number of addr/length pairs actually
  683. * used, at most nents.
  684. *
  685. * Device ownership issues as mentioned above for swiotlb_map_page are the
  686. * same here.
  687. */
  688. int
  689. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  690. enum dma_data_direction dir, struct dma_attrs *attrs)
  691. {
  692. struct scatterlist *sg;
  693. int i;
  694. BUG_ON(dir == DMA_NONE);
  695. for_each_sg(sgl, sg, nelems, i) {
  696. phys_addr_t paddr = sg_phys(sg);
  697. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  698. if (swiotlb_force ||
  699. !dma_capable(hwdev, dev_addr, sg->length)) {
  700. void *map = map_single(hwdev, sg_phys(sg),
  701. sg->length, dir);
  702. if (!map) {
  703. /* Don't panic here, we expect map_sg users
  704. to do proper error handling. */
  705. swiotlb_full(hwdev, sg->length, dir, 0);
  706. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  707. attrs);
  708. sgl[0].dma_length = 0;
  709. return 0;
  710. }
  711. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  712. } else
  713. sg->dma_address = dev_addr;
  714. sg->dma_length = sg->length;
  715. }
  716. return nelems;
  717. }
  718. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  719. int
  720. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  721. enum dma_data_direction dir)
  722. {
  723. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  724. }
  725. EXPORT_SYMBOL(swiotlb_map_sg);
  726. /*
  727. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  728. * concerning calls here are the same as for swiotlb_unmap_page() above.
  729. */
  730. void
  731. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  732. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  733. {
  734. struct scatterlist *sg;
  735. int i;
  736. BUG_ON(dir == DMA_NONE);
  737. for_each_sg(sgl, sg, nelems, i)
  738. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  739. }
  740. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  741. void
  742. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  743. enum dma_data_direction dir)
  744. {
  745. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  746. }
  747. EXPORT_SYMBOL(swiotlb_unmap_sg);
  748. /*
  749. * Make physical memory consistent for a set of streaming mode DMA translations
  750. * after a transfer.
  751. *
  752. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  753. * and usage.
  754. */
  755. static void
  756. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  757. int nelems, enum dma_data_direction dir,
  758. enum dma_sync_target target)
  759. {
  760. struct scatterlist *sg;
  761. int i;
  762. for_each_sg(sgl, sg, nelems, i)
  763. swiotlb_sync_single(hwdev, sg->dma_address,
  764. sg->dma_length, dir, target);
  765. }
  766. void
  767. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  768. int nelems, enum dma_data_direction dir)
  769. {
  770. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  771. }
  772. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  773. void
  774. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  775. int nelems, enum dma_data_direction dir)
  776. {
  777. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  778. }
  779. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  780. int
  781. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  782. {
  783. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  784. }
  785. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  786. /*
  787. * Return whether the given device DMA address mask can be supported
  788. * properly. For example, if your device can only drive the low 24-bits
  789. * during bus mastering, then you would pass 0x00ffffff as the mask to
  790. * this function.
  791. */
  792. int
  793. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  794. {
  795. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  796. }
  797. EXPORT_SYMBOL(swiotlb_dma_supported);