sched.c 220 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. #ifdef CONFIG_SMP
  359. struct cpupri cpupri;
  360. #endif
  361. };
  362. /*
  363. * By default the system creates a single root-domain with all cpus as
  364. * members (mimicking the global state we have today).
  365. */
  366. static struct root_domain def_root_domain;
  367. #endif
  368. /*
  369. * This is the main, per-CPU runqueue data structure.
  370. *
  371. * Locking rule: those places that want to lock multiple runqueues
  372. * (such as the load balancing or the thread migration code), lock
  373. * acquire operations must be ordered by ascending &runqueue.
  374. */
  375. struct rq {
  376. /* runqueue lock: */
  377. raw_spinlock_t lock;
  378. /*
  379. * nr_running and cpu_load should be in the same cacheline because
  380. * remote CPUs use both these fields when doing load calculation.
  381. */
  382. unsigned long nr_running;
  383. #define CPU_LOAD_IDX_MAX 5
  384. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  385. unsigned long last_load_update_tick;
  386. #ifdef CONFIG_NO_HZ
  387. u64 nohz_stamp;
  388. unsigned char nohz_balance_kick;
  389. #endif
  390. unsigned int skip_clock_update;
  391. /* capture load from *all* tasks on this cpu: */
  392. struct load_weight load;
  393. unsigned long nr_load_updates;
  394. u64 nr_switches;
  395. struct cfs_rq cfs;
  396. struct rt_rq rt;
  397. #ifdef CONFIG_FAIR_GROUP_SCHED
  398. /* list of leaf cfs_rq on this cpu: */
  399. struct list_head leaf_cfs_rq_list;
  400. #endif
  401. #ifdef CONFIG_RT_GROUP_SCHED
  402. struct list_head leaf_rt_rq_list;
  403. #endif
  404. /*
  405. * This is part of a global counter where only the total sum
  406. * over all CPUs matters. A task can increase this counter on
  407. * one CPU and if it got migrated afterwards it may decrease
  408. * it on another CPU. Always updated under the runqueue lock:
  409. */
  410. unsigned long nr_uninterruptible;
  411. struct task_struct *curr, *idle;
  412. unsigned long next_balance;
  413. struct mm_struct *prev_mm;
  414. u64 clock;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. /* calc_load related fields */
  436. unsigned long calc_load_update;
  437. long calc_load_active;
  438. #ifdef CONFIG_SCHED_HRTICK
  439. #ifdef CONFIG_SMP
  440. int hrtick_csd_pending;
  441. struct call_single_data hrtick_csd;
  442. #endif
  443. struct hrtimer hrtick_timer;
  444. #endif
  445. #ifdef CONFIG_SCHEDSTATS
  446. /* latency stats */
  447. struct sched_info rq_sched_info;
  448. unsigned long long rq_cpu_time;
  449. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  450. /* sys_sched_yield() stats */
  451. unsigned int yld_count;
  452. /* schedule() stats */
  453. unsigned int sched_switch;
  454. unsigned int sched_count;
  455. unsigned int sched_goidle;
  456. /* try_to_wake_up() stats */
  457. unsigned int ttwu_count;
  458. unsigned int ttwu_local;
  459. /* BKL stats */
  460. unsigned int bkl_count;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static inline
  465. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  466. {
  467. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  468. /*
  469. * A queue event has occurred, and we're going to schedule. In
  470. * this case, we can save a useless back to back clock update.
  471. */
  472. if (test_tsk_need_resched(p))
  473. rq->skip_clock_update = 1;
  474. }
  475. static inline int cpu_of(struct rq *rq)
  476. {
  477. #ifdef CONFIG_SMP
  478. return rq->cpu;
  479. #else
  480. return 0;
  481. #endif
  482. }
  483. #define rcu_dereference_check_sched_domain(p) \
  484. rcu_dereference_check((p), \
  485. rcu_read_lock_sched_held() || \
  486. lockdep_is_held(&sched_domains_mutex))
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  501. #ifdef CONFIG_CGROUP_SCHED
  502. /*
  503. * Return the group to which this tasks belongs.
  504. *
  505. * We use task_subsys_state_check() and extend the RCU verification
  506. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  507. * holds that lock for each task it moves into the cgroup. Therefore
  508. * by holding that lock, we pin the task to the current cgroup.
  509. */
  510. static inline struct task_group *task_group(struct task_struct *p)
  511. {
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&task_rq(p)->lock));
  515. return container_of(css, struct task_group, css);
  516. }
  517. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  518. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  519. {
  520. #ifdef CONFIG_FAIR_GROUP_SCHED
  521. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  522. p->se.parent = task_group(p)->se[cpu];
  523. #endif
  524. #ifdef CONFIG_RT_GROUP_SCHED
  525. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  526. p->rt.parent = task_group(p)->rt_se[cpu];
  527. #endif
  528. }
  529. #else /* CONFIG_CGROUP_SCHED */
  530. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  531. static inline struct task_group *task_group(struct task_struct *p)
  532. {
  533. return NULL;
  534. }
  535. #endif /* CONFIG_CGROUP_SCHED */
  536. inline void update_rq_clock(struct rq *rq)
  537. {
  538. if (!rq->skip_clock_update)
  539. rq->clock = sched_clock_cpu(cpu_of(rq));
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked
  551. * @cpu: the processor in question.
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(int cpu)
  558. {
  559. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_show(struct seq_file *m, void *v)
  585. {
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (!(sysctl_sched_features & (1UL << i)))
  589. seq_puts(m, "NO_");
  590. seq_printf(m, "%s ", sched_feat_names[i]);
  591. }
  592. seq_puts(m, "\n");
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp = buf;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. if (strncmp(buf, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. int len = strlen(sched_feat_names[i]);
  614. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. *ppos += cnt;
  625. return cnt;
  626. }
  627. static int sched_feat_open(struct inode *inode, struct file *filp)
  628. {
  629. return single_open(filp, sched_feat_show, NULL);
  630. }
  631. static const struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .write = sched_feat_write,
  634. .read = seq_read,
  635. .llseek = seq_lseek,
  636. .release = single_release,
  637. };
  638. static __init int sched_init_debug(void)
  639. {
  640. debugfs_create_file("sched_features", 0644, NULL, NULL,
  641. &sched_feat_fops);
  642. return 0;
  643. }
  644. late_initcall(sched_init_debug);
  645. #endif
  646. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  647. /*
  648. * Number of tasks to iterate in a single balance run.
  649. * Limited because this is done with IRQs disabled.
  650. */
  651. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  652. /*
  653. * ratelimit for updating the group shares.
  654. * default: 0.25ms
  655. */
  656. unsigned int sysctl_sched_shares_ratelimit = 250000;
  657. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  658. /*
  659. * Inject some fuzzyness into changing the per-cpu group shares
  660. * this avoids remote rq-locks at the expense of fairness.
  661. * default: 4
  662. */
  663. unsigned int sysctl_sched_shares_thresh = 4;
  664. /*
  665. * period over which we average the RT time consumption, measured
  666. * in ms.
  667. *
  668. * default: 1s
  669. */
  670. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  671. /*
  672. * period over which we measure -rt task cpu usage in us.
  673. * default: 1s
  674. */
  675. unsigned int sysctl_sched_rt_period = 1000000;
  676. static __read_mostly int scheduler_running;
  677. /*
  678. * part of the period that we allow rt tasks to run in us.
  679. * default: 0.95s
  680. */
  681. int sysctl_sched_rt_runtime = 950000;
  682. static inline u64 global_rt_period(void)
  683. {
  684. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  685. }
  686. static inline u64 global_rt_runtime(void)
  687. {
  688. if (sysctl_sched_rt_runtime < 0)
  689. return RUNTIME_INF;
  690. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  691. }
  692. #ifndef prepare_arch_switch
  693. # define prepare_arch_switch(next) do { } while (0)
  694. #endif
  695. #ifndef finish_arch_switch
  696. # define finish_arch_switch(prev) do { } while (0)
  697. #endif
  698. static inline int task_current(struct rq *rq, struct task_struct *p)
  699. {
  700. return rq->curr == p;
  701. }
  702. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  703. static inline int task_running(struct rq *rq, struct task_struct *p)
  704. {
  705. return task_current(rq, p);
  706. }
  707. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  708. {
  709. }
  710. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  711. {
  712. #ifdef CONFIG_DEBUG_SPINLOCK
  713. /* this is a valid case when another task releases the spinlock */
  714. rq->lock.owner = current;
  715. #endif
  716. /*
  717. * If we are tracking spinlock dependencies then we have to
  718. * fix up the runqueue lock - which gets 'carried over' from
  719. * prev into current:
  720. */
  721. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  722. raw_spin_unlock_irq(&rq->lock);
  723. }
  724. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  725. static inline int task_running(struct rq *rq, struct task_struct *p)
  726. {
  727. #ifdef CONFIG_SMP
  728. return p->oncpu;
  729. #else
  730. return task_current(rq, p);
  731. #endif
  732. }
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->oncpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->oncpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->oncpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  767. * against ttwu().
  768. */
  769. static inline int task_is_waking(struct task_struct *p)
  770. {
  771. return unlikely(p->state == TASK_WAKING);
  772. }
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. struct rq *rq;
  781. for (;;) {
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock the runqueue a given task resides on and disable
  791. * interrupts. Note the ordering: we can safely lookup the task_rq without
  792. * explicitly disabling preemption.
  793. */
  794. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. for (;;) {
  799. local_irq_save(*flags);
  800. rq = task_rq(p);
  801. raw_spin_lock(&rq->lock);
  802. if (likely(rq == task_rq(p)))
  803. return rq;
  804. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  805. }
  806. }
  807. static void __task_rq_unlock(struct rq *rq)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock(&rq->lock);
  811. }
  812. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  813. __releases(rq->lock)
  814. {
  815. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  816. }
  817. /*
  818. * this_rq_lock - lock this runqueue and disable interrupts.
  819. */
  820. static struct rq *this_rq_lock(void)
  821. __acquires(rq->lock)
  822. {
  823. struct rq *rq;
  824. local_irq_disable();
  825. rq = this_rq();
  826. raw_spin_lock(&rq->lock);
  827. return rq;
  828. }
  829. #ifdef CONFIG_SCHED_HRTICK
  830. /*
  831. * Use HR-timers to deliver accurate preemption points.
  832. *
  833. * Its all a bit involved since we cannot program an hrt while holding the
  834. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  835. * reschedule event.
  836. *
  837. * When we get rescheduled we reprogram the hrtick_timer outside of the
  838. * rq->lock.
  839. */
  840. /*
  841. * Use hrtick when:
  842. * - enabled by features
  843. * - hrtimer is actually high res
  844. */
  845. static inline int hrtick_enabled(struct rq *rq)
  846. {
  847. if (!sched_feat(HRTICK))
  848. return 0;
  849. if (!cpu_active(cpu_of(rq)))
  850. return 0;
  851. return hrtimer_is_hres_active(&rq->hrtick_timer);
  852. }
  853. static void hrtick_clear(struct rq *rq)
  854. {
  855. if (hrtimer_active(&rq->hrtick_timer))
  856. hrtimer_cancel(&rq->hrtick_timer);
  857. }
  858. /*
  859. * High-resolution timer tick.
  860. * Runs from hardirq context with interrupts disabled.
  861. */
  862. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  863. {
  864. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  865. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  866. raw_spin_lock(&rq->lock);
  867. update_rq_clock(rq);
  868. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  869. raw_spin_unlock(&rq->lock);
  870. return HRTIMER_NORESTART;
  871. }
  872. #ifdef CONFIG_SMP
  873. /*
  874. * called from hardirq (IPI) context
  875. */
  876. static void __hrtick_start(void *arg)
  877. {
  878. struct rq *rq = arg;
  879. raw_spin_lock(&rq->lock);
  880. hrtimer_restart(&rq->hrtick_timer);
  881. rq->hrtick_csd_pending = 0;
  882. raw_spin_unlock(&rq->lock);
  883. }
  884. /*
  885. * Called to set the hrtick timer state.
  886. *
  887. * called with rq->lock held and irqs disabled
  888. */
  889. static void hrtick_start(struct rq *rq, u64 delay)
  890. {
  891. struct hrtimer *timer = &rq->hrtick_timer;
  892. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  893. hrtimer_set_expires(timer, time);
  894. if (rq == this_rq()) {
  895. hrtimer_restart(timer);
  896. } else if (!rq->hrtick_csd_pending) {
  897. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  898. rq->hrtick_csd_pending = 1;
  899. }
  900. }
  901. static int
  902. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  903. {
  904. int cpu = (int)(long)hcpu;
  905. switch (action) {
  906. case CPU_UP_CANCELED:
  907. case CPU_UP_CANCELED_FROZEN:
  908. case CPU_DOWN_PREPARE:
  909. case CPU_DOWN_PREPARE_FROZEN:
  910. case CPU_DEAD:
  911. case CPU_DEAD_FROZEN:
  912. hrtick_clear(cpu_rq(cpu));
  913. return NOTIFY_OK;
  914. }
  915. return NOTIFY_DONE;
  916. }
  917. static __init void init_hrtick(void)
  918. {
  919. hotcpu_notifier(hotplug_hrtick, 0);
  920. }
  921. #else
  922. /*
  923. * Called to set the hrtick timer state.
  924. *
  925. * called with rq->lock held and irqs disabled
  926. */
  927. static void hrtick_start(struct rq *rq, u64 delay)
  928. {
  929. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  930. HRTIMER_MODE_REL_PINNED, 0);
  931. }
  932. static inline void init_hrtick(void)
  933. {
  934. }
  935. #endif /* CONFIG_SMP */
  936. static void init_rq_hrtick(struct rq *rq)
  937. {
  938. #ifdef CONFIG_SMP
  939. rq->hrtick_csd_pending = 0;
  940. rq->hrtick_csd.flags = 0;
  941. rq->hrtick_csd.func = __hrtick_start;
  942. rq->hrtick_csd.info = rq;
  943. #endif
  944. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  945. rq->hrtick_timer.function = hrtick;
  946. }
  947. #else /* CONFIG_SCHED_HRTICK */
  948. static inline void hrtick_clear(struct rq *rq)
  949. {
  950. }
  951. static inline void init_rq_hrtick(struct rq *rq)
  952. {
  953. }
  954. static inline void init_hrtick(void)
  955. {
  956. }
  957. #endif /* CONFIG_SCHED_HRTICK */
  958. /*
  959. * resched_task - mark a task 'to be rescheduled now'.
  960. *
  961. * On UP this means the setting of the need_resched flag, on SMP it
  962. * might also involve a cross-CPU call to trigger the scheduler on
  963. * the target CPU.
  964. */
  965. #ifdef CONFIG_SMP
  966. #ifndef tsk_is_polling
  967. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  968. #endif
  969. static void resched_task(struct task_struct *p)
  970. {
  971. int cpu;
  972. assert_raw_spin_locked(&task_rq(p)->lock);
  973. if (test_tsk_need_resched(p))
  974. return;
  975. set_tsk_need_resched(p);
  976. cpu = task_cpu(p);
  977. if (cpu == smp_processor_id())
  978. return;
  979. /* NEED_RESCHED must be visible before we test polling */
  980. smp_mb();
  981. if (!tsk_is_polling(p))
  982. smp_send_reschedule(cpu);
  983. }
  984. static void resched_cpu(int cpu)
  985. {
  986. struct rq *rq = cpu_rq(cpu);
  987. unsigned long flags;
  988. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  989. return;
  990. resched_task(cpu_curr(cpu));
  991. raw_spin_unlock_irqrestore(&rq->lock, flags);
  992. }
  993. #ifdef CONFIG_NO_HZ
  994. /*
  995. * In the semi idle case, use the nearest busy cpu for migrating timers
  996. * from an idle cpu. This is good for power-savings.
  997. *
  998. * We don't do similar optimization for completely idle system, as
  999. * selecting an idle cpu will add more delays to the timers than intended
  1000. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1001. */
  1002. int get_nohz_timer_target(void)
  1003. {
  1004. int cpu = smp_processor_id();
  1005. int i;
  1006. struct sched_domain *sd;
  1007. for_each_domain(cpu, sd) {
  1008. for_each_cpu(i, sched_domain_span(sd))
  1009. if (!idle_cpu(i))
  1010. return i;
  1011. }
  1012. return cpu;
  1013. }
  1014. /*
  1015. * When add_timer_on() enqueues a timer into the timer wheel of an
  1016. * idle CPU then this timer might expire before the next timer event
  1017. * which is scheduled to wake up that CPU. In case of a completely
  1018. * idle system the next event might even be infinite time into the
  1019. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1020. * leaves the inner idle loop so the newly added timer is taken into
  1021. * account when the CPU goes back to idle and evaluates the timer
  1022. * wheel for the next timer event.
  1023. */
  1024. void wake_up_idle_cpu(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /*
  1030. * This is safe, as this function is called with the timer
  1031. * wheel base lock of (cpu) held. When the CPU is on the way
  1032. * to idle and has not yet set rq->curr to idle then it will
  1033. * be serialized on the timer wheel base lock and take the new
  1034. * timer into account automatically.
  1035. */
  1036. if (rq->curr != rq->idle)
  1037. return;
  1038. /*
  1039. * We can set TIF_RESCHED on the idle task of the other CPU
  1040. * lockless. The worst case is that the other CPU runs the
  1041. * idle task through an additional NOOP schedule()
  1042. */
  1043. set_tsk_need_resched(rq->idle);
  1044. /* NEED_RESCHED must be visible before we test polling */
  1045. smp_mb();
  1046. if (!tsk_is_polling(rq->idle))
  1047. smp_send_reschedule(cpu);
  1048. }
  1049. #endif /* CONFIG_NO_HZ */
  1050. static u64 sched_avg_period(void)
  1051. {
  1052. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1053. }
  1054. static void sched_avg_update(struct rq *rq)
  1055. {
  1056. s64 period = sched_avg_period();
  1057. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1058. /*
  1059. * Inline assembly required to prevent the compiler
  1060. * optimising this loop into a divmod call.
  1061. * See __iter_div_u64_rem() for another example of this.
  1062. */
  1063. asm("" : "+rm" (rq->age_stamp));
  1064. rq->age_stamp += period;
  1065. rq->rt_avg /= 2;
  1066. }
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. rq->rt_avg += rt_delta;
  1071. sched_avg_update(rq);
  1072. }
  1073. #else /* !CONFIG_SMP */
  1074. static void resched_task(struct task_struct *p)
  1075. {
  1076. assert_raw_spin_locked(&task_rq(p)->lock);
  1077. set_tsk_need_resched(p);
  1078. }
  1079. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1080. {
  1081. }
  1082. static void sched_avg_update(struct rq *rq)
  1083. {
  1084. }
  1085. #endif /* CONFIG_SMP */
  1086. #if BITS_PER_LONG == 32
  1087. # define WMULT_CONST (~0UL)
  1088. #else
  1089. # define WMULT_CONST (1UL << 32)
  1090. #endif
  1091. #define WMULT_SHIFT 32
  1092. /*
  1093. * Shift right and round:
  1094. */
  1095. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1096. /*
  1097. * delta *= weight / lw
  1098. */
  1099. static unsigned long
  1100. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1101. struct load_weight *lw)
  1102. {
  1103. u64 tmp;
  1104. if (!lw->inv_weight) {
  1105. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1106. lw->inv_weight = 1;
  1107. else
  1108. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1109. / (lw->weight+1);
  1110. }
  1111. tmp = (u64)delta_exec * weight;
  1112. /*
  1113. * Check whether we'd overflow the 64-bit multiplication:
  1114. */
  1115. if (unlikely(tmp > WMULT_CONST))
  1116. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1117. WMULT_SHIFT/2);
  1118. else
  1119. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1120. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1121. }
  1122. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1123. {
  1124. lw->weight += inc;
  1125. lw->inv_weight = 0;
  1126. }
  1127. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1128. {
  1129. lw->weight -= dec;
  1130. lw->inv_weight = 0;
  1131. }
  1132. /*
  1133. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1134. * of tasks with abnormal "nice" values across CPUs the contribution that
  1135. * each task makes to its run queue's load is weighted according to its
  1136. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1137. * scaled version of the new time slice allocation that they receive on time
  1138. * slice expiry etc.
  1139. */
  1140. #define WEIGHT_IDLEPRIO 3
  1141. #define WMULT_IDLEPRIO 1431655765
  1142. /*
  1143. * Nice levels are multiplicative, with a gentle 10% change for every
  1144. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1145. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1146. * that remained on nice 0.
  1147. *
  1148. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1149. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1150. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1151. * If a task goes up by ~10% and another task goes down by ~10% then
  1152. * the relative distance between them is ~25%.)
  1153. */
  1154. static const int prio_to_weight[40] = {
  1155. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1156. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1157. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1158. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1159. /* 0 */ 1024, 820, 655, 526, 423,
  1160. /* 5 */ 335, 272, 215, 172, 137,
  1161. /* 10 */ 110, 87, 70, 56, 45,
  1162. /* 15 */ 36, 29, 23, 18, 15,
  1163. };
  1164. /*
  1165. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1166. *
  1167. * In cases where the weight does not change often, we can use the
  1168. * precalculated inverse to speed up arithmetics by turning divisions
  1169. * into multiplications:
  1170. */
  1171. static const u32 prio_to_wmult[40] = {
  1172. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1173. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1174. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1175. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1176. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1177. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1178. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1179. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1180. };
  1181. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1182. enum cpuacct_stat_index {
  1183. CPUACCT_STAT_USER, /* ... user mode */
  1184. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1185. CPUACCT_STAT_NSTATS,
  1186. };
  1187. #ifdef CONFIG_CGROUP_CPUACCT
  1188. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1189. static void cpuacct_update_stats(struct task_struct *tsk,
  1190. enum cpuacct_stat_index idx, cputime_t val);
  1191. #else
  1192. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1193. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1194. enum cpuacct_stat_index idx, cputime_t val) {}
  1195. #endif
  1196. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_add(&rq->load, load);
  1199. }
  1200. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_sub(&rq->load, load);
  1203. }
  1204. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1205. typedef int (*tg_visitor)(struct task_group *, void *);
  1206. /*
  1207. * Iterate the full tree, calling @down when first entering a node and @up when
  1208. * leaving it for the final time.
  1209. */
  1210. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1211. {
  1212. struct task_group *parent, *child;
  1213. int ret;
  1214. rcu_read_lock();
  1215. parent = &root_task_group;
  1216. down:
  1217. ret = (*down)(parent, data);
  1218. if (ret)
  1219. goto out_unlock;
  1220. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1221. parent = child;
  1222. goto down;
  1223. up:
  1224. continue;
  1225. }
  1226. ret = (*up)(parent, data);
  1227. if (ret)
  1228. goto out_unlock;
  1229. child = parent;
  1230. parent = parent->parent;
  1231. if (parent)
  1232. goto up;
  1233. out_unlock:
  1234. rcu_read_unlock();
  1235. return ret;
  1236. }
  1237. static int tg_nop(struct task_group *tg, void *data)
  1238. {
  1239. return 0;
  1240. }
  1241. #endif
  1242. #ifdef CONFIG_SMP
  1243. /* Used instead of source_load when we know the type == 0 */
  1244. static unsigned long weighted_cpuload(const int cpu)
  1245. {
  1246. return cpu_rq(cpu)->load.weight;
  1247. }
  1248. /*
  1249. * Return a low guess at the load of a migration-source cpu weighted
  1250. * according to the scheduling class and "nice" value.
  1251. *
  1252. * We want to under-estimate the load of migration sources, to
  1253. * balance conservatively.
  1254. */
  1255. static unsigned long source_load(int cpu, int type)
  1256. {
  1257. struct rq *rq = cpu_rq(cpu);
  1258. unsigned long total = weighted_cpuload(cpu);
  1259. if (type == 0 || !sched_feat(LB_BIAS))
  1260. return total;
  1261. return min(rq->cpu_load[type-1], total);
  1262. }
  1263. /*
  1264. * Return a high guess at the load of a migration-target cpu weighted
  1265. * according to the scheduling class and "nice" value.
  1266. */
  1267. static unsigned long target_load(int cpu, int type)
  1268. {
  1269. struct rq *rq = cpu_rq(cpu);
  1270. unsigned long total = weighted_cpuload(cpu);
  1271. if (type == 0 || !sched_feat(LB_BIAS))
  1272. return total;
  1273. return max(rq->cpu_load[type-1], total);
  1274. }
  1275. static unsigned long power_of(int cpu)
  1276. {
  1277. return cpu_rq(cpu)->cpu_power;
  1278. }
  1279. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1280. static unsigned long cpu_avg_load_per_task(int cpu)
  1281. {
  1282. struct rq *rq = cpu_rq(cpu);
  1283. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1284. if (nr_running)
  1285. rq->avg_load_per_task = rq->load.weight / nr_running;
  1286. else
  1287. rq->avg_load_per_task = 0;
  1288. return rq->avg_load_per_task;
  1289. }
  1290. #ifdef CONFIG_FAIR_GROUP_SCHED
  1291. static __read_mostly unsigned long __percpu *update_shares_data;
  1292. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1293. /*
  1294. * Calculate and set the cpu's group shares.
  1295. */
  1296. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1297. unsigned long sd_shares,
  1298. unsigned long sd_rq_weight,
  1299. unsigned long *usd_rq_weight)
  1300. {
  1301. unsigned long shares, rq_weight;
  1302. int boost = 0;
  1303. rq_weight = usd_rq_weight[cpu];
  1304. if (!rq_weight) {
  1305. boost = 1;
  1306. rq_weight = NICE_0_LOAD;
  1307. }
  1308. /*
  1309. * \Sum_j shares_j * rq_weight_i
  1310. * shares_i = -----------------------------
  1311. * \Sum_j rq_weight_j
  1312. */
  1313. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1314. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1315. if (abs(shares - tg->se[cpu]->load.weight) >
  1316. sysctl_sched_shares_thresh) {
  1317. struct rq *rq = cpu_rq(cpu);
  1318. unsigned long flags;
  1319. raw_spin_lock_irqsave(&rq->lock, flags);
  1320. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1321. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1322. __set_se_shares(tg->se[cpu], shares);
  1323. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1324. }
  1325. }
  1326. /*
  1327. * Re-compute the task group their per cpu shares over the given domain.
  1328. * This needs to be done in a bottom-up fashion because the rq weight of a
  1329. * parent group depends on the shares of its child groups.
  1330. */
  1331. static int tg_shares_up(struct task_group *tg, void *data)
  1332. {
  1333. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1334. unsigned long *usd_rq_weight;
  1335. struct sched_domain *sd = data;
  1336. unsigned long flags;
  1337. int i;
  1338. if (!tg->se[0])
  1339. return 0;
  1340. local_irq_save(flags);
  1341. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1342. for_each_cpu(i, sched_domain_span(sd)) {
  1343. weight = tg->cfs_rq[i]->load.weight;
  1344. usd_rq_weight[i] = weight;
  1345. rq_weight += weight;
  1346. /*
  1347. * If there are currently no tasks on the cpu pretend there
  1348. * is one of average load so that when a new task gets to
  1349. * run here it will not get delayed by group starvation.
  1350. */
  1351. if (!weight)
  1352. weight = NICE_0_LOAD;
  1353. sum_weight += weight;
  1354. shares += tg->cfs_rq[i]->shares;
  1355. }
  1356. if (!rq_weight)
  1357. rq_weight = sum_weight;
  1358. if ((!shares && rq_weight) || shares > tg->shares)
  1359. shares = tg->shares;
  1360. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1361. shares = tg->shares;
  1362. for_each_cpu(i, sched_domain_span(sd))
  1363. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1364. local_irq_restore(flags);
  1365. return 0;
  1366. }
  1367. /*
  1368. * Compute the cpu's hierarchical load factor for each task group.
  1369. * This needs to be done in a top-down fashion because the load of a child
  1370. * group is a fraction of its parents load.
  1371. */
  1372. static int tg_load_down(struct task_group *tg, void *data)
  1373. {
  1374. unsigned long load;
  1375. long cpu = (long)data;
  1376. if (!tg->parent) {
  1377. load = cpu_rq(cpu)->load.weight;
  1378. } else {
  1379. load = tg->parent->cfs_rq[cpu]->h_load;
  1380. load *= tg->cfs_rq[cpu]->shares;
  1381. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1382. }
  1383. tg->cfs_rq[cpu]->h_load = load;
  1384. return 0;
  1385. }
  1386. static void update_shares(struct sched_domain *sd)
  1387. {
  1388. s64 elapsed;
  1389. u64 now;
  1390. if (root_task_group_empty())
  1391. return;
  1392. now = local_clock();
  1393. elapsed = now - sd->last_update;
  1394. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1395. sd->last_update = now;
  1396. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1397. }
  1398. }
  1399. static void update_h_load(long cpu)
  1400. {
  1401. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1402. }
  1403. #else
  1404. static inline void update_shares(struct sched_domain *sd)
  1405. {
  1406. }
  1407. #endif
  1408. #ifdef CONFIG_PREEMPT
  1409. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1410. /*
  1411. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1412. * way at the expense of forcing extra atomic operations in all
  1413. * invocations. This assures that the double_lock is acquired using the
  1414. * same underlying policy as the spinlock_t on this architecture, which
  1415. * reduces latency compared to the unfair variant below. However, it
  1416. * also adds more overhead and therefore may reduce throughput.
  1417. */
  1418. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1419. __releases(this_rq->lock)
  1420. __acquires(busiest->lock)
  1421. __acquires(this_rq->lock)
  1422. {
  1423. raw_spin_unlock(&this_rq->lock);
  1424. double_rq_lock(this_rq, busiest);
  1425. return 1;
  1426. }
  1427. #else
  1428. /*
  1429. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1430. * latency by eliminating extra atomic operations when the locks are
  1431. * already in proper order on entry. This favors lower cpu-ids and will
  1432. * grant the double lock to lower cpus over higher ids under contention,
  1433. * regardless of entry order into the function.
  1434. */
  1435. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1436. __releases(this_rq->lock)
  1437. __acquires(busiest->lock)
  1438. __acquires(this_rq->lock)
  1439. {
  1440. int ret = 0;
  1441. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1442. if (busiest < this_rq) {
  1443. raw_spin_unlock(&this_rq->lock);
  1444. raw_spin_lock(&busiest->lock);
  1445. raw_spin_lock_nested(&this_rq->lock,
  1446. SINGLE_DEPTH_NESTING);
  1447. ret = 1;
  1448. } else
  1449. raw_spin_lock_nested(&busiest->lock,
  1450. SINGLE_DEPTH_NESTING);
  1451. }
  1452. return ret;
  1453. }
  1454. #endif /* CONFIG_PREEMPT */
  1455. /*
  1456. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1457. */
  1458. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1459. {
  1460. if (unlikely(!irqs_disabled())) {
  1461. /* printk() doesn't work good under rq->lock */
  1462. raw_spin_unlock(&this_rq->lock);
  1463. BUG_ON(1);
  1464. }
  1465. return _double_lock_balance(this_rq, busiest);
  1466. }
  1467. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1468. __releases(busiest->lock)
  1469. {
  1470. raw_spin_unlock(&busiest->lock);
  1471. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1472. }
  1473. /*
  1474. * double_rq_lock - safely lock two runqueues
  1475. *
  1476. * Note this does not disable interrupts like task_rq_lock,
  1477. * you need to do so manually before calling.
  1478. */
  1479. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1480. __acquires(rq1->lock)
  1481. __acquires(rq2->lock)
  1482. {
  1483. BUG_ON(!irqs_disabled());
  1484. if (rq1 == rq2) {
  1485. raw_spin_lock(&rq1->lock);
  1486. __acquire(rq2->lock); /* Fake it out ;) */
  1487. } else {
  1488. if (rq1 < rq2) {
  1489. raw_spin_lock(&rq1->lock);
  1490. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1491. } else {
  1492. raw_spin_lock(&rq2->lock);
  1493. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1494. }
  1495. }
  1496. }
  1497. /*
  1498. * double_rq_unlock - safely unlock two runqueues
  1499. *
  1500. * Note this does not restore interrupts like task_rq_unlock,
  1501. * you need to do so manually after calling.
  1502. */
  1503. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1504. __releases(rq1->lock)
  1505. __releases(rq2->lock)
  1506. {
  1507. raw_spin_unlock(&rq1->lock);
  1508. if (rq1 != rq2)
  1509. raw_spin_unlock(&rq2->lock);
  1510. else
  1511. __release(rq2->lock);
  1512. }
  1513. #endif
  1514. #ifdef CONFIG_FAIR_GROUP_SCHED
  1515. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1516. {
  1517. #ifdef CONFIG_SMP
  1518. cfs_rq->shares = shares;
  1519. #endif
  1520. }
  1521. #endif
  1522. static void calc_load_account_idle(struct rq *this_rq);
  1523. static void update_sysctl(void);
  1524. static int get_update_sysctl_factor(void);
  1525. static void update_cpu_load(struct rq *this_rq);
  1526. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1527. {
  1528. set_task_rq(p, cpu);
  1529. #ifdef CONFIG_SMP
  1530. /*
  1531. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1532. * successfuly executed on another CPU. We must ensure that updates of
  1533. * per-task data have been completed by this moment.
  1534. */
  1535. smp_wmb();
  1536. task_thread_info(p)->cpu = cpu;
  1537. #endif
  1538. }
  1539. static const struct sched_class rt_sched_class;
  1540. #define sched_class_highest (&rt_sched_class)
  1541. #define for_each_class(class) \
  1542. for (class = sched_class_highest; class; class = class->next)
  1543. #include "sched_stats.h"
  1544. static void inc_nr_running(struct rq *rq)
  1545. {
  1546. rq->nr_running++;
  1547. }
  1548. static void dec_nr_running(struct rq *rq)
  1549. {
  1550. rq->nr_running--;
  1551. }
  1552. static void set_load_weight(struct task_struct *p)
  1553. {
  1554. if (task_has_rt_policy(p)) {
  1555. p->se.load.weight = 0;
  1556. p->se.load.inv_weight = WMULT_CONST;
  1557. return;
  1558. }
  1559. /*
  1560. * SCHED_IDLE tasks get minimal weight:
  1561. */
  1562. if (p->policy == SCHED_IDLE) {
  1563. p->se.load.weight = WEIGHT_IDLEPRIO;
  1564. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1565. return;
  1566. }
  1567. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1568. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1569. }
  1570. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1571. {
  1572. update_rq_clock(rq);
  1573. sched_info_queued(p);
  1574. p->sched_class->enqueue_task(rq, p, flags);
  1575. p->se.on_rq = 1;
  1576. }
  1577. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1578. {
  1579. update_rq_clock(rq);
  1580. sched_info_dequeued(p);
  1581. p->sched_class->dequeue_task(rq, p, flags);
  1582. p->se.on_rq = 0;
  1583. }
  1584. /*
  1585. * activate_task - move a task to the runqueue.
  1586. */
  1587. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1588. {
  1589. if (task_contributes_to_load(p))
  1590. rq->nr_uninterruptible--;
  1591. enqueue_task(rq, p, flags);
  1592. inc_nr_running(rq);
  1593. }
  1594. /*
  1595. * deactivate_task - remove a task from the runqueue.
  1596. */
  1597. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1598. {
  1599. if (task_contributes_to_load(p))
  1600. rq->nr_uninterruptible++;
  1601. dequeue_task(rq, p, flags);
  1602. dec_nr_running(rq);
  1603. }
  1604. #include "sched_idletask.c"
  1605. #include "sched_fair.c"
  1606. #include "sched_rt.c"
  1607. #ifdef CONFIG_SCHED_DEBUG
  1608. # include "sched_debug.c"
  1609. #endif
  1610. /*
  1611. * __normal_prio - return the priority that is based on the static prio
  1612. */
  1613. static inline int __normal_prio(struct task_struct *p)
  1614. {
  1615. return p->static_prio;
  1616. }
  1617. /*
  1618. * Calculate the expected normal priority: i.e. priority
  1619. * without taking RT-inheritance into account. Might be
  1620. * boosted by interactivity modifiers. Changes upon fork,
  1621. * setprio syscalls, and whenever the interactivity
  1622. * estimator recalculates.
  1623. */
  1624. static inline int normal_prio(struct task_struct *p)
  1625. {
  1626. int prio;
  1627. if (task_has_rt_policy(p))
  1628. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1629. else
  1630. prio = __normal_prio(p);
  1631. return prio;
  1632. }
  1633. /*
  1634. * Calculate the current priority, i.e. the priority
  1635. * taken into account by the scheduler. This value might
  1636. * be boosted by RT tasks, or might be boosted by
  1637. * interactivity modifiers. Will be RT if the task got
  1638. * RT-boosted. If not then it returns p->normal_prio.
  1639. */
  1640. static int effective_prio(struct task_struct *p)
  1641. {
  1642. p->normal_prio = normal_prio(p);
  1643. /*
  1644. * If we are RT tasks or we were boosted to RT priority,
  1645. * keep the priority unchanged. Otherwise, update priority
  1646. * to the normal priority:
  1647. */
  1648. if (!rt_prio(p->prio))
  1649. return p->normal_prio;
  1650. return p->prio;
  1651. }
  1652. /**
  1653. * task_curr - is this task currently executing on a CPU?
  1654. * @p: the task in question.
  1655. */
  1656. inline int task_curr(const struct task_struct *p)
  1657. {
  1658. return cpu_curr(task_cpu(p)) == p;
  1659. }
  1660. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1661. const struct sched_class *prev_class,
  1662. int oldprio, int running)
  1663. {
  1664. if (prev_class != p->sched_class) {
  1665. if (prev_class->switched_from)
  1666. prev_class->switched_from(rq, p, running);
  1667. p->sched_class->switched_to(rq, p, running);
  1668. } else
  1669. p->sched_class->prio_changed(rq, p, oldprio, running);
  1670. }
  1671. #ifdef CONFIG_SMP
  1672. /*
  1673. * Is this task likely cache-hot:
  1674. */
  1675. static int
  1676. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1677. {
  1678. s64 delta;
  1679. if (p->sched_class != &fair_sched_class)
  1680. return 0;
  1681. /*
  1682. * Buddy candidates are cache hot:
  1683. */
  1684. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1685. (&p->se == cfs_rq_of(&p->se)->next ||
  1686. &p->se == cfs_rq_of(&p->se)->last))
  1687. return 1;
  1688. if (sysctl_sched_migration_cost == -1)
  1689. return 1;
  1690. if (sysctl_sched_migration_cost == 0)
  1691. return 0;
  1692. delta = now - p->se.exec_start;
  1693. return delta < (s64)sysctl_sched_migration_cost;
  1694. }
  1695. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1696. {
  1697. #ifdef CONFIG_SCHED_DEBUG
  1698. /*
  1699. * We should never call set_task_cpu() on a blocked task,
  1700. * ttwu() will sort out the placement.
  1701. */
  1702. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1703. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1704. #endif
  1705. trace_sched_migrate_task(p, new_cpu);
  1706. if (task_cpu(p) != new_cpu) {
  1707. p->se.nr_migrations++;
  1708. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1709. }
  1710. __set_task_cpu(p, new_cpu);
  1711. }
  1712. struct migration_arg {
  1713. struct task_struct *task;
  1714. int dest_cpu;
  1715. };
  1716. static int migration_cpu_stop(void *data);
  1717. /*
  1718. * The task's runqueue lock must be held.
  1719. * Returns true if you have to wait for migration thread.
  1720. */
  1721. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1722. {
  1723. struct rq *rq = task_rq(p);
  1724. /*
  1725. * If the task is not on a runqueue (and not running), then
  1726. * the next wake-up will properly place the task.
  1727. */
  1728. return p->se.on_rq || task_running(rq, p);
  1729. }
  1730. /*
  1731. * wait_task_inactive - wait for a thread to unschedule.
  1732. *
  1733. * If @match_state is nonzero, it's the @p->state value just checked and
  1734. * not expected to change. If it changes, i.e. @p might have woken up,
  1735. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1736. * we return a positive number (its total switch count). If a second call
  1737. * a short while later returns the same number, the caller can be sure that
  1738. * @p has remained unscheduled the whole time.
  1739. *
  1740. * The caller must ensure that the task *will* unschedule sometime soon,
  1741. * else this function might spin for a *long* time. This function can't
  1742. * be called with interrupts off, or it may introduce deadlock with
  1743. * smp_call_function() if an IPI is sent by the same process we are
  1744. * waiting to become inactive.
  1745. */
  1746. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1747. {
  1748. unsigned long flags;
  1749. int running, on_rq;
  1750. unsigned long ncsw;
  1751. struct rq *rq;
  1752. for (;;) {
  1753. /*
  1754. * We do the initial early heuristics without holding
  1755. * any task-queue locks at all. We'll only try to get
  1756. * the runqueue lock when things look like they will
  1757. * work out!
  1758. */
  1759. rq = task_rq(p);
  1760. /*
  1761. * If the task is actively running on another CPU
  1762. * still, just relax and busy-wait without holding
  1763. * any locks.
  1764. *
  1765. * NOTE! Since we don't hold any locks, it's not
  1766. * even sure that "rq" stays as the right runqueue!
  1767. * But we don't care, since "task_running()" will
  1768. * return false if the runqueue has changed and p
  1769. * is actually now running somewhere else!
  1770. */
  1771. while (task_running(rq, p)) {
  1772. if (match_state && unlikely(p->state != match_state))
  1773. return 0;
  1774. cpu_relax();
  1775. }
  1776. /*
  1777. * Ok, time to look more closely! We need the rq
  1778. * lock now, to be *sure*. If we're wrong, we'll
  1779. * just go back and repeat.
  1780. */
  1781. rq = task_rq_lock(p, &flags);
  1782. trace_sched_wait_task(p);
  1783. running = task_running(rq, p);
  1784. on_rq = p->se.on_rq;
  1785. ncsw = 0;
  1786. if (!match_state || p->state == match_state)
  1787. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1788. task_rq_unlock(rq, &flags);
  1789. /*
  1790. * If it changed from the expected state, bail out now.
  1791. */
  1792. if (unlikely(!ncsw))
  1793. break;
  1794. /*
  1795. * Was it really running after all now that we
  1796. * checked with the proper locks actually held?
  1797. *
  1798. * Oops. Go back and try again..
  1799. */
  1800. if (unlikely(running)) {
  1801. cpu_relax();
  1802. continue;
  1803. }
  1804. /*
  1805. * It's not enough that it's not actively running,
  1806. * it must be off the runqueue _entirely_, and not
  1807. * preempted!
  1808. *
  1809. * So if it was still runnable (but just not actively
  1810. * running right now), it's preempted, and we should
  1811. * yield - it could be a while.
  1812. */
  1813. if (unlikely(on_rq)) {
  1814. schedule_timeout_uninterruptible(1);
  1815. continue;
  1816. }
  1817. /*
  1818. * Ahh, all good. It wasn't running, and it wasn't
  1819. * runnable, which means that it will never become
  1820. * running in the future either. We're all done!
  1821. */
  1822. break;
  1823. }
  1824. return ncsw;
  1825. }
  1826. /***
  1827. * kick_process - kick a running thread to enter/exit the kernel
  1828. * @p: the to-be-kicked thread
  1829. *
  1830. * Cause a process which is running on another CPU to enter
  1831. * kernel-mode, without any delay. (to get signals handled.)
  1832. *
  1833. * NOTE: this function doesnt have to take the runqueue lock,
  1834. * because all it wants to ensure is that the remote task enters
  1835. * the kernel. If the IPI races and the task has been migrated
  1836. * to another CPU then no harm is done and the purpose has been
  1837. * achieved as well.
  1838. */
  1839. void kick_process(struct task_struct *p)
  1840. {
  1841. int cpu;
  1842. preempt_disable();
  1843. cpu = task_cpu(p);
  1844. if ((cpu != smp_processor_id()) && task_curr(p))
  1845. smp_send_reschedule(cpu);
  1846. preempt_enable();
  1847. }
  1848. EXPORT_SYMBOL_GPL(kick_process);
  1849. #endif /* CONFIG_SMP */
  1850. /**
  1851. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1852. * @p: the task to evaluate
  1853. * @func: the function to be called
  1854. * @info: the function call argument
  1855. *
  1856. * Calls the function @func when the task is currently running. This might
  1857. * be on the current CPU, which just calls the function directly
  1858. */
  1859. void task_oncpu_function_call(struct task_struct *p,
  1860. void (*func) (void *info), void *info)
  1861. {
  1862. int cpu;
  1863. preempt_disable();
  1864. cpu = task_cpu(p);
  1865. if (task_curr(p))
  1866. smp_call_function_single(cpu, func, info, 1);
  1867. preempt_enable();
  1868. }
  1869. #ifdef CONFIG_SMP
  1870. /*
  1871. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1872. */
  1873. static int select_fallback_rq(int cpu, struct task_struct *p)
  1874. {
  1875. int dest_cpu;
  1876. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1877. /* Look for allowed, online CPU in same node. */
  1878. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1879. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1880. return dest_cpu;
  1881. /* Any allowed, online CPU? */
  1882. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1883. if (dest_cpu < nr_cpu_ids)
  1884. return dest_cpu;
  1885. /* No more Mr. Nice Guy. */
  1886. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1887. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1888. /*
  1889. * Don't tell them about moving exiting tasks or
  1890. * kernel threads (both mm NULL), since they never
  1891. * leave kernel.
  1892. */
  1893. if (p->mm && printk_ratelimit()) {
  1894. printk(KERN_INFO "process %d (%s) no "
  1895. "longer affine to cpu%d\n",
  1896. task_pid_nr(p), p->comm, cpu);
  1897. }
  1898. }
  1899. return dest_cpu;
  1900. }
  1901. /*
  1902. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1903. */
  1904. static inline
  1905. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1906. {
  1907. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1908. /*
  1909. * In order not to call set_task_cpu() on a blocking task we need
  1910. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1911. * cpu.
  1912. *
  1913. * Since this is common to all placement strategies, this lives here.
  1914. *
  1915. * [ this allows ->select_task() to simply return task_cpu(p) and
  1916. * not worry about this generic constraint ]
  1917. */
  1918. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1919. !cpu_online(cpu)))
  1920. cpu = select_fallback_rq(task_cpu(p), p);
  1921. return cpu;
  1922. }
  1923. static void update_avg(u64 *avg, u64 sample)
  1924. {
  1925. s64 diff = sample - *avg;
  1926. *avg += diff >> 3;
  1927. }
  1928. #endif
  1929. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1930. bool is_sync, bool is_migrate, bool is_local,
  1931. unsigned long en_flags)
  1932. {
  1933. schedstat_inc(p, se.statistics.nr_wakeups);
  1934. if (is_sync)
  1935. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1936. if (is_migrate)
  1937. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1938. if (is_local)
  1939. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1940. else
  1941. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1942. activate_task(rq, p, en_flags);
  1943. }
  1944. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1945. int wake_flags, bool success)
  1946. {
  1947. trace_sched_wakeup(p, success);
  1948. check_preempt_curr(rq, p, wake_flags);
  1949. p->state = TASK_RUNNING;
  1950. #ifdef CONFIG_SMP
  1951. if (p->sched_class->task_woken)
  1952. p->sched_class->task_woken(rq, p);
  1953. if (unlikely(rq->idle_stamp)) {
  1954. u64 delta = rq->clock - rq->idle_stamp;
  1955. u64 max = 2*sysctl_sched_migration_cost;
  1956. if (delta > max)
  1957. rq->avg_idle = max;
  1958. else
  1959. update_avg(&rq->avg_idle, delta);
  1960. rq->idle_stamp = 0;
  1961. }
  1962. #endif
  1963. /* if a worker is waking up, notify workqueue */
  1964. if ((p->flags & PF_WQ_WORKER) && success)
  1965. wq_worker_waking_up(p, cpu_of(rq));
  1966. }
  1967. /**
  1968. * try_to_wake_up - wake up a thread
  1969. * @p: the thread to be awakened
  1970. * @state: the mask of task states that can be woken
  1971. * @wake_flags: wake modifier flags (WF_*)
  1972. *
  1973. * Put it on the run-queue if it's not already there. The "current"
  1974. * thread is always on the run-queue (except when the actual
  1975. * re-schedule is in progress), and as such you're allowed to do
  1976. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1977. * runnable without the overhead of this.
  1978. *
  1979. * Returns %true if @p was woken up, %false if it was already running
  1980. * or @state didn't match @p's state.
  1981. */
  1982. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1983. int wake_flags)
  1984. {
  1985. int cpu, orig_cpu, this_cpu, success = 0;
  1986. unsigned long flags;
  1987. unsigned long en_flags = ENQUEUE_WAKEUP;
  1988. struct rq *rq;
  1989. this_cpu = get_cpu();
  1990. smp_wmb();
  1991. rq = task_rq_lock(p, &flags);
  1992. if (!(p->state & state))
  1993. goto out;
  1994. if (p->se.on_rq)
  1995. goto out_running;
  1996. cpu = task_cpu(p);
  1997. orig_cpu = cpu;
  1998. #ifdef CONFIG_SMP
  1999. if (unlikely(task_running(rq, p)))
  2000. goto out_activate;
  2001. /*
  2002. * In order to handle concurrent wakeups and release the rq->lock
  2003. * we put the task in TASK_WAKING state.
  2004. *
  2005. * First fix up the nr_uninterruptible count:
  2006. */
  2007. if (task_contributes_to_load(p)) {
  2008. if (likely(cpu_online(orig_cpu)))
  2009. rq->nr_uninterruptible--;
  2010. else
  2011. this_rq()->nr_uninterruptible--;
  2012. }
  2013. p->state = TASK_WAKING;
  2014. if (p->sched_class->task_waking) {
  2015. p->sched_class->task_waking(rq, p);
  2016. en_flags |= ENQUEUE_WAKING;
  2017. }
  2018. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2019. if (cpu != orig_cpu)
  2020. set_task_cpu(p, cpu);
  2021. __task_rq_unlock(rq);
  2022. rq = cpu_rq(cpu);
  2023. raw_spin_lock(&rq->lock);
  2024. /*
  2025. * We migrated the task without holding either rq->lock, however
  2026. * since the task is not on the task list itself, nobody else
  2027. * will try and migrate the task, hence the rq should match the
  2028. * cpu we just moved it to.
  2029. */
  2030. WARN_ON(task_cpu(p) != cpu);
  2031. WARN_ON(p->state != TASK_WAKING);
  2032. #ifdef CONFIG_SCHEDSTATS
  2033. schedstat_inc(rq, ttwu_count);
  2034. if (cpu == this_cpu)
  2035. schedstat_inc(rq, ttwu_local);
  2036. else {
  2037. struct sched_domain *sd;
  2038. for_each_domain(this_cpu, sd) {
  2039. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2040. schedstat_inc(sd, ttwu_wake_remote);
  2041. break;
  2042. }
  2043. }
  2044. }
  2045. #endif /* CONFIG_SCHEDSTATS */
  2046. out_activate:
  2047. #endif /* CONFIG_SMP */
  2048. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2049. cpu == this_cpu, en_flags);
  2050. success = 1;
  2051. out_running:
  2052. ttwu_post_activation(p, rq, wake_flags, success);
  2053. out:
  2054. task_rq_unlock(rq, &flags);
  2055. put_cpu();
  2056. return success;
  2057. }
  2058. /**
  2059. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2060. * @p: the thread to be awakened
  2061. *
  2062. * Put @p on the run-queue if it's not alredy there. The caller must
  2063. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2064. * the current task. this_rq() stays locked over invocation.
  2065. */
  2066. static void try_to_wake_up_local(struct task_struct *p)
  2067. {
  2068. struct rq *rq = task_rq(p);
  2069. bool success = false;
  2070. BUG_ON(rq != this_rq());
  2071. BUG_ON(p == current);
  2072. lockdep_assert_held(&rq->lock);
  2073. if (!(p->state & TASK_NORMAL))
  2074. return;
  2075. if (!p->se.on_rq) {
  2076. if (likely(!task_running(rq, p))) {
  2077. schedstat_inc(rq, ttwu_count);
  2078. schedstat_inc(rq, ttwu_local);
  2079. }
  2080. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2081. success = true;
  2082. }
  2083. ttwu_post_activation(p, rq, 0, success);
  2084. }
  2085. /**
  2086. * wake_up_process - Wake up a specific process
  2087. * @p: The process to be woken up.
  2088. *
  2089. * Attempt to wake up the nominated process and move it to the set of runnable
  2090. * processes. Returns 1 if the process was woken up, 0 if it was already
  2091. * running.
  2092. *
  2093. * It may be assumed that this function implies a write memory barrier before
  2094. * changing the task state if and only if any tasks are woken up.
  2095. */
  2096. int wake_up_process(struct task_struct *p)
  2097. {
  2098. return try_to_wake_up(p, TASK_ALL, 0);
  2099. }
  2100. EXPORT_SYMBOL(wake_up_process);
  2101. int wake_up_state(struct task_struct *p, unsigned int state)
  2102. {
  2103. return try_to_wake_up(p, state, 0);
  2104. }
  2105. /*
  2106. * Perform scheduler related setup for a newly forked process p.
  2107. * p is forked by current.
  2108. *
  2109. * __sched_fork() is basic setup used by init_idle() too:
  2110. */
  2111. static void __sched_fork(struct task_struct *p)
  2112. {
  2113. p->se.exec_start = 0;
  2114. p->se.sum_exec_runtime = 0;
  2115. p->se.prev_sum_exec_runtime = 0;
  2116. p->se.nr_migrations = 0;
  2117. #ifdef CONFIG_SCHEDSTATS
  2118. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2119. #endif
  2120. INIT_LIST_HEAD(&p->rt.run_list);
  2121. p->se.on_rq = 0;
  2122. INIT_LIST_HEAD(&p->se.group_node);
  2123. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2124. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2125. #endif
  2126. }
  2127. /*
  2128. * fork()/clone()-time setup:
  2129. */
  2130. void sched_fork(struct task_struct *p, int clone_flags)
  2131. {
  2132. int cpu = get_cpu();
  2133. __sched_fork(p);
  2134. /*
  2135. * We mark the process as running here. This guarantees that
  2136. * nobody will actually run it, and a signal or other external
  2137. * event cannot wake it up and insert it on the runqueue either.
  2138. */
  2139. p->state = TASK_RUNNING;
  2140. /*
  2141. * Revert to default priority/policy on fork if requested.
  2142. */
  2143. if (unlikely(p->sched_reset_on_fork)) {
  2144. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2145. p->policy = SCHED_NORMAL;
  2146. p->normal_prio = p->static_prio;
  2147. }
  2148. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2149. p->static_prio = NICE_TO_PRIO(0);
  2150. p->normal_prio = p->static_prio;
  2151. set_load_weight(p);
  2152. }
  2153. /*
  2154. * We don't need the reset flag anymore after the fork. It has
  2155. * fulfilled its duty:
  2156. */
  2157. p->sched_reset_on_fork = 0;
  2158. }
  2159. /*
  2160. * Make sure we do not leak PI boosting priority to the child.
  2161. */
  2162. p->prio = current->normal_prio;
  2163. if (!rt_prio(p->prio))
  2164. p->sched_class = &fair_sched_class;
  2165. if (p->sched_class->task_fork)
  2166. p->sched_class->task_fork(p);
  2167. /*
  2168. * The child is not yet in the pid-hash so no cgroup attach races,
  2169. * and the cgroup is pinned to this child due to cgroup_fork()
  2170. * is ran before sched_fork().
  2171. *
  2172. * Silence PROVE_RCU.
  2173. */
  2174. rcu_read_lock();
  2175. set_task_cpu(p, cpu);
  2176. rcu_read_unlock();
  2177. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2178. if (likely(sched_info_on()))
  2179. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2180. #endif
  2181. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2182. p->oncpu = 0;
  2183. #endif
  2184. #ifdef CONFIG_PREEMPT
  2185. /* Want to start with kernel preemption disabled. */
  2186. task_thread_info(p)->preempt_count = 1;
  2187. #endif
  2188. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2189. put_cpu();
  2190. }
  2191. /*
  2192. * wake_up_new_task - wake up a newly created task for the first time.
  2193. *
  2194. * This function will do some initial scheduler statistics housekeeping
  2195. * that must be done for every newly created context, then puts the task
  2196. * on the runqueue and wakes it.
  2197. */
  2198. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2199. {
  2200. unsigned long flags;
  2201. struct rq *rq;
  2202. int cpu __maybe_unused = get_cpu();
  2203. #ifdef CONFIG_SMP
  2204. rq = task_rq_lock(p, &flags);
  2205. p->state = TASK_WAKING;
  2206. /*
  2207. * Fork balancing, do it here and not earlier because:
  2208. * - cpus_allowed can change in the fork path
  2209. * - any previously selected cpu might disappear through hotplug
  2210. *
  2211. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2212. * without people poking at ->cpus_allowed.
  2213. */
  2214. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2215. set_task_cpu(p, cpu);
  2216. p->state = TASK_RUNNING;
  2217. task_rq_unlock(rq, &flags);
  2218. #endif
  2219. rq = task_rq_lock(p, &flags);
  2220. activate_task(rq, p, 0);
  2221. trace_sched_wakeup_new(p, 1);
  2222. check_preempt_curr(rq, p, WF_FORK);
  2223. #ifdef CONFIG_SMP
  2224. if (p->sched_class->task_woken)
  2225. p->sched_class->task_woken(rq, p);
  2226. #endif
  2227. task_rq_unlock(rq, &flags);
  2228. put_cpu();
  2229. }
  2230. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2231. /**
  2232. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2233. * @notifier: notifier struct to register
  2234. */
  2235. void preempt_notifier_register(struct preempt_notifier *notifier)
  2236. {
  2237. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2238. }
  2239. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2240. /**
  2241. * preempt_notifier_unregister - no longer interested in preemption notifications
  2242. * @notifier: notifier struct to unregister
  2243. *
  2244. * This is safe to call from within a preemption notifier.
  2245. */
  2246. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2247. {
  2248. hlist_del(&notifier->link);
  2249. }
  2250. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2251. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2252. {
  2253. struct preempt_notifier *notifier;
  2254. struct hlist_node *node;
  2255. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2256. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2257. }
  2258. static void
  2259. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2260. struct task_struct *next)
  2261. {
  2262. struct preempt_notifier *notifier;
  2263. struct hlist_node *node;
  2264. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2265. notifier->ops->sched_out(notifier, next);
  2266. }
  2267. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2268. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2269. {
  2270. }
  2271. static void
  2272. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2273. struct task_struct *next)
  2274. {
  2275. }
  2276. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2277. /**
  2278. * prepare_task_switch - prepare to switch tasks
  2279. * @rq: the runqueue preparing to switch
  2280. * @prev: the current task that is being switched out
  2281. * @next: the task we are going to switch to.
  2282. *
  2283. * This is called with the rq lock held and interrupts off. It must
  2284. * be paired with a subsequent finish_task_switch after the context
  2285. * switch.
  2286. *
  2287. * prepare_task_switch sets up locking and calls architecture specific
  2288. * hooks.
  2289. */
  2290. static inline void
  2291. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2292. struct task_struct *next)
  2293. {
  2294. fire_sched_out_preempt_notifiers(prev, next);
  2295. prepare_lock_switch(rq, next);
  2296. prepare_arch_switch(next);
  2297. }
  2298. /**
  2299. * finish_task_switch - clean up after a task-switch
  2300. * @rq: runqueue associated with task-switch
  2301. * @prev: the thread we just switched away from.
  2302. *
  2303. * finish_task_switch must be called after the context switch, paired
  2304. * with a prepare_task_switch call before the context switch.
  2305. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2306. * and do any other architecture-specific cleanup actions.
  2307. *
  2308. * Note that we may have delayed dropping an mm in context_switch(). If
  2309. * so, we finish that here outside of the runqueue lock. (Doing it
  2310. * with the lock held can cause deadlocks; see schedule() for
  2311. * details.)
  2312. */
  2313. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2314. __releases(rq->lock)
  2315. {
  2316. struct mm_struct *mm = rq->prev_mm;
  2317. long prev_state;
  2318. rq->prev_mm = NULL;
  2319. /*
  2320. * A task struct has one reference for the use as "current".
  2321. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2322. * schedule one last time. The schedule call will never return, and
  2323. * the scheduled task must drop that reference.
  2324. * The test for TASK_DEAD must occur while the runqueue locks are
  2325. * still held, otherwise prev could be scheduled on another cpu, die
  2326. * there before we look at prev->state, and then the reference would
  2327. * be dropped twice.
  2328. * Manfred Spraul <manfred@colorfullife.com>
  2329. */
  2330. prev_state = prev->state;
  2331. finish_arch_switch(prev);
  2332. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2333. local_irq_disable();
  2334. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2335. perf_event_task_sched_in(current);
  2336. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2337. local_irq_enable();
  2338. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2339. finish_lock_switch(rq, prev);
  2340. fire_sched_in_preempt_notifiers(current);
  2341. if (mm)
  2342. mmdrop(mm);
  2343. if (unlikely(prev_state == TASK_DEAD)) {
  2344. /*
  2345. * Remove function-return probe instances associated with this
  2346. * task and put them back on the free list.
  2347. */
  2348. kprobe_flush_task(prev);
  2349. put_task_struct(prev);
  2350. }
  2351. }
  2352. #ifdef CONFIG_SMP
  2353. /* assumes rq->lock is held */
  2354. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2355. {
  2356. if (prev->sched_class->pre_schedule)
  2357. prev->sched_class->pre_schedule(rq, prev);
  2358. }
  2359. /* rq->lock is NOT held, but preemption is disabled */
  2360. static inline void post_schedule(struct rq *rq)
  2361. {
  2362. if (rq->post_schedule) {
  2363. unsigned long flags;
  2364. raw_spin_lock_irqsave(&rq->lock, flags);
  2365. if (rq->curr->sched_class->post_schedule)
  2366. rq->curr->sched_class->post_schedule(rq);
  2367. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2368. rq->post_schedule = 0;
  2369. }
  2370. }
  2371. #else
  2372. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2373. {
  2374. }
  2375. static inline void post_schedule(struct rq *rq)
  2376. {
  2377. }
  2378. #endif
  2379. /**
  2380. * schedule_tail - first thing a freshly forked thread must call.
  2381. * @prev: the thread we just switched away from.
  2382. */
  2383. asmlinkage void schedule_tail(struct task_struct *prev)
  2384. __releases(rq->lock)
  2385. {
  2386. struct rq *rq = this_rq();
  2387. finish_task_switch(rq, prev);
  2388. /*
  2389. * FIXME: do we need to worry about rq being invalidated by the
  2390. * task_switch?
  2391. */
  2392. post_schedule(rq);
  2393. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2394. /* In this case, finish_task_switch does not reenable preemption */
  2395. preempt_enable();
  2396. #endif
  2397. if (current->set_child_tid)
  2398. put_user(task_pid_vnr(current), current->set_child_tid);
  2399. }
  2400. /*
  2401. * context_switch - switch to the new MM and the new
  2402. * thread's register state.
  2403. */
  2404. static inline void
  2405. context_switch(struct rq *rq, struct task_struct *prev,
  2406. struct task_struct *next)
  2407. {
  2408. struct mm_struct *mm, *oldmm;
  2409. prepare_task_switch(rq, prev, next);
  2410. trace_sched_switch(prev, next);
  2411. mm = next->mm;
  2412. oldmm = prev->active_mm;
  2413. /*
  2414. * For paravirt, this is coupled with an exit in switch_to to
  2415. * combine the page table reload and the switch backend into
  2416. * one hypercall.
  2417. */
  2418. arch_start_context_switch(prev);
  2419. if (likely(!mm)) {
  2420. next->active_mm = oldmm;
  2421. atomic_inc(&oldmm->mm_count);
  2422. enter_lazy_tlb(oldmm, next);
  2423. } else
  2424. switch_mm(oldmm, mm, next);
  2425. if (likely(!prev->mm)) {
  2426. prev->active_mm = NULL;
  2427. rq->prev_mm = oldmm;
  2428. }
  2429. /*
  2430. * Since the runqueue lock will be released by the next
  2431. * task (which is an invalid locking op but in the case
  2432. * of the scheduler it's an obvious special-case), so we
  2433. * do an early lockdep release here:
  2434. */
  2435. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2436. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2437. #endif
  2438. /* Here we just switch the register state and the stack. */
  2439. switch_to(prev, next, prev);
  2440. barrier();
  2441. /*
  2442. * this_rq must be evaluated again because prev may have moved
  2443. * CPUs since it called schedule(), thus the 'rq' on its stack
  2444. * frame will be invalid.
  2445. */
  2446. finish_task_switch(this_rq(), prev);
  2447. }
  2448. /*
  2449. * nr_running, nr_uninterruptible and nr_context_switches:
  2450. *
  2451. * externally visible scheduler statistics: current number of runnable
  2452. * threads, current number of uninterruptible-sleeping threads, total
  2453. * number of context switches performed since bootup.
  2454. */
  2455. unsigned long nr_running(void)
  2456. {
  2457. unsigned long i, sum = 0;
  2458. for_each_online_cpu(i)
  2459. sum += cpu_rq(i)->nr_running;
  2460. return sum;
  2461. }
  2462. unsigned long nr_uninterruptible(void)
  2463. {
  2464. unsigned long i, sum = 0;
  2465. for_each_possible_cpu(i)
  2466. sum += cpu_rq(i)->nr_uninterruptible;
  2467. /*
  2468. * Since we read the counters lockless, it might be slightly
  2469. * inaccurate. Do not allow it to go below zero though:
  2470. */
  2471. if (unlikely((long)sum < 0))
  2472. sum = 0;
  2473. return sum;
  2474. }
  2475. unsigned long long nr_context_switches(void)
  2476. {
  2477. int i;
  2478. unsigned long long sum = 0;
  2479. for_each_possible_cpu(i)
  2480. sum += cpu_rq(i)->nr_switches;
  2481. return sum;
  2482. }
  2483. unsigned long nr_iowait(void)
  2484. {
  2485. unsigned long i, sum = 0;
  2486. for_each_possible_cpu(i)
  2487. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2488. return sum;
  2489. }
  2490. unsigned long nr_iowait_cpu(int cpu)
  2491. {
  2492. struct rq *this = cpu_rq(cpu);
  2493. return atomic_read(&this->nr_iowait);
  2494. }
  2495. unsigned long this_cpu_load(void)
  2496. {
  2497. struct rq *this = this_rq();
  2498. return this->cpu_load[0];
  2499. }
  2500. /* Variables and functions for calc_load */
  2501. static atomic_long_t calc_load_tasks;
  2502. static unsigned long calc_load_update;
  2503. unsigned long avenrun[3];
  2504. EXPORT_SYMBOL(avenrun);
  2505. static long calc_load_fold_active(struct rq *this_rq)
  2506. {
  2507. long nr_active, delta = 0;
  2508. nr_active = this_rq->nr_running;
  2509. nr_active += (long) this_rq->nr_uninterruptible;
  2510. if (nr_active != this_rq->calc_load_active) {
  2511. delta = nr_active - this_rq->calc_load_active;
  2512. this_rq->calc_load_active = nr_active;
  2513. }
  2514. return delta;
  2515. }
  2516. #ifdef CONFIG_NO_HZ
  2517. /*
  2518. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2519. *
  2520. * When making the ILB scale, we should try to pull this in as well.
  2521. */
  2522. static atomic_long_t calc_load_tasks_idle;
  2523. static void calc_load_account_idle(struct rq *this_rq)
  2524. {
  2525. long delta;
  2526. delta = calc_load_fold_active(this_rq);
  2527. if (delta)
  2528. atomic_long_add(delta, &calc_load_tasks_idle);
  2529. }
  2530. static long calc_load_fold_idle(void)
  2531. {
  2532. long delta = 0;
  2533. /*
  2534. * Its got a race, we don't care...
  2535. */
  2536. if (atomic_long_read(&calc_load_tasks_idle))
  2537. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2538. return delta;
  2539. }
  2540. #else
  2541. static void calc_load_account_idle(struct rq *this_rq)
  2542. {
  2543. }
  2544. static inline long calc_load_fold_idle(void)
  2545. {
  2546. return 0;
  2547. }
  2548. #endif
  2549. /**
  2550. * get_avenrun - get the load average array
  2551. * @loads: pointer to dest load array
  2552. * @offset: offset to add
  2553. * @shift: shift count to shift the result left
  2554. *
  2555. * These values are estimates at best, so no need for locking.
  2556. */
  2557. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2558. {
  2559. loads[0] = (avenrun[0] + offset) << shift;
  2560. loads[1] = (avenrun[1] + offset) << shift;
  2561. loads[2] = (avenrun[2] + offset) << shift;
  2562. }
  2563. static unsigned long
  2564. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2565. {
  2566. load *= exp;
  2567. load += active * (FIXED_1 - exp);
  2568. return load >> FSHIFT;
  2569. }
  2570. /*
  2571. * calc_load - update the avenrun load estimates 10 ticks after the
  2572. * CPUs have updated calc_load_tasks.
  2573. */
  2574. void calc_global_load(void)
  2575. {
  2576. unsigned long upd = calc_load_update + 10;
  2577. long active;
  2578. if (time_before(jiffies, upd))
  2579. return;
  2580. active = atomic_long_read(&calc_load_tasks);
  2581. active = active > 0 ? active * FIXED_1 : 0;
  2582. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2583. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2584. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2585. calc_load_update += LOAD_FREQ;
  2586. }
  2587. /*
  2588. * Called from update_cpu_load() to periodically update this CPU's
  2589. * active count.
  2590. */
  2591. static void calc_load_account_active(struct rq *this_rq)
  2592. {
  2593. long delta;
  2594. if (time_before(jiffies, this_rq->calc_load_update))
  2595. return;
  2596. delta = calc_load_fold_active(this_rq);
  2597. delta += calc_load_fold_idle();
  2598. if (delta)
  2599. atomic_long_add(delta, &calc_load_tasks);
  2600. this_rq->calc_load_update += LOAD_FREQ;
  2601. }
  2602. /*
  2603. * The exact cpuload at various idx values, calculated at every tick would be
  2604. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2605. *
  2606. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2607. * on nth tick when cpu may be busy, then we have:
  2608. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2609. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2610. *
  2611. * decay_load_missed() below does efficient calculation of
  2612. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2613. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2614. *
  2615. * The calculation is approximated on a 128 point scale.
  2616. * degrade_zero_ticks is the number of ticks after which load at any
  2617. * particular idx is approximated to be zero.
  2618. * degrade_factor is a precomputed table, a row for each load idx.
  2619. * Each column corresponds to degradation factor for a power of two ticks,
  2620. * based on 128 point scale.
  2621. * Example:
  2622. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2623. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2624. *
  2625. * With this power of 2 load factors, we can degrade the load n times
  2626. * by looking at 1 bits in n and doing as many mult/shift instead of
  2627. * n mult/shifts needed by the exact degradation.
  2628. */
  2629. #define DEGRADE_SHIFT 7
  2630. static const unsigned char
  2631. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2632. static const unsigned char
  2633. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2634. {0, 0, 0, 0, 0, 0, 0, 0},
  2635. {64, 32, 8, 0, 0, 0, 0, 0},
  2636. {96, 72, 40, 12, 1, 0, 0},
  2637. {112, 98, 75, 43, 15, 1, 0},
  2638. {120, 112, 98, 76, 45, 16, 2} };
  2639. /*
  2640. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2641. * would be when CPU is idle and so we just decay the old load without
  2642. * adding any new load.
  2643. */
  2644. static unsigned long
  2645. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2646. {
  2647. int j = 0;
  2648. if (!missed_updates)
  2649. return load;
  2650. if (missed_updates >= degrade_zero_ticks[idx])
  2651. return 0;
  2652. if (idx == 1)
  2653. return load >> missed_updates;
  2654. while (missed_updates) {
  2655. if (missed_updates % 2)
  2656. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2657. missed_updates >>= 1;
  2658. j++;
  2659. }
  2660. return load;
  2661. }
  2662. /*
  2663. * Update rq->cpu_load[] statistics. This function is usually called every
  2664. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2665. * every tick. We fix it up based on jiffies.
  2666. */
  2667. static void update_cpu_load(struct rq *this_rq)
  2668. {
  2669. unsigned long this_load = this_rq->load.weight;
  2670. unsigned long curr_jiffies = jiffies;
  2671. unsigned long pending_updates;
  2672. int i, scale;
  2673. this_rq->nr_load_updates++;
  2674. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2675. if (curr_jiffies == this_rq->last_load_update_tick)
  2676. return;
  2677. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2678. this_rq->last_load_update_tick = curr_jiffies;
  2679. /* Update our load: */
  2680. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2681. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2682. unsigned long old_load, new_load;
  2683. /* scale is effectively 1 << i now, and >> i divides by scale */
  2684. old_load = this_rq->cpu_load[i];
  2685. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2686. new_load = this_load;
  2687. /*
  2688. * Round up the averaging division if load is increasing. This
  2689. * prevents us from getting stuck on 9 if the load is 10, for
  2690. * example.
  2691. */
  2692. if (new_load > old_load)
  2693. new_load += scale - 1;
  2694. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2695. }
  2696. sched_avg_update(this_rq);
  2697. }
  2698. static void update_cpu_load_active(struct rq *this_rq)
  2699. {
  2700. update_cpu_load(this_rq);
  2701. calc_load_account_active(this_rq);
  2702. }
  2703. #ifdef CONFIG_SMP
  2704. /*
  2705. * sched_exec - execve() is a valuable balancing opportunity, because at
  2706. * this point the task has the smallest effective memory and cache footprint.
  2707. */
  2708. void sched_exec(void)
  2709. {
  2710. struct task_struct *p = current;
  2711. unsigned long flags;
  2712. struct rq *rq;
  2713. int dest_cpu;
  2714. rq = task_rq_lock(p, &flags);
  2715. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2716. if (dest_cpu == smp_processor_id())
  2717. goto unlock;
  2718. /*
  2719. * select_task_rq() can race against ->cpus_allowed
  2720. */
  2721. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2722. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2723. struct migration_arg arg = { p, dest_cpu };
  2724. task_rq_unlock(rq, &flags);
  2725. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2726. return;
  2727. }
  2728. unlock:
  2729. task_rq_unlock(rq, &flags);
  2730. }
  2731. #endif
  2732. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2733. EXPORT_PER_CPU_SYMBOL(kstat);
  2734. /*
  2735. * Return any ns on the sched_clock that have not yet been accounted in
  2736. * @p in case that task is currently running.
  2737. *
  2738. * Called with task_rq_lock() held on @rq.
  2739. */
  2740. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2741. {
  2742. u64 ns = 0;
  2743. if (task_current(rq, p)) {
  2744. update_rq_clock(rq);
  2745. ns = rq->clock - p->se.exec_start;
  2746. if ((s64)ns < 0)
  2747. ns = 0;
  2748. }
  2749. return ns;
  2750. }
  2751. unsigned long long task_delta_exec(struct task_struct *p)
  2752. {
  2753. unsigned long flags;
  2754. struct rq *rq;
  2755. u64 ns = 0;
  2756. rq = task_rq_lock(p, &flags);
  2757. ns = do_task_delta_exec(p, rq);
  2758. task_rq_unlock(rq, &flags);
  2759. return ns;
  2760. }
  2761. /*
  2762. * Return accounted runtime for the task.
  2763. * In case the task is currently running, return the runtime plus current's
  2764. * pending runtime that have not been accounted yet.
  2765. */
  2766. unsigned long long task_sched_runtime(struct task_struct *p)
  2767. {
  2768. unsigned long flags;
  2769. struct rq *rq;
  2770. u64 ns = 0;
  2771. rq = task_rq_lock(p, &flags);
  2772. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2773. task_rq_unlock(rq, &flags);
  2774. return ns;
  2775. }
  2776. /*
  2777. * Return sum_exec_runtime for the thread group.
  2778. * In case the task is currently running, return the sum plus current's
  2779. * pending runtime that have not been accounted yet.
  2780. *
  2781. * Note that the thread group might have other running tasks as well,
  2782. * so the return value not includes other pending runtime that other
  2783. * running tasks might have.
  2784. */
  2785. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2786. {
  2787. struct task_cputime totals;
  2788. unsigned long flags;
  2789. struct rq *rq;
  2790. u64 ns;
  2791. rq = task_rq_lock(p, &flags);
  2792. thread_group_cputime(p, &totals);
  2793. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2794. task_rq_unlock(rq, &flags);
  2795. return ns;
  2796. }
  2797. /*
  2798. * Account user cpu time to a process.
  2799. * @p: the process that the cpu time gets accounted to
  2800. * @cputime: the cpu time spent in user space since the last update
  2801. * @cputime_scaled: cputime scaled by cpu frequency
  2802. */
  2803. void account_user_time(struct task_struct *p, cputime_t cputime,
  2804. cputime_t cputime_scaled)
  2805. {
  2806. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2807. cputime64_t tmp;
  2808. /* Add user time to process. */
  2809. p->utime = cputime_add(p->utime, cputime);
  2810. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2811. account_group_user_time(p, cputime);
  2812. /* Add user time to cpustat. */
  2813. tmp = cputime_to_cputime64(cputime);
  2814. if (TASK_NICE(p) > 0)
  2815. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2816. else
  2817. cpustat->user = cputime64_add(cpustat->user, tmp);
  2818. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2819. /* Account for user time used */
  2820. acct_update_integrals(p);
  2821. }
  2822. /*
  2823. * Account guest cpu time to a process.
  2824. * @p: the process that the cpu time gets accounted to
  2825. * @cputime: the cpu time spent in virtual machine since the last update
  2826. * @cputime_scaled: cputime scaled by cpu frequency
  2827. */
  2828. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2829. cputime_t cputime_scaled)
  2830. {
  2831. cputime64_t tmp;
  2832. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2833. tmp = cputime_to_cputime64(cputime);
  2834. /* Add guest time to process. */
  2835. p->utime = cputime_add(p->utime, cputime);
  2836. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2837. account_group_user_time(p, cputime);
  2838. p->gtime = cputime_add(p->gtime, cputime);
  2839. /* Add guest time to cpustat. */
  2840. if (TASK_NICE(p) > 0) {
  2841. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2842. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2843. } else {
  2844. cpustat->user = cputime64_add(cpustat->user, tmp);
  2845. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2846. }
  2847. }
  2848. /*
  2849. * Account system cpu time to a process.
  2850. * @p: the process that the cpu time gets accounted to
  2851. * @hardirq_offset: the offset to subtract from hardirq_count()
  2852. * @cputime: the cpu time spent in kernel space since the last update
  2853. * @cputime_scaled: cputime scaled by cpu frequency
  2854. */
  2855. void account_system_time(struct task_struct *p, int hardirq_offset,
  2856. cputime_t cputime, cputime_t cputime_scaled)
  2857. {
  2858. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2859. cputime64_t tmp;
  2860. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2861. account_guest_time(p, cputime, cputime_scaled);
  2862. return;
  2863. }
  2864. /* Add system time to process. */
  2865. p->stime = cputime_add(p->stime, cputime);
  2866. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2867. account_group_system_time(p, cputime);
  2868. /* Add system time to cpustat. */
  2869. tmp = cputime_to_cputime64(cputime);
  2870. if (hardirq_count() - hardirq_offset)
  2871. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2872. else if (softirq_count())
  2873. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2874. else
  2875. cpustat->system = cputime64_add(cpustat->system, tmp);
  2876. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2877. /* Account for system time used */
  2878. acct_update_integrals(p);
  2879. }
  2880. /*
  2881. * Account for involuntary wait time.
  2882. * @steal: the cpu time spent in involuntary wait
  2883. */
  2884. void account_steal_time(cputime_t cputime)
  2885. {
  2886. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2887. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2888. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2889. }
  2890. /*
  2891. * Account for idle time.
  2892. * @cputime: the cpu time spent in idle wait
  2893. */
  2894. void account_idle_time(cputime_t cputime)
  2895. {
  2896. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2897. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2898. struct rq *rq = this_rq();
  2899. if (atomic_read(&rq->nr_iowait) > 0)
  2900. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2901. else
  2902. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2903. }
  2904. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2905. /*
  2906. * Account a single tick of cpu time.
  2907. * @p: the process that the cpu time gets accounted to
  2908. * @user_tick: indicates if the tick is a user or a system tick
  2909. */
  2910. void account_process_tick(struct task_struct *p, int user_tick)
  2911. {
  2912. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2913. struct rq *rq = this_rq();
  2914. if (user_tick)
  2915. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2916. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2917. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2918. one_jiffy_scaled);
  2919. else
  2920. account_idle_time(cputime_one_jiffy);
  2921. }
  2922. /*
  2923. * Account multiple ticks of steal time.
  2924. * @p: the process from which the cpu time has been stolen
  2925. * @ticks: number of stolen ticks
  2926. */
  2927. void account_steal_ticks(unsigned long ticks)
  2928. {
  2929. account_steal_time(jiffies_to_cputime(ticks));
  2930. }
  2931. /*
  2932. * Account multiple ticks of idle time.
  2933. * @ticks: number of stolen ticks
  2934. */
  2935. void account_idle_ticks(unsigned long ticks)
  2936. {
  2937. account_idle_time(jiffies_to_cputime(ticks));
  2938. }
  2939. #endif
  2940. /*
  2941. * Use precise platform statistics if available:
  2942. */
  2943. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2944. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2945. {
  2946. *ut = p->utime;
  2947. *st = p->stime;
  2948. }
  2949. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2950. {
  2951. struct task_cputime cputime;
  2952. thread_group_cputime(p, &cputime);
  2953. *ut = cputime.utime;
  2954. *st = cputime.stime;
  2955. }
  2956. #else
  2957. #ifndef nsecs_to_cputime
  2958. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2959. #endif
  2960. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2961. {
  2962. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2963. /*
  2964. * Use CFS's precise accounting:
  2965. */
  2966. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2967. if (total) {
  2968. u64 temp;
  2969. temp = (u64)(rtime * utime);
  2970. do_div(temp, total);
  2971. utime = (cputime_t)temp;
  2972. } else
  2973. utime = rtime;
  2974. /*
  2975. * Compare with previous values, to keep monotonicity:
  2976. */
  2977. p->prev_utime = max(p->prev_utime, utime);
  2978. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2979. *ut = p->prev_utime;
  2980. *st = p->prev_stime;
  2981. }
  2982. /*
  2983. * Must be called with siglock held.
  2984. */
  2985. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2986. {
  2987. struct signal_struct *sig = p->signal;
  2988. struct task_cputime cputime;
  2989. cputime_t rtime, utime, total;
  2990. thread_group_cputime(p, &cputime);
  2991. total = cputime_add(cputime.utime, cputime.stime);
  2992. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2993. if (total) {
  2994. u64 temp;
  2995. temp = (u64)(rtime * cputime.utime);
  2996. do_div(temp, total);
  2997. utime = (cputime_t)temp;
  2998. } else
  2999. utime = rtime;
  3000. sig->prev_utime = max(sig->prev_utime, utime);
  3001. sig->prev_stime = max(sig->prev_stime,
  3002. cputime_sub(rtime, sig->prev_utime));
  3003. *ut = sig->prev_utime;
  3004. *st = sig->prev_stime;
  3005. }
  3006. #endif
  3007. /*
  3008. * This function gets called by the timer code, with HZ frequency.
  3009. * We call it with interrupts disabled.
  3010. *
  3011. * It also gets called by the fork code, when changing the parent's
  3012. * timeslices.
  3013. */
  3014. void scheduler_tick(void)
  3015. {
  3016. int cpu = smp_processor_id();
  3017. struct rq *rq = cpu_rq(cpu);
  3018. struct task_struct *curr = rq->curr;
  3019. sched_clock_tick();
  3020. raw_spin_lock(&rq->lock);
  3021. update_rq_clock(rq);
  3022. update_cpu_load_active(rq);
  3023. curr->sched_class->task_tick(rq, curr, 0);
  3024. raw_spin_unlock(&rq->lock);
  3025. perf_event_task_tick(curr);
  3026. #ifdef CONFIG_SMP
  3027. rq->idle_at_tick = idle_cpu(cpu);
  3028. trigger_load_balance(rq, cpu);
  3029. #endif
  3030. }
  3031. notrace unsigned long get_parent_ip(unsigned long addr)
  3032. {
  3033. if (in_lock_functions(addr)) {
  3034. addr = CALLER_ADDR2;
  3035. if (in_lock_functions(addr))
  3036. addr = CALLER_ADDR3;
  3037. }
  3038. return addr;
  3039. }
  3040. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3041. defined(CONFIG_PREEMPT_TRACER))
  3042. void __kprobes add_preempt_count(int val)
  3043. {
  3044. #ifdef CONFIG_DEBUG_PREEMPT
  3045. /*
  3046. * Underflow?
  3047. */
  3048. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3049. return;
  3050. #endif
  3051. preempt_count() += val;
  3052. #ifdef CONFIG_DEBUG_PREEMPT
  3053. /*
  3054. * Spinlock count overflowing soon?
  3055. */
  3056. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3057. PREEMPT_MASK - 10);
  3058. #endif
  3059. if (preempt_count() == val)
  3060. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3061. }
  3062. EXPORT_SYMBOL(add_preempt_count);
  3063. void __kprobes sub_preempt_count(int val)
  3064. {
  3065. #ifdef CONFIG_DEBUG_PREEMPT
  3066. /*
  3067. * Underflow?
  3068. */
  3069. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3070. return;
  3071. /*
  3072. * Is the spinlock portion underflowing?
  3073. */
  3074. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3075. !(preempt_count() & PREEMPT_MASK)))
  3076. return;
  3077. #endif
  3078. if (preempt_count() == val)
  3079. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3080. preempt_count() -= val;
  3081. }
  3082. EXPORT_SYMBOL(sub_preempt_count);
  3083. #endif
  3084. /*
  3085. * Print scheduling while atomic bug:
  3086. */
  3087. static noinline void __schedule_bug(struct task_struct *prev)
  3088. {
  3089. struct pt_regs *regs = get_irq_regs();
  3090. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3091. prev->comm, prev->pid, preempt_count());
  3092. debug_show_held_locks(prev);
  3093. print_modules();
  3094. if (irqs_disabled())
  3095. print_irqtrace_events(prev);
  3096. if (regs)
  3097. show_regs(regs);
  3098. else
  3099. dump_stack();
  3100. }
  3101. /*
  3102. * Various schedule()-time debugging checks and statistics:
  3103. */
  3104. static inline void schedule_debug(struct task_struct *prev)
  3105. {
  3106. /*
  3107. * Test if we are atomic. Since do_exit() needs to call into
  3108. * schedule() atomically, we ignore that path for now.
  3109. * Otherwise, whine if we are scheduling when we should not be.
  3110. */
  3111. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3112. __schedule_bug(prev);
  3113. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3114. schedstat_inc(this_rq(), sched_count);
  3115. #ifdef CONFIG_SCHEDSTATS
  3116. if (unlikely(prev->lock_depth >= 0)) {
  3117. schedstat_inc(this_rq(), bkl_count);
  3118. schedstat_inc(prev, sched_info.bkl_count);
  3119. }
  3120. #endif
  3121. }
  3122. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3123. {
  3124. if (prev->se.on_rq)
  3125. update_rq_clock(rq);
  3126. rq->skip_clock_update = 0;
  3127. prev->sched_class->put_prev_task(rq, prev);
  3128. }
  3129. /*
  3130. * Pick up the highest-prio task:
  3131. */
  3132. static inline struct task_struct *
  3133. pick_next_task(struct rq *rq)
  3134. {
  3135. const struct sched_class *class;
  3136. struct task_struct *p;
  3137. /*
  3138. * Optimization: we know that if all tasks are in
  3139. * the fair class we can call that function directly:
  3140. */
  3141. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3142. p = fair_sched_class.pick_next_task(rq);
  3143. if (likely(p))
  3144. return p;
  3145. }
  3146. class = sched_class_highest;
  3147. for ( ; ; ) {
  3148. p = class->pick_next_task(rq);
  3149. if (p)
  3150. return p;
  3151. /*
  3152. * Will never be NULL as the idle class always
  3153. * returns a non-NULL p:
  3154. */
  3155. class = class->next;
  3156. }
  3157. }
  3158. /*
  3159. * schedule() is the main scheduler function.
  3160. */
  3161. asmlinkage void __sched schedule(void)
  3162. {
  3163. struct task_struct *prev, *next;
  3164. unsigned long *switch_count;
  3165. struct rq *rq;
  3166. int cpu;
  3167. need_resched:
  3168. preempt_disable();
  3169. cpu = smp_processor_id();
  3170. rq = cpu_rq(cpu);
  3171. rcu_note_context_switch(cpu);
  3172. prev = rq->curr;
  3173. release_kernel_lock(prev);
  3174. need_resched_nonpreemptible:
  3175. schedule_debug(prev);
  3176. if (sched_feat(HRTICK))
  3177. hrtick_clear(rq);
  3178. raw_spin_lock_irq(&rq->lock);
  3179. clear_tsk_need_resched(prev);
  3180. switch_count = &prev->nivcsw;
  3181. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3182. if (unlikely(signal_pending_state(prev->state, prev))) {
  3183. prev->state = TASK_RUNNING;
  3184. } else {
  3185. /*
  3186. * If a worker is going to sleep, notify and
  3187. * ask workqueue whether it wants to wake up a
  3188. * task to maintain concurrency. If so, wake
  3189. * up the task.
  3190. */
  3191. if (prev->flags & PF_WQ_WORKER) {
  3192. struct task_struct *to_wakeup;
  3193. to_wakeup = wq_worker_sleeping(prev, cpu);
  3194. if (to_wakeup)
  3195. try_to_wake_up_local(to_wakeup);
  3196. }
  3197. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3198. }
  3199. switch_count = &prev->nvcsw;
  3200. }
  3201. pre_schedule(rq, prev);
  3202. if (unlikely(!rq->nr_running))
  3203. idle_balance(cpu, rq);
  3204. put_prev_task(rq, prev);
  3205. next = pick_next_task(rq);
  3206. if (likely(prev != next)) {
  3207. sched_info_switch(prev, next);
  3208. perf_event_task_sched_out(prev, next);
  3209. rq->nr_switches++;
  3210. rq->curr = next;
  3211. ++*switch_count;
  3212. context_switch(rq, prev, next); /* unlocks the rq */
  3213. /*
  3214. * The context switch have flipped the stack from under us
  3215. * and restored the local variables which were saved when
  3216. * this task called schedule() in the past. prev == current
  3217. * is still correct, but it can be moved to another cpu/rq.
  3218. */
  3219. cpu = smp_processor_id();
  3220. rq = cpu_rq(cpu);
  3221. } else
  3222. raw_spin_unlock_irq(&rq->lock);
  3223. post_schedule(rq);
  3224. if (unlikely(reacquire_kernel_lock(prev)))
  3225. goto need_resched_nonpreemptible;
  3226. preempt_enable_no_resched();
  3227. if (need_resched())
  3228. goto need_resched;
  3229. }
  3230. EXPORT_SYMBOL(schedule);
  3231. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3232. /*
  3233. * Look out! "owner" is an entirely speculative pointer
  3234. * access and not reliable.
  3235. */
  3236. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3237. {
  3238. unsigned int cpu;
  3239. struct rq *rq;
  3240. if (!sched_feat(OWNER_SPIN))
  3241. return 0;
  3242. #ifdef CONFIG_DEBUG_PAGEALLOC
  3243. /*
  3244. * Need to access the cpu field knowing that
  3245. * DEBUG_PAGEALLOC could have unmapped it if
  3246. * the mutex owner just released it and exited.
  3247. */
  3248. if (probe_kernel_address(&owner->cpu, cpu))
  3249. return 0;
  3250. #else
  3251. cpu = owner->cpu;
  3252. #endif
  3253. /*
  3254. * Even if the access succeeded (likely case),
  3255. * the cpu field may no longer be valid.
  3256. */
  3257. if (cpu >= nr_cpumask_bits)
  3258. return 0;
  3259. /*
  3260. * We need to validate that we can do a
  3261. * get_cpu() and that we have the percpu area.
  3262. */
  3263. if (!cpu_online(cpu))
  3264. return 0;
  3265. rq = cpu_rq(cpu);
  3266. for (;;) {
  3267. /*
  3268. * Owner changed, break to re-assess state.
  3269. */
  3270. if (lock->owner != owner) {
  3271. /*
  3272. * If the lock has switched to a different owner,
  3273. * we likely have heavy contention. Return 0 to quit
  3274. * optimistic spinning and not contend further:
  3275. */
  3276. if (lock->owner)
  3277. return 0;
  3278. break;
  3279. }
  3280. /*
  3281. * Is that owner really running on that cpu?
  3282. */
  3283. if (task_thread_info(rq->curr) != owner || need_resched())
  3284. return 0;
  3285. cpu_relax();
  3286. }
  3287. return 1;
  3288. }
  3289. #endif
  3290. #ifdef CONFIG_PREEMPT
  3291. /*
  3292. * this is the entry point to schedule() from in-kernel preemption
  3293. * off of preempt_enable. Kernel preemptions off return from interrupt
  3294. * occur there and call schedule directly.
  3295. */
  3296. asmlinkage void __sched notrace preempt_schedule(void)
  3297. {
  3298. struct thread_info *ti = current_thread_info();
  3299. /*
  3300. * If there is a non-zero preempt_count or interrupts are disabled,
  3301. * we do not want to preempt the current task. Just return..
  3302. */
  3303. if (likely(ti->preempt_count || irqs_disabled()))
  3304. return;
  3305. do {
  3306. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3307. schedule();
  3308. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3309. /*
  3310. * Check again in case we missed a preemption opportunity
  3311. * between schedule and now.
  3312. */
  3313. barrier();
  3314. } while (need_resched());
  3315. }
  3316. EXPORT_SYMBOL(preempt_schedule);
  3317. /*
  3318. * this is the entry point to schedule() from kernel preemption
  3319. * off of irq context.
  3320. * Note, that this is called and return with irqs disabled. This will
  3321. * protect us against recursive calling from irq.
  3322. */
  3323. asmlinkage void __sched preempt_schedule_irq(void)
  3324. {
  3325. struct thread_info *ti = current_thread_info();
  3326. /* Catch callers which need to be fixed */
  3327. BUG_ON(ti->preempt_count || !irqs_disabled());
  3328. do {
  3329. add_preempt_count(PREEMPT_ACTIVE);
  3330. local_irq_enable();
  3331. schedule();
  3332. local_irq_disable();
  3333. sub_preempt_count(PREEMPT_ACTIVE);
  3334. /*
  3335. * Check again in case we missed a preemption opportunity
  3336. * between schedule and now.
  3337. */
  3338. barrier();
  3339. } while (need_resched());
  3340. }
  3341. #endif /* CONFIG_PREEMPT */
  3342. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3343. void *key)
  3344. {
  3345. return try_to_wake_up(curr->private, mode, wake_flags);
  3346. }
  3347. EXPORT_SYMBOL(default_wake_function);
  3348. /*
  3349. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3350. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3351. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3352. *
  3353. * There are circumstances in which we can try to wake a task which has already
  3354. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3355. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3356. */
  3357. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3358. int nr_exclusive, int wake_flags, void *key)
  3359. {
  3360. wait_queue_t *curr, *next;
  3361. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3362. unsigned flags = curr->flags;
  3363. if (curr->func(curr, mode, wake_flags, key) &&
  3364. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3365. break;
  3366. }
  3367. }
  3368. /**
  3369. * __wake_up - wake up threads blocked on a waitqueue.
  3370. * @q: the waitqueue
  3371. * @mode: which threads
  3372. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3373. * @key: is directly passed to the wakeup function
  3374. *
  3375. * It may be assumed that this function implies a write memory barrier before
  3376. * changing the task state if and only if any tasks are woken up.
  3377. */
  3378. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3379. int nr_exclusive, void *key)
  3380. {
  3381. unsigned long flags;
  3382. spin_lock_irqsave(&q->lock, flags);
  3383. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3384. spin_unlock_irqrestore(&q->lock, flags);
  3385. }
  3386. EXPORT_SYMBOL(__wake_up);
  3387. /*
  3388. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3389. */
  3390. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3391. {
  3392. __wake_up_common(q, mode, 1, 0, NULL);
  3393. }
  3394. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3395. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3396. {
  3397. __wake_up_common(q, mode, 1, 0, key);
  3398. }
  3399. /**
  3400. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3401. * @q: the waitqueue
  3402. * @mode: which threads
  3403. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3404. * @key: opaque value to be passed to wakeup targets
  3405. *
  3406. * The sync wakeup differs that the waker knows that it will schedule
  3407. * away soon, so while the target thread will be woken up, it will not
  3408. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3409. * with each other. This can prevent needless bouncing between CPUs.
  3410. *
  3411. * On UP it can prevent extra preemption.
  3412. *
  3413. * It may be assumed that this function implies a write memory barrier before
  3414. * changing the task state if and only if any tasks are woken up.
  3415. */
  3416. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3417. int nr_exclusive, void *key)
  3418. {
  3419. unsigned long flags;
  3420. int wake_flags = WF_SYNC;
  3421. if (unlikely(!q))
  3422. return;
  3423. if (unlikely(!nr_exclusive))
  3424. wake_flags = 0;
  3425. spin_lock_irqsave(&q->lock, flags);
  3426. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3427. spin_unlock_irqrestore(&q->lock, flags);
  3428. }
  3429. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3430. /*
  3431. * __wake_up_sync - see __wake_up_sync_key()
  3432. */
  3433. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3434. {
  3435. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3436. }
  3437. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3438. /**
  3439. * complete: - signals a single thread waiting on this completion
  3440. * @x: holds the state of this particular completion
  3441. *
  3442. * This will wake up a single thread waiting on this completion. Threads will be
  3443. * awakened in the same order in which they were queued.
  3444. *
  3445. * See also complete_all(), wait_for_completion() and related routines.
  3446. *
  3447. * It may be assumed that this function implies a write memory barrier before
  3448. * changing the task state if and only if any tasks are woken up.
  3449. */
  3450. void complete(struct completion *x)
  3451. {
  3452. unsigned long flags;
  3453. spin_lock_irqsave(&x->wait.lock, flags);
  3454. x->done++;
  3455. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3456. spin_unlock_irqrestore(&x->wait.lock, flags);
  3457. }
  3458. EXPORT_SYMBOL(complete);
  3459. /**
  3460. * complete_all: - signals all threads waiting on this completion
  3461. * @x: holds the state of this particular completion
  3462. *
  3463. * This will wake up all threads waiting on this particular completion event.
  3464. *
  3465. * It may be assumed that this function implies a write memory barrier before
  3466. * changing the task state if and only if any tasks are woken up.
  3467. */
  3468. void complete_all(struct completion *x)
  3469. {
  3470. unsigned long flags;
  3471. spin_lock_irqsave(&x->wait.lock, flags);
  3472. x->done += UINT_MAX/2;
  3473. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3474. spin_unlock_irqrestore(&x->wait.lock, flags);
  3475. }
  3476. EXPORT_SYMBOL(complete_all);
  3477. static inline long __sched
  3478. do_wait_for_common(struct completion *x, long timeout, int state)
  3479. {
  3480. if (!x->done) {
  3481. DECLARE_WAITQUEUE(wait, current);
  3482. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3483. do {
  3484. if (signal_pending_state(state, current)) {
  3485. timeout = -ERESTARTSYS;
  3486. break;
  3487. }
  3488. __set_current_state(state);
  3489. spin_unlock_irq(&x->wait.lock);
  3490. timeout = schedule_timeout(timeout);
  3491. spin_lock_irq(&x->wait.lock);
  3492. } while (!x->done && timeout);
  3493. __remove_wait_queue(&x->wait, &wait);
  3494. if (!x->done)
  3495. return timeout;
  3496. }
  3497. x->done--;
  3498. return timeout ?: 1;
  3499. }
  3500. static long __sched
  3501. wait_for_common(struct completion *x, long timeout, int state)
  3502. {
  3503. might_sleep();
  3504. spin_lock_irq(&x->wait.lock);
  3505. timeout = do_wait_for_common(x, timeout, state);
  3506. spin_unlock_irq(&x->wait.lock);
  3507. return timeout;
  3508. }
  3509. /**
  3510. * wait_for_completion: - waits for completion of a task
  3511. * @x: holds the state of this particular completion
  3512. *
  3513. * This waits to be signaled for completion of a specific task. It is NOT
  3514. * interruptible and there is no timeout.
  3515. *
  3516. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3517. * and interrupt capability. Also see complete().
  3518. */
  3519. void __sched wait_for_completion(struct completion *x)
  3520. {
  3521. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3522. }
  3523. EXPORT_SYMBOL(wait_for_completion);
  3524. /**
  3525. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3526. * @x: holds the state of this particular completion
  3527. * @timeout: timeout value in jiffies
  3528. *
  3529. * This waits for either a completion of a specific task to be signaled or for a
  3530. * specified timeout to expire. The timeout is in jiffies. It is not
  3531. * interruptible.
  3532. */
  3533. unsigned long __sched
  3534. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3535. {
  3536. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3537. }
  3538. EXPORT_SYMBOL(wait_for_completion_timeout);
  3539. /**
  3540. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3541. * @x: holds the state of this particular completion
  3542. *
  3543. * This waits for completion of a specific task to be signaled. It is
  3544. * interruptible.
  3545. */
  3546. int __sched wait_for_completion_interruptible(struct completion *x)
  3547. {
  3548. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3549. if (t == -ERESTARTSYS)
  3550. return t;
  3551. return 0;
  3552. }
  3553. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3554. /**
  3555. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3556. * @x: holds the state of this particular completion
  3557. * @timeout: timeout value in jiffies
  3558. *
  3559. * This waits for either a completion of a specific task to be signaled or for a
  3560. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3561. */
  3562. unsigned long __sched
  3563. wait_for_completion_interruptible_timeout(struct completion *x,
  3564. unsigned long timeout)
  3565. {
  3566. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3567. }
  3568. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3569. /**
  3570. * wait_for_completion_killable: - waits for completion of a task (killable)
  3571. * @x: holds the state of this particular completion
  3572. *
  3573. * This waits to be signaled for completion of a specific task. It can be
  3574. * interrupted by a kill signal.
  3575. */
  3576. int __sched wait_for_completion_killable(struct completion *x)
  3577. {
  3578. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3579. if (t == -ERESTARTSYS)
  3580. return t;
  3581. return 0;
  3582. }
  3583. EXPORT_SYMBOL(wait_for_completion_killable);
  3584. /**
  3585. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3586. * @x: holds the state of this particular completion
  3587. * @timeout: timeout value in jiffies
  3588. *
  3589. * This waits for either a completion of a specific task to be
  3590. * signaled or for a specified timeout to expire. It can be
  3591. * interrupted by a kill signal. The timeout is in jiffies.
  3592. */
  3593. unsigned long __sched
  3594. wait_for_completion_killable_timeout(struct completion *x,
  3595. unsigned long timeout)
  3596. {
  3597. return wait_for_common(x, timeout, TASK_KILLABLE);
  3598. }
  3599. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3600. /**
  3601. * try_wait_for_completion - try to decrement a completion without blocking
  3602. * @x: completion structure
  3603. *
  3604. * Returns: 0 if a decrement cannot be done without blocking
  3605. * 1 if a decrement succeeded.
  3606. *
  3607. * If a completion is being used as a counting completion,
  3608. * attempt to decrement the counter without blocking. This
  3609. * enables us to avoid waiting if the resource the completion
  3610. * is protecting is not available.
  3611. */
  3612. bool try_wait_for_completion(struct completion *x)
  3613. {
  3614. unsigned long flags;
  3615. int ret = 1;
  3616. spin_lock_irqsave(&x->wait.lock, flags);
  3617. if (!x->done)
  3618. ret = 0;
  3619. else
  3620. x->done--;
  3621. spin_unlock_irqrestore(&x->wait.lock, flags);
  3622. return ret;
  3623. }
  3624. EXPORT_SYMBOL(try_wait_for_completion);
  3625. /**
  3626. * completion_done - Test to see if a completion has any waiters
  3627. * @x: completion structure
  3628. *
  3629. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3630. * 1 if there are no waiters.
  3631. *
  3632. */
  3633. bool completion_done(struct completion *x)
  3634. {
  3635. unsigned long flags;
  3636. int ret = 1;
  3637. spin_lock_irqsave(&x->wait.lock, flags);
  3638. if (!x->done)
  3639. ret = 0;
  3640. spin_unlock_irqrestore(&x->wait.lock, flags);
  3641. return ret;
  3642. }
  3643. EXPORT_SYMBOL(completion_done);
  3644. static long __sched
  3645. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3646. {
  3647. unsigned long flags;
  3648. wait_queue_t wait;
  3649. init_waitqueue_entry(&wait, current);
  3650. __set_current_state(state);
  3651. spin_lock_irqsave(&q->lock, flags);
  3652. __add_wait_queue(q, &wait);
  3653. spin_unlock(&q->lock);
  3654. timeout = schedule_timeout(timeout);
  3655. spin_lock_irq(&q->lock);
  3656. __remove_wait_queue(q, &wait);
  3657. spin_unlock_irqrestore(&q->lock, flags);
  3658. return timeout;
  3659. }
  3660. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3661. {
  3662. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3663. }
  3664. EXPORT_SYMBOL(interruptible_sleep_on);
  3665. long __sched
  3666. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3667. {
  3668. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3669. }
  3670. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3671. void __sched sleep_on(wait_queue_head_t *q)
  3672. {
  3673. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3674. }
  3675. EXPORT_SYMBOL(sleep_on);
  3676. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3677. {
  3678. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3679. }
  3680. EXPORT_SYMBOL(sleep_on_timeout);
  3681. #ifdef CONFIG_RT_MUTEXES
  3682. /*
  3683. * rt_mutex_setprio - set the current priority of a task
  3684. * @p: task
  3685. * @prio: prio value (kernel-internal form)
  3686. *
  3687. * This function changes the 'effective' priority of a task. It does
  3688. * not touch ->normal_prio like __setscheduler().
  3689. *
  3690. * Used by the rt_mutex code to implement priority inheritance logic.
  3691. */
  3692. void rt_mutex_setprio(struct task_struct *p, int prio)
  3693. {
  3694. unsigned long flags;
  3695. int oldprio, on_rq, running;
  3696. struct rq *rq;
  3697. const struct sched_class *prev_class;
  3698. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3699. rq = task_rq_lock(p, &flags);
  3700. oldprio = p->prio;
  3701. prev_class = p->sched_class;
  3702. on_rq = p->se.on_rq;
  3703. running = task_current(rq, p);
  3704. if (on_rq)
  3705. dequeue_task(rq, p, 0);
  3706. if (running)
  3707. p->sched_class->put_prev_task(rq, p);
  3708. if (rt_prio(prio))
  3709. p->sched_class = &rt_sched_class;
  3710. else
  3711. p->sched_class = &fair_sched_class;
  3712. p->prio = prio;
  3713. if (running)
  3714. p->sched_class->set_curr_task(rq);
  3715. if (on_rq) {
  3716. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3717. check_class_changed(rq, p, prev_class, oldprio, running);
  3718. }
  3719. task_rq_unlock(rq, &flags);
  3720. }
  3721. #endif
  3722. void set_user_nice(struct task_struct *p, long nice)
  3723. {
  3724. int old_prio, delta, on_rq;
  3725. unsigned long flags;
  3726. struct rq *rq;
  3727. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3728. return;
  3729. /*
  3730. * We have to be careful, if called from sys_setpriority(),
  3731. * the task might be in the middle of scheduling on another CPU.
  3732. */
  3733. rq = task_rq_lock(p, &flags);
  3734. /*
  3735. * The RT priorities are set via sched_setscheduler(), but we still
  3736. * allow the 'normal' nice value to be set - but as expected
  3737. * it wont have any effect on scheduling until the task is
  3738. * SCHED_FIFO/SCHED_RR:
  3739. */
  3740. if (task_has_rt_policy(p)) {
  3741. p->static_prio = NICE_TO_PRIO(nice);
  3742. goto out_unlock;
  3743. }
  3744. on_rq = p->se.on_rq;
  3745. if (on_rq)
  3746. dequeue_task(rq, p, 0);
  3747. p->static_prio = NICE_TO_PRIO(nice);
  3748. set_load_weight(p);
  3749. old_prio = p->prio;
  3750. p->prio = effective_prio(p);
  3751. delta = p->prio - old_prio;
  3752. if (on_rq) {
  3753. enqueue_task(rq, p, 0);
  3754. /*
  3755. * If the task increased its priority or is running and
  3756. * lowered its priority, then reschedule its CPU:
  3757. */
  3758. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3759. resched_task(rq->curr);
  3760. }
  3761. out_unlock:
  3762. task_rq_unlock(rq, &flags);
  3763. }
  3764. EXPORT_SYMBOL(set_user_nice);
  3765. /*
  3766. * can_nice - check if a task can reduce its nice value
  3767. * @p: task
  3768. * @nice: nice value
  3769. */
  3770. int can_nice(const struct task_struct *p, const int nice)
  3771. {
  3772. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3773. int nice_rlim = 20 - nice;
  3774. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3775. capable(CAP_SYS_NICE));
  3776. }
  3777. #ifdef __ARCH_WANT_SYS_NICE
  3778. /*
  3779. * sys_nice - change the priority of the current process.
  3780. * @increment: priority increment
  3781. *
  3782. * sys_setpriority is a more generic, but much slower function that
  3783. * does similar things.
  3784. */
  3785. SYSCALL_DEFINE1(nice, int, increment)
  3786. {
  3787. long nice, retval;
  3788. /*
  3789. * Setpriority might change our priority at the same moment.
  3790. * We don't have to worry. Conceptually one call occurs first
  3791. * and we have a single winner.
  3792. */
  3793. if (increment < -40)
  3794. increment = -40;
  3795. if (increment > 40)
  3796. increment = 40;
  3797. nice = TASK_NICE(current) + increment;
  3798. if (nice < -20)
  3799. nice = -20;
  3800. if (nice > 19)
  3801. nice = 19;
  3802. if (increment < 0 && !can_nice(current, nice))
  3803. return -EPERM;
  3804. retval = security_task_setnice(current, nice);
  3805. if (retval)
  3806. return retval;
  3807. set_user_nice(current, nice);
  3808. return 0;
  3809. }
  3810. #endif
  3811. /**
  3812. * task_prio - return the priority value of a given task.
  3813. * @p: the task in question.
  3814. *
  3815. * This is the priority value as seen by users in /proc.
  3816. * RT tasks are offset by -200. Normal tasks are centered
  3817. * around 0, value goes from -16 to +15.
  3818. */
  3819. int task_prio(const struct task_struct *p)
  3820. {
  3821. return p->prio - MAX_RT_PRIO;
  3822. }
  3823. /**
  3824. * task_nice - return the nice value of a given task.
  3825. * @p: the task in question.
  3826. */
  3827. int task_nice(const struct task_struct *p)
  3828. {
  3829. return TASK_NICE(p);
  3830. }
  3831. EXPORT_SYMBOL(task_nice);
  3832. /**
  3833. * idle_cpu - is a given cpu idle currently?
  3834. * @cpu: the processor in question.
  3835. */
  3836. int idle_cpu(int cpu)
  3837. {
  3838. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3839. }
  3840. /**
  3841. * idle_task - return the idle task for a given cpu.
  3842. * @cpu: the processor in question.
  3843. */
  3844. struct task_struct *idle_task(int cpu)
  3845. {
  3846. return cpu_rq(cpu)->idle;
  3847. }
  3848. /**
  3849. * find_process_by_pid - find a process with a matching PID value.
  3850. * @pid: the pid in question.
  3851. */
  3852. static struct task_struct *find_process_by_pid(pid_t pid)
  3853. {
  3854. return pid ? find_task_by_vpid(pid) : current;
  3855. }
  3856. /* Actually do priority change: must hold rq lock. */
  3857. static void
  3858. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3859. {
  3860. BUG_ON(p->se.on_rq);
  3861. p->policy = policy;
  3862. p->rt_priority = prio;
  3863. p->normal_prio = normal_prio(p);
  3864. /* we are holding p->pi_lock already */
  3865. p->prio = rt_mutex_getprio(p);
  3866. if (rt_prio(p->prio))
  3867. p->sched_class = &rt_sched_class;
  3868. else
  3869. p->sched_class = &fair_sched_class;
  3870. set_load_weight(p);
  3871. }
  3872. /*
  3873. * check the target process has a UID that matches the current process's
  3874. */
  3875. static bool check_same_owner(struct task_struct *p)
  3876. {
  3877. const struct cred *cred = current_cred(), *pcred;
  3878. bool match;
  3879. rcu_read_lock();
  3880. pcred = __task_cred(p);
  3881. match = (cred->euid == pcred->euid ||
  3882. cred->euid == pcred->uid);
  3883. rcu_read_unlock();
  3884. return match;
  3885. }
  3886. static int __sched_setscheduler(struct task_struct *p, int policy,
  3887. struct sched_param *param, bool user)
  3888. {
  3889. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3890. unsigned long flags;
  3891. const struct sched_class *prev_class;
  3892. struct rq *rq;
  3893. int reset_on_fork;
  3894. /* may grab non-irq protected spin_locks */
  3895. BUG_ON(in_interrupt());
  3896. recheck:
  3897. /* double check policy once rq lock held */
  3898. if (policy < 0) {
  3899. reset_on_fork = p->sched_reset_on_fork;
  3900. policy = oldpolicy = p->policy;
  3901. } else {
  3902. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3903. policy &= ~SCHED_RESET_ON_FORK;
  3904. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3905. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3906. policy != SCHED_IDLE)
  3907. return -EINVAL;
  3908. }
  3909. /*
  3910. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3911. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3912. * SCHED_BATCH and SCHED_IDLE is 0.
  3913. */
  3914. if (param->sched_priority < 0 ||
  3915. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3916. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3917. return -EINVAL;
  3918. if (rt_policy(policy) != (param->sched_priority != 0))
  3919. return -EINVAL;
  3920. /*
  3921. * Allow unprivileged RT tasks to decrease priority:
  3922. */
  3923. if (user && !capable(CAP_SYS_NICE)) {
  3924. if (rt_policy(policy)) {
  3925. unsigned long rlim_rtprio =
  3926. task_rlimit(p, RLIMIT_RTPRIO);
  3927. /* can't set/change the rt policy */
  3928. if (policy != p->policy && !rlim_rtprio)
  3929. return -EPERM;
  3930. /* can't increase priority */
  3931. if (param->sched_priority > p->rt_priority &&
  3932. param->sched_priority > rlim_rtprio)
  3933. return -EPERM;
  3934. }
  3935. /*
  3936. * Like positive nice levels, dont allow tasks to
  3937. * move out of SCHED_IDLE either:
  3938. */
  3939. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3940. return -EPERM;
  3941. /* can't change other user's priorities */
  3942. if (!check_same_owner(p))
  3943. return -EPERM;
  3944. /* Normal users shall not reset the sched_reset_on_fork flag */
  3945. if (p->sched_reset_on_fork && !reset_on_fork)
  3946. return -EPERM;
  3947. }
  3948. if (user) {
  3949. retval = security_task_setscheduler(p, policy, param);
  3950. if (retval)
  3951. return retval;
  3952. }
  3953. /*
  3954. * make sure no PI-waiters arrive (or leave) while we are
  3955. * changing the priority of the task:
  3956. */
  3957. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3958. /*
  3959. * To be able to change p->policy safely, the apropriate
  3960. * runqueue lock must be held.
  3961. */
  3962. rq = __task_rq_lock(p);
  3963. #ifdef CONFIG_RT_GROUP_SCHED
  3964. if (user) {
  3965. /*
  3966. * Do not allow realtime tasks into groups that have no runtime
  3967. * assigned.
  3968. */
  3969. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3970. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3971. __task_rq_unlock(rq);
  3972. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3973. return -EPERM;
  3974. }
  3975. }
  3976. #endif
  3977. /* recheck policy now with rq lock held */
  3978. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3979. policy = oldpolicy = -1;
  3980. __task_rq_unlock(rq);
  3981. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3982. goto recheck;
  3983. }
  3984. on_rq = p->se.on_rq;
  3985. running = task_current(rq, p);
  3986. if (on_rq)
  3987. deactivate_task(rq, p, 0);
  3988. if (running)
  3989. p->sched_class->put_prev_task(rq, p);
  3990. p->sched_reset_on_fork = reset_on_fork;
  3991. oldprio = p->prio;
  3992. prev_class = p->sched_class;
  3993. __setscheduler(rq, p, policy, param->sched_priority);
  3994. if (running)
  3995. p->sched_class->set_curr_task(rq);
  3996. if (on_rq) {
  3997. activate_task(rq, p, 0);
  3998. check_class_changed(rq, p, prev_class, oldprio, running);
  3999. }
  4000. __task_rq_unlock(rq);
  4001. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4002. rt_mutex_adjust_pi(p);
  4003. return 0;
  4004. }
  4005. /**
  4006. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4007. * @p: the task in question.
  4008. * @policy: new policy.
  4009. * @param: structure containing the new RT priority.
  4010. *
  4011. * NOTE that the task may be already dead.
  4012. */
  4013. int sched_setscheduler(struct task_struct *p, int policy,
  4014. struct sched_param *param)
  4015. {
  4016. return __sched_setscheduler(p, policy, param, true);
  4017. }
  4018. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4019. /**
  4020. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4021. * @p: the task in question.
  4022. * @policy: new policy.
  4023. * @param: structure containing the new RT priority.
  4024. *
  4025. * Just like sched_setscheduler, only don't bother checking if the
  4026. * current context has permission. For example, this is needed in
  4027. * stop_machine(): we create temporary high priority worker threads,
  4028. * but our caller might not have that capability.
  4029. */
  4030. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4031. struct sched_param *param)
  4032. {
  4033. return __sched_setscheduler(p, policy, param, false);
  4034. }
  4035. static int
  4036. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4037. {
  4038. struct sched_param lparam;
  4039. struct task_struct *p;
  4040. int retval;
  4041. if (!param || pid < 0)
  4042. return -EINVAL;
  4043. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4044. return -EFAULT;
  4045. rcu_read_lock();
  4046. retval = -ESRCH;
  4047. p = find_process_by_pid(pid);
  4048. if (p != NULL)
  4049. retval = sched_setscheduler(p, policy, &lparam);
  4050. rcu_read_unlock();
  4051. return retval;
  4052. }
  4053. /**
  4054. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4055. * @pid: the pid in question.
  4056. * @policy: new policy.
  4057. * @param: structure containing the new RT priority.
  4058. */
  4059. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4060. struct sched_param __user *, param)
  4061. {
  4062. /* negative values for policy are not valid */
  4063. if (policy < 0)
  4064. return -EINVAL;
  4065. return do_sched_setscheduler(pid, policy, param);
  4066. }
  4067. /**
  4068. * sys_sched_setparam - set/change the RT priority of a thread
  4069. * @pid: the pid in question.
  4070. * @param: structure containing the new RT priority.
  4071. */
  4072. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4073. {
  4074. return do_sched_setscheduler(pid, -1, param);
  4075. }
  4076. /**
  4077. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4078. * @pid: the pid in question.
  4079. */
  4080. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4081. {
  4082. struct task_struct *p;
  4083. int retval;
  4084. if (pid < 0)
  4085. return -EINVAL;
  4086. retval = -ESRCH;
  4087. rcu_read_lock();
  4088. p = find_process_by_pid(pid);
  4089. if (p) {
  4090. retval = security_task_getscheduler(p);
  4091. if (!retval)
  4092. retval = p->policy
  4093. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4094. }
  4095. rcu_read_unlock();
  4096. return retval;
  4097. }
  4098. /**
  4099. * sys_sched_getparam - get the RT priority of a thread
  4100. * @pid: the pid in question.
  4101. * @param: structure containing the RT priority.
  4102. */
  4103. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4104. {
  4105. struct sched_param lp;
  4106. struct task_struct *p;
  4107. int retval;
  4108. if (!param || pid < 0)
  4109. return -EINVAL;
  4110. rcu_read_lock();
  4111. p = find_process_by_pid(pid);
  4112. retval = -ESRCH;
  4113. if (!p)
  4114. goto out_unlock;
  4115. retval = security_task_getscheduler(p);
  4116. if (retval)
  4117. goto out_unlock;
  4118. lp.sched_priority = p->rt_priority;
  4119. rcu_read_unlock();
  4120. /*
  4121. * This one might sleep, we cannot do it with a spinlock held ...
  4122. */
  4123. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4124. return retval;
  4125. out_unlock:
  4126. rcu_read_unlock();
  4127. return retval;
  4128. }
  4129. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4130. {
  4131. cpumask_var_t cpus_allowed, new_mask;
  4132. struct task_struct *p;
  4133. int retval;
  4134. get_online_cpus();
  4135. rcu_read_lock();
  4136. p = find_process_by_pid(pid);
  4137. if (!p) {
  4138. rcu_read_unlock();
  4139. put_online_cpus();
  4140. return -ESRCH;
  4141. }
  4142. /* Prevent p going away */
  4143. get_task_struct(p);
  4144. rcu_read_unlock();
  4145. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4146. retval = -ENOMEM;
  4147. goto out_put_task;
  4148. }
  4149. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4150. retval = -ENOMEM;
  4151. goto out_free_cpus_allowed;
  4152. }
  4153. retval = -EPERM;
  4154. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4155. goto out_unlock;
  4156. retval = security_task_setscheduler(p, 0, NULL);
  4157. if (retval)
  4158. goto out_unlock;
  4159. cpuset_cpus_allowed(p, cpus_allowed);
  4160. cpumask_and(new_mask, in_mask, cpus_allowed);
  4161. again:
  4162. retval = set_cpus_allowed_ptr(p, new_mask);
  4163. if (!retval) {
  4164. cpuset_cpus_allowed(p, cpus_allowed);
  4165. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4166. /*
  4167. * We must have raced with a concurrent cpuset
  4168. * update. Just reset the cpus_allowed to the
  4169. * cpuset's cpus_allowed
  4170. */
  4171. cpumask_copy(new_mask, cpus_allowed);
  4172. goto again;
  4173. }
  4174. }
  4175. out_unlock:
  4176. free_cpumask_var(new_mask);
  4177. out_free_cpus_allowed:
  4178. free_cpumask_var(cpus_allowed);
  4179. out_put_task:
  4180. put_task_struct(p);
  4181. put_online_cpus();
  4182. return retval;
  4183. }
  4184. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4185. struct cpumask *new_mask)
  4186. {
  4187. if (len < cpumask_size())
  4188. cpumask_clear(new_mask);
  4189. else if (len > cpumask_size())
  4190. len = cpumask_size();
  4191. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4192. }
  4193. /**
  4194. * sys_sched_setaffinity - set the cpu affinity of a process
  4195. * @pid: pid of the process
  4196. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4197. * @user_mask_ptr: user-space pointer to the new cpu mask
  4198. */
  4199. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4200. unsigned long __user *, user_mask_ptr)
  4201. {
  4202. cpumask_var_t new_mask;
  4203. int retval;
  4204. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4205. return -ENOMEM;
  4206. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4207. if (retval == 0)
  4208. retval = sched_setaffinity(pid, new_mask);
  4209. free_cpumask_var(new_mask);
  4210. return retval;
  4211. }
  4212. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4213. {
  4214. struct task_struct *p;
  4215. unsigned long flags;
  4216. struct rq *rq;
  4217. int retval;
  4218. get_online_cpus();
  4219. rcu_read_lock();
  4220. retval = -ESRCH;
  4221. p = find_process_by_pid(pid);
  4222. if (!p)
  4223. goto out_unlock;
  4224. retval = security_task_getscheduler(p);
  4225. if (retval)
  4226. goto out_unlock;
  4227. rq = task_rq_lock(p, &flags);
  4228. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4229. task_rq_unlock(rq, &flags);
  4230. out_unlock:
  4231. rcu_read_unlock();
  4232. put_online_cpus();
  4233. return retval;
  4234. }
  4235. /**
  4236. * sys_sched_getaffinity - get the cpu affinity of a process
  4237. * @pid: pid of the process
  4238. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4239. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4240. */
  4241. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4242. unsigned long __user *, user_mask_ptr)
  4243. {
  4244. int ret;
  4245. cpumask_var_t mask;
  4246. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4247. return -EINVAL;
  4248. if (len & (sizeof(unsigned long)-1))
  4249. return -EINVAL;
  4250. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4251. return -ENOMEM;
  4252. ret = sched_getaffinity(pid, mask);
  4253. if (ret == 0) {
  4254. size_t retlen = min_t(size_t, len, cpumask_size());
  4255. if (copy_to_user(user_mask_ptr, mask, retlen))
  4256. ret = -EFAULT;
  4257. else
  4258. ret = retlen;
  4259. }
  4260. free_cpumask_var(mask);
  4261. return ret;
  4262. }
  4263. /**
  4264. * sys_sched_yield - yield the current processor to other threads.
  4265. *
  4266. * This function yields the current CPU to other tasks. If there are no
  4267. * other threads running on this CPU then this function will return.
  4268. */
  4269. SYSCALL_DEFINE0(sched_yield)
  4270. {
  4271. struct rq *rq = this_rq_lock();
  4272. schedstat_inc(rq, yld_count);
  4273. current->sched_class->yield_task(rq);
  4274. /*
  4275. * Since we are going to call schedule() anyway, there's
  4276. * no need to preempt or enable interrupts:
  4277. */
  4278. __release(rq->lock);
  4279. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4280. do_raw_spin_unlock(&rq->lock);
  4281. preempt_enable_no_resched();
  4282. schedule();
  4283. return 0;
  4284. }
  4285. static inline int should_resched(void)
  4286. {
  4287. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4288. }
  4289. static void __cond_resched(void)
  4290. {
  4291. add_preempt_count(PREEMPT_ACTIVE);
  4292. schedule();
  4293. sub_preempt_count(PREEMPT_ACTIVE);
  4294. }
  4295. int __sched _cond_resched(void)
  4296. {
  4297. if (should_resched()) {
  4298. __cond_resched();
  4299. return 1;
  4300. }
  4301. return 0;
  4302. }
  4303. EXPORT_SYMBOL(_cond_resched);
  4304. /*
  4305. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4306. * call schedule, and on return reacquire the lock.
  4307. *
  4308. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4309. * operations here to prevent schedule() from being called twice (once via
  4310. * spin_unlock(), once by hand).
  4311. */
  4312. int __cond_resched_lock(spinlock_t *lock)
  4313. {
  4314. int resched = should_resched();
  4315. int ret = 0;
  4316. lockdep_assert_held(lock);
  4317. if (spin_needbreak(lock) || resched) {
  4318. spin_unlock(lock);
  4319. if (resched)
  4320. __cond_resched();
  4321. else
  4322. cpu_relax();
  4323. ret = 1;
  4324. spin_lock(lock);
  4325. }
  4326. return ret;
  4327. }
  4328. EXPORT_SYMBOL(__cond_resched_lock);
  4329. int __sched __cond_resched_softirq(void)
  4330. {
  4331. BUG_ON(!in_softirq());
  4332. if (should_resched()) {
  4333. local_bh_enable();
  4334. __cond_resched();
  4335. local_bh_disable();
  4336. return 1;
  4337. }
  4338. return 0;
  4339. }
  4340. EXPORT_SYMBOL(__cond_resched_softirq);
  4341. /**
  4342. * yield - yield the current processor to other threads.
  4343. *
  4344. * This is a shortcut for kernel-space yielding - it marks the
  4345. * thread runnable and calls sys_sched_yield().
  4346. */
  4347. void __sched yield(void)
  4348. {
  4349. set_current_state(TASK_RUNNING);
  4350. sys_sched_yield();
  4351. }
  4352. EXPORT_SYMBOL(yield);
  4353. /*
  4354. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4355. * that process accounting knows that this is a task in IO wait state.
  4356. */
  4357. void __sched io_schedule(void)
  4358. {
  4359. struct rq *rq = raw_rq();
  4360. delayacct_blkio_start();
  4361. atomic_inc(&rq->nr_iowait);
  4362. current->in_iowait = 1;
  4363. schedule();
  4364. current->in_iowait = 0;
  4365. atomic_dec(&rq->nr_iowait);
  4366. delayacct_blkio_end();
  4367. }
  4368. EXPORT_SYMBOL(io_schedule);
  4369. long __sched io_schedule_timeout(long timeout)
  4370. {
  4371. struct rq *rq = raw_rq();
  4372. long ret;
  4373. delayacct_blkio_start();
  4374. atomic_inc(&rq->nr_iowait);
  4375. current->in_iowait = 1;
  4376. ret = schedule_timeout(timeout);
  4377. current->in_iowait = 0;
  4378. atomic_dec(&rq->nr_iowait);
  4379. delayacct_blkio_end();
  4380. return ret;
  4381. }
  4382. /**
  4383. * sys_sched_get_priority_max - return maximum RT priority.
  4384. * @policy: scheduling class.
  4385. *
  4386. * this syscall returns the maximum rt_priority that can be used
  4387. * by a given scheduling class.
  4388. */
  4389. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4390. {
  4391. int ret = -EINVAL;
  4392. switch (policy) {
  4393. case SCHED_FIFO:
  4394. case SCHED_RR:
  4395. ret = MAX_USER_RT_PRIO-1;
  4396. break;
  4397. case SCHED_NORMAL:
  4398. case SCHED_BATCH:
  4399. case SCHED_IDLE:
  4400. ret = 0;
  4401. break;
  4402. }
  4403. return ret;
  4404. }
  4405. /**
  4406. * sys_sched_get_priority_min - return minimum RT priority.
  4407. * @policy: scheduling class.
  4408. *
  4409. * this syscall returns the minimum rt_priority that can be used
  4410. * by a given scheduling class.
  4411. */
  4412. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4413. {
  4414. int ret = -EINVAL;
  4415. switch (policy) {
  4416. case SCHED_FIFO:
  4417. case SCHED_RR:
  4418. ret = 1;
  4419. break;
  4420. case SCHED_NORMAL:
  4421. case SCHED_BATCH:
  4422. case SCHED_IDLE:
  4423. ret = 0;
  4424. }
  4425. return ret;
  4426. }
  4427. /**
  4428. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4429. * @pid: pid of the process.
  4430. * @interval: userspace pointer to the timeslice value.
  4431. *
  4432. * this syscall writes the default timeslice value of a given process
  4433. * into the user-space timespec buffer. A value of '0' means infinity.
  4434. */
  4435. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4436. struct timespec __user *, interval)
  4437. {
  4438. struct task_struct *p;
  4439. unsigned int time_slice;
  4440. unsigned long flags;
  4441. struct rq *rq;
  4442. int retval;
  4443. struct timespec t;
  4444. if (pid < 0)
  4445. return -EINVAL;
  4446. retval = -ESRCH;
  4447. rcu_read_lock();
  4448. p = find_process_by_pid(pid);
  4449. if (!p)
  4450. goto out_unlock;
  4451. retval = security_task_getscheduler(p);
  4452. if (retval)
  4453. goto out_unlock;
  4454. rq = task_rq_lock(p, &flags);
  4455. time_slice = p->sched_class->get_rr_interval(rq, p);
  4456. task_rq_unlock(rq, &flags);
  4457. rcu_read_unlock();
  4458. jiffies_to_timespec(time_slice, &t);
  4459. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4460. return retval;
  4461. out_unlock:
  4462. rcu_read_unlock();
  4463. return retval;
  4464. }
  4465. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4466. void sched_show_task(struct task_struct *p)
  4467. {
  4468. unsigned long free = 0;
  4469. unsigned state;
  4470. state = p->state ? __ffs(p->state) + 1 : 0;
  4471. printk(KERN_INFO "%-13.13s %c", p->comm,
  4472. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4473. #if BITS_PER_LONG == 32
  4474. if (state == TASK_RUNNING)
  4475. printk(KERN_CONT " running ");
  4476. else
  4477. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4478. #else
  4479. if (state == TASK_RUNNING)
  4480. printk(KERN_CONT " running task ");
  4481. else
  4482. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4483. #endif
  4484. #ifdef CONFIG_DEBUG_STACK_USAGE
  4485. free = stack_not_used(p);
  4486. #endif
  4487. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4488. task_pid_nr(p), task_pid_nr(p->real_parent),
  4489. (unsigned long)task_thread_info(p)->flags);
  4490. show_stack(p, NULL);
  4491. }
  4492. void show_state_filter(unsigned long state_filter)
  4493. {
  4494. struct task_struct *g, *p;
  4495. #if BITS_PER_LONG == 32
  4496. printk(KERN_INFO
  4497. " task PC stack pid father\n");
  4498. #else
  4499. printk(KERN_INFO
  4500. " task PC stack pid father\n");
  4501. #endif
  4502. read_lock(&tasklist_lock);
  4503. do_each_thread(g, p) {
  4504. /*
  4505. * reset the NMI-timeout, listing all files on a slow
  4506. * console might take alot of time:
  4507. */
  4508. touch_nmi_watchdog();
  4509. if (!state_filter || (p->state & state_filter))
  4510. sched_show_task(p);
  4511. } while_each_thread(g, p);
  4512. touch_all_softlockup_watchdogs();
  4513. #ifdef CONFIG_SCHED_DEBUG
  4514. sysrq_sched_debug_show();
  4515. #endif
  4516. read_unlock(&tasklist_lock);
  4517. /*
  4518. * Only show locks if all tasks are dumped:
  4519. */
  4520. if (!state_filter)
  4521. debug_show_all_locks();
  4522. }
  4523. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4524. {
  4525. idle->sched_class = &idle_sched_class;
  4526. }
  4527. /**
  4528. * init_idle - set up an idle thread for a given CPU
  4529. * @idle: task in question
  4530. * @cpu: cpu the idle task belongs to
  4531. *
  4532. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4533. * flag, to make booting more robust.
  4534. */
  4535. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4536. {
  4537. struct rq *rq = cpu_rq(cpu);
  4538. unsigned long flags;
  4539. raw_spin_lock_irqsave(&rq->lock, flags);
  4540. __sched_fork(idle);
  4541. idle->state = TASK_RUNNING;
  4542. idle->se.exec_start = sched_clock();
  4543. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4544. __set_task_cpu(idle, cpu);
  4545. rq->curr = rq->idle = idle;
  4546. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4547. idle->oncpu = 1;
  4548. #endif
  4549. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4550. /* Set the preempt count _outside_ the spinlocks! */
  4551. #if defined(CONFIG_PREEMPT)
  4552. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4553. #else
  4554. task_thread_info(idle)->preempt_count = 0;
  4555. #endif
  4556. /*
  4557. * The idle tasks have their own, simple scheduling class:
  4558. */
  4559. idle->sched_class = &idle_sched_class;
  4560. ftrace_graph_init_task(idle);
  4561. }
  4562. /*
  4563. * In a system that switches off the HZ timer nohz_cpu_mask
  4564. * indicates which cpus entered this state. This is used
  4565. * in the rcu update to wait only for active cpus. For system
  4566. * which do not switch off the HZ timer nohz_cpu_mask should
  4567. * always be CPU_BITS_NONE.
  4568. */
  4569. cpumask_var_t nohz_cpu_mask;
  4570. /*
  4571. * Increase the granularity value when there are more CPUs,
  4572. * because with more CPUs the 'effective latency' as visible
  4573. * to users decreases. But the relationship is not linear,
  4574. * so pick a second-best guess by going with the log2 of the
  4575. * number of CPUs.
  4576. *
  4577. * This idea comes from the SD scheduler of Con Kolivas:
  4578. */
  4579. static int get_update_sysctl_factor(void)
  4580. {
  4581. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4582. unsigned int factor;
  4583. switch (sysctl_sched_tunable_scaling) {
  4584. case SCHED_TUNABLESCALING_NONE:
  4585. factor = 1;
  4586. break;
  4587. case SCHED_TUNABLESCALING_LINEAR:
  4588. factor = cpus;
  4589. break;
  4590. case SCHED_TUNABLESCALING_LOG:
  4591. default:
  4592. factor = 1 + ilog2(cpus);
  4593. break;
  4594. }
  4595. return factor;
  4596. }
  4597. static void update_sysctl(void)
  4598. {
  4599. unsigned int factor = get_update_sysctl_factor();
  4600. #define SET_SYSCTL(name) \
  4601. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4602. SET_SYSCTL(sched_min_granularity);
  4603. SET_SYSCTL(sched_latency);
  4604. SET_SYSCTL(sched_wakeup_granularity);
  4605. SET_SYSCTL(sched_shares_ratelimit);
  4606. #undef SET_SYSCTL
  4607. }
  4608. static inline void sched_init_granularity(void)
  4609. {
  4610. update_sysctl();
  4611. }
  4612. #ifdef CONFIG_SMP
  4613. /*
  4614. * This is how migration works:
  4615. *
  4616. * 1) we invoke migration_cpu_stop() on the target CPU using
  4617. * stop_one_cpu().
  4618. * 2) stopper starts to run (implicitly forcing the migrated thread
  4619. * off the CPU)
  4620. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4621. * 4) if it's in the wrong runqueue then the migration thread removes
  4622. * it and puts it into the right queue.
  4623. * 5) stopper completes and stop_one_cpu() returns and the migration
  4624. * is done.
  4625. */
  4626. /*
  4627. * Change a given task's CPU affinity. Migrate the thread to a
  4628. * proper CPU and schedule it away if the CPU it's executing on
  4629. * is removed from the allowed bitmask.
  4630. *
  4631. * NOTE: the caller must have a valid reference to the task, the
  4632. * task must not exit() & deallocate itself prematurely. The
  4633. * call is not atomic; no spinlocks may be held.
  4634. */
  4635. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4636. {
  4637. unsigned long flags;
  4638. struct rq *rq;
  4639. unsigned int dest_cpu;
  4640. int ret = 0;
  4641. /*
  4642. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4643. * drop the rq->lock and still rely on ->cpus_allowed.
  4644. */
  4645. again:
  4646. while (task_is_waking(p))
  4647. cpu_relax();
  4648. rq = task_rq_lock(p, &flags);
  4649. if (task_is_waking(p)) {
  4650. task_rq_unlock(rq, &flags);
  4651. goto again;
  4652. }
  4653. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4654. ret = -EINVAL;
  4655. goto out;
  4656. }
  4657. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4658. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4659. ret = -EINVAL;
  4660. goto out;
  4661. }
  4662. if (p->sched_class->set_cpus_allowed)
  4663. p->sched_class->set_cpus_allowed(p, new_mask);
  4664. else {
  4665. cpumask_copy(&p->cpus_allowed, new_mask);
  4666. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4667. }
  4668. /* Can the task run on the task's current CPU? If so, we're done */
  4669. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4670. goto out;
  4671. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4672. if (migrate_task(p, dest_cpu)) {
  4673. struct migration_arg arg = { p, dest_cpu };
  4674. /* Need help from migration thread: drop lock and wait. */
  4675. task_rq_unlock(rq, &flags);
  4676. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4677. tlb_migrate_finish(p->mm);
  4678. return 0;
  4679. }
  4680. out:
  4681. task_rq_unlock(rq, &flags);
  4682. return ret;
  4683. }
  4684. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4685. /*
  4686. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4687. * this because either it can't run here any more (set_cpus_allowed()
  4688. * away from this CPU, or CPU going down), or because we're
  4689. * attempting to rebalance this task on exec (sched_exec).
  4690. *
  4691. * So we race with normal scheduler movements, but that's OK, as long
  4692. * as the task is no longer on this CPU.
  4693. *
  4694. * Returns non-zero if task was successfully migrated.
  4695. */
  4696. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4697. {
  4698. struct rq *rq_dest, *rq_src;
  4699. int ret = 0;
  4700. if (unlikely(!cpu_active(dest_cpu)))
  4701. return ret;
  4702. rq_src = cpu_rq(src_cpu);
  4703. rq_dest = cpu_rq(dest_cpu);
  4704. double_rq_lock(rq_src, rq_dest);
  4705. /* Already moved. */
  4706. if (task_cpu(p) != src_cpu)
  4707. goto done;
  4708. /* Affinity changed (again). */
  4709. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4710. goto fail;
  4711. /*
  4712. * If we're not on a rq, the next wake-up will ensure we're
  4713. * placed properly.
  4714. */
  4715. if (p->se.on_rq) {
  4716. deactivate_task(rq_src, p, 0);
  4717. set_task_cpu(p, dest_cpu);
  4718. activate_task(rq_dest, p, 0);
  4719. check_preempt_curr(rq_dest, p, 0);
  4720. }
  4721. done:
  4722. ret = 1;
  4723. fail:
  4724. double_rq_unlock(rq_src, rq_dest);
  4725. return ret;
  4726. }
  4727. /*
  4728. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4729. * and performs thread migration by bumping thread off CPU then
  4730. * 'pushing' onto another runqueue.
  4731. */
  4732. static int migration_cpu_stop(void *data)
  4733. {
  4734. struct migration_arg *arg = data;
  4735. /*
  4736. * The original target cpu might have gone down and we might
  4737. * be on another cpu but it doesn't matter.
  4738. */
  4739. local_irq_disable();
  4740. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4741. local_irq_enable();
  4742. return 0;
  4743. }
  4744. #ifdef CONFIG_HOTPLUG_CPU
  4745. /*
  4746. * Figure out where task on dead CPU should go, use force if necessary.
  4747. */
  4748. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4749. {
  4750. struct rq *rq = cpu_rq(dead_cpu);
  4751. int needs_cpu, uninitialized_var(dest_cpu);
  4752. unsigned long flags;
  4753. local_irq_save(flags);
  4754. raw_spin_lock(&rq->lock);
  4755. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4756. if (needs_cpu)
  4757. dest_cpu = select_fallback_rq(dead_cpu, p);
  4758. raw_spin_unlock(&rq->lock);
  4759. /*
  4760. * It can only fail if we race with set_cpus_allowed(),
  4761. * in the racer should migrate the task anyway.
  4762. */
  4763. if (needs_cpu)
  4764. __migrate_task(p, dead_cpu, dest_cpu);
  4765. local_irq_restore(flags);
  4766. }
  4767. /*
  4768. * While a dead CPU has no uninterruptible tasks queued at this point,
  4769. * it might still have a nonzero ->nr_uninterruptible counter, because
  4770. * for performance reasons the counter is not stricly tracking tasks to
  4771. * their home CPUs. So we just add the counter to another CPU's counter,
  4772. * to keep the global sum constant after CPU-down:
  4773. */
  4774. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4775. {
  4776. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4777. unsigned long flags;
  4778. local_irq_save(flags);
  4779. double_rq_lock(rq_src, rq_dest);
  4780. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4781. rq_src->nr_uninterruptible = 0;
  4782. double_rq_unlock(rq_src, rq_dest);
  4783. local_irq_restore(flags);
  4784. }
  4785. /* Run through task list and migrate tasks from the dead cpu. */
  4786. static void migrate_live_tasks(int src_cpu)
  4787. {
  4788. struct task_struct *p, *t;
  4789. read_lock(&tasklist_lock);
  4790. do_each_thread(t, p) {
  4791. if (p == current)
  4792. continue;
  4793. if (task_cpu(p) == src_cpu)
  4794. move_task_off_dead_cpu(src_cpu, p);
  4795. } while_each_thread(t, p);
  4796. read_unlock(&tasklist_lock);
  4797. }
  4798. /*
  4799. * Schedules idle task to be the next runnable task on current CPU.
  4800. * It does so by boosting its priority to highest possible.
  4801. * Used by CPU offline code.
  4802. */
  4803. void sched_idle_next(void)
  4804. {
  4805. int this_cpu = smp_processor_id();
  4806. struct rq *rq = cpu_rq(this_cpu);
  4807. struct task_struct *p = rq->idle;
  4808. unsigned long flags;
  4809. /* cpu has to be offline */
  4810. BUG_ON(cpu_online(this_cpu));
  4811. /*
  4812. * Strictly not necessary since rest of the CPUs are stopped by now
  4813. * and interrupts disabled on the current cpu.
  4814. */
  4815. raw_spin_lock_irqsave(&rq->lock, flags);
  4816. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4817. activate_task(rq, p, 0);
  4818. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4819. }
  4820. /*
  4821. * Ensures that the idle task is using init_mm right before its cpu goes
  4822. * offline.
  4823. */
  4824. void idle_task_exit(void)
  4825. {
  4826. struct mm_struct *mm = current->active_mm;
  4827. BUG_ON(cpu_online(smp_processor_id()));
  4828. if (mm != &init_mm)
  4829. switch_mm(mm, &init_mm, current);
  4830. mmdrop(mm);
  4831. }
  4832. /* called under rq->lock with disabled interrupts */
  4833. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4834. {
  4835. struct rq *rq = cpu_rq(dead_cpu);
  4836. /* Must be exiting, otherwise would be on tasklist. */
  4837. BUG_ON(!p->exit_state);
  4838. /* Cannot have done final schedule yet: would have vanished. */
  4839. BUG_ON(p->state == TASK_DEAD);
  4840. get_task_struct(p);
  4841. /*
  4842. * Drop lock around migration; if someone else moves it,
  4843. * that's OK. No task can be added to this CPU, so iteration is
  4844. * fine.
  4845. */
  4846. raw_spin_unlock_irq(&rq->lock);
  4847. move_task_off_dead_cpu(dead_cpu, p);
  4848. raw_spin_lock_irq(&rq->lock);
  4849. put_task_struct(p);
  4850. }
  4851. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4852. static void migrate_dead_tasks(unsigned int dead_cpu)
  4853. {
  4854. struct rq *rq = cpu_rq(dead_cpu);
  4855. struct task_struct *next;
  4856. for ( ; ; ) {
  4857. if (!rq->nr_running)
  4858. break;
  4859. next = pick_next_task(rq);
  4860. if (!next)
  4861. break;
  4862. next->sched_class->put_prev_task(rq, next);
  4863. migrate_dead(dead_cpu, next);
  4864. }
  4865. }
  4866. /*
  4867. * remove the tasks which were accounted by rq from calc_load_tasks.
  4868. */
  4869. static void calc_global_load_remove(struct rq *rq)
  4870. {
  4871. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4872. rq->calc_load_active = 0;
  4873. }
  4874. #endif /* CONFIG_HOTPLUG_CPU */
  4875. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4876. static struct ctl_table sd_ctl_dir[] = {
  4877. {
  4878. .procname = "sched_domain",
  4879. .mode = 0555,
  4880. },
  4881. {}
  4882. };
  4883. static struct ctl_table sd_ctl_root[] = {
  4884. {
  4885. .procname = "kernel",
  4886. .mode = 0555,
  4887. .child = sd_ctl_dir,
  4888. },
  4889. {}
  4890. };
  4891. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4892. {
  4893. struct ctl_table *entry =
  4894. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4895. return entry;
  4896. }
  4897. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4898. {
  4899. struct ctl_table *entry;
  4900. /*
  4901. * In the intermediate directories, both the child directory and
  4902. * procname are dynamically allocated and could fail but the mode
  4903. * will always be set. In the lowest directory the names are
  4904. * static strings and all have proc handlers.
  4905. */
  4906. for (entry = *tablep; entry->mode; entry++) {
  4907. if (entry->child)
  4908. sd_free_ctl_entry(&entry->child);
  4909. if (entry->proc_handler == NULL)
  4910. kfree(entry->procname);
  4911. }
  4912. kfree(*tablep);
  4913. *tablep = NULL;
  4914. }
  4915. static void
  4916. set_table_entry(struct ctl_table *entry,
  4917. const char *procname, void *data, int maxlen,
  4918. mode_t mode, proc_handler *proc_handler)
  4919. {
  4920. entry->procname = procname;
  4921. entry->data = data;
  4922. entry->maxlen = maxlen;
  4923. entry->mode = mode;
  4924. entry->proc_handler = proc_handler;
  4925. }
  4926. static struct ctl_table *
  4927. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4928. {
  4929. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4930. if (table == NULL)
  4931. return NULL;
  4932. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4933. sizeof(long), 0644, proc_doulongvec_minmax);
  4934. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4935. sizeof(long), 0644, proc_doulongvec_minmax);
  4936. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4937. sizeof(int), 0644, proc_dointvec_minmax);
  4938. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4939. sizeof(int), 0644, proc_dointvec_minmax);
  4940. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4941. sizeof(int), 0644, proc_dointvec_minmax);
  4942. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4943. sizeof(int), 0644, proc_dointvec_minmax);
  4944. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4945. sizeof(int), 0644, proc_dointvec_minmax);
  4946. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4947. sizeof(int), 0644, proc_dointvec_minmax);
  4948. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4949. sizeof(int), 0644, proc_dointvec_minmax);
  4950. set_table_entry(&table[9], "cache_nice_tries",
  4951. &sd->cache_nice_tries,
  4952. sizeof(int), 0644, proc_dointvec_minmax);
  4953. set_table_entry(&table[10], "flags", &sd->flags,
  4954. sizeof(int), 0644, proc_dointvec_minmax);
  4955. set_table_entry(&table[11], "name", sd->name,
  4956. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4957. /* &table[12] is terminator */
  4958. return table;
  4959. }
  4960. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4961. {
  4962. struct ctl_table *entry, *table;
  4963. struct sched_domain *sd;
  4964. int domain_num = 0, i;
  4965. char buf[32];
  4966. for_each_domain(cpu, sd)
  4967. domain_num++;
  4968. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4969. if (table == NULL)
  4970. return NULL;
  4971. i = 0;
  4972. for_each_domain(cpu, sd) {
  4973. snprintf(buf, 32, "domain%d", i);
  4974. entry->procname = kstrdup(buf, GFP_KERNEL);
  4975. entry->mode = 0555;
  4976. entry->child = sd_alloc_ctl_domain_table(sd);
  4977. entry++;
  4978. i++;
  4979. }
  4980. return table;
  4981. }
  4982. static struct ctl_table_header *sd_sysctl_header;
  4983. static void register_sched_domain_sysctl(void)
  4984. {
  4985. int i, cpu_num = num_possible_cpus();
  4986. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4987. char buf[32];
  4988. WARN_ON(sd_ctl_dir[0].child);
  4989. sd_ctl_dir[0].child = entry;
  4990. if (entry == NULL)
  4991. return;
  4992. for_each_possible_cpu(i) {
  4993. snprintf(buf, 32, "cpu%d", i);
  4994. entry->procname = kstrdup(buf, GFP_KERNEL);
  4995. entry->mode = 0555;
  4996. entry->child = sd_alloc_ctl_cpu_table(i);
  4997. entry++;
  4998. }
  4999. WARN_ON(sd_sysctl_header);
  5000. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5001. }
  5002. /* may be called multiple times per register */
  5003. static void unregister_sched_domain_sysctl(void)
  5004. {
  5005. if (sd_sysctl_header)
  5006. unregister_sysctl_table(sd_sysctl_header);
  5007. sd_sysctl_header = NULL;
  5008. if (sd_ctl_dir[0].child)
  5009. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5010. }
  5011. #else
  5012. static void register_sched_domain_sysctl(void)
  5013. {
  5014. }
  5015. static void unregister_sched_domain_sysctl(void)
  5016. {
  5017. }
  5018. #endif
  5019. static void set_rq_online(struct rq *rq)
  5020. {
  5021. if (!rq->online) {
  5022. const struct sched_class *class;
  5023. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5024. rq->online = 1;
  5025. for_each_class(class) {
  5026. if (class->rq_online)
  5027. class->rq_online(rq);
  5028. }
  5029. }
  5030. }
  5031. static void set_rq_offline(struct rq *rq)
  5032. {
  5033. if (rq->online) {
  5034. const struct sched_class *class;
  5035. for_each_class(class) {
  5036. if (class->rq_offline)
  5037. class->rq_offline(rq);
  5038. }
  5039. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5040. rq->online = 0;
  5041. }
  5042. }
  5043. /*
  5044. * migration_call - callback that gets triggered when a CPU is added.
  5045. * Here we can start up the necessary migration thread for the new CPU.
  5046. */
  5047. static int __cpuinit
  5048. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5049. {
  5050. int cpu = (long)hcpu;
  5051. unsigned long flags;
  5052. struct rq *rq = cpu_rq(cpu);
  5053. switch (action) {
  5054. case CPU_UP_PREPARE:
  5055. case CPU_UP_PREPARE_FROZEN:
  5056. rq->calc_load_update = calc_load_update;
  5057. break;
  5058. case CPU_ONLINE:
  5059. case CPU_ONLINE_FROZEN:
  5060. /* Update our root-domain */
  5061. raw_spin_lock_irqsave(&rq->lock, flags);
  5062. if (rq->rd) {
  5063. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5064. set_rq_online(rq);
  5065. }
  5066. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5067. break;
  5068. #ifdef CONFIG_HOTPLUG_CPU
  5069. case CPU_DEAD:
  5070. case CPU_DEAD_FROZEN:
  5071. migrate_live_tasks(cpu);
  5072. /* Idle task back to normal (off runqueue, low prio) */
  5073. raw_spin_lock_irq(&rq->lock);
  5074. deactivate_task(rq, rq->idle, 0);
  5075. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5076. rq->idle->sched_class = &idle_sched_class;
  5077. migrate_dead_tasks(cpu);
  5078. raw_spin_unlock_irq(&rq->lock);
  5079. migrate_nr_uninterruptible(rq);
  5080. BUG_ON(rq->nr_running != 0);
  5081. calc_global_load_remove(rq);
  5082. break;
  5083. case CPU_DYING:
  5084. case CPU_DYING_FROZEN:
  5085. /* Update our root-domain */
  5086. raw_spin_lock_irqsave(&rq->lock, flags);
  5087. if (rq->rd) {
  5088. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5089. set_rq_offline(rq);
  5090. }
  5091. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5092. break;
  5093. #endif
  5094. }
  5095. return NOTIFY_OK;
  5096. }
  5097. /*
  5098. * Register at high priority so that task migration (migrate_all_tasks)
  5099. * happens before everything else. This has to be lower priority than
  5100. * the notifier in the perf_event subsystem, though.
  5101. */
  5102. static struct notifier_block __cpuinitdata migration_notifier = {
  5103. .notifier_call = migration_call,
  5104. .priority = CPU_PRI_MIGRATION,
  5105. };
  5106. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5107. unsigned long action, void *hcpu)
  5108. {
  5109. switch (action & ~CPU_TASKS_FROZEN) {
  5110. case CPU_ONLINE:
  5111. case CPU_DOWN_FAILED:
  5112. set_cpu_active((long)hcpu, true);
  5113. return NOTIFY_OK;
  5114. default:
  5115. return NOTIFY_DONE;
  5116. }
  5117. }
  5118. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5119. unsigned long action, void *hcpu)
  5120. {
  5121. switch (action & ~CPU_TASKS_FROZEN) {
  5122. case CPU_DOWN_PREPARE:
  5123. set_cpu_active((long)hcpu, false);
  5124. return NOTIFY_OK;
  5125. default:
  5126. return NOTIFY_DONE;
  5127. }
  5128. }
  5129. static int __init migration_init(void)
  5130. {
  5131. void *cpu = (void *)(long)smp_processor_id();
  5132. int err;
  5133. /* Initialize migration for the boot CPU */
  5134. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5135. BUG_ON(err == NOTIFY_BAD);
  5136. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5137. register_cpu_notifier(&migration_notifier);
  5138. /* Register cpu active notifiers */
  5139. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5140. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5141. return 0;
  5142. }
  5143. early_initcall(migration_init);
  5144. #endif
  5145. #ifdef CONFIG_SMP
  5146. #ifdef CONFIG_SCHED_DEBUG
  5147. static __read_mostly int sched_domain_debug_enabled;
  5148. static int __init sched_domain_debug_setup(char *str)
  5149. {
  5150. sched_domain_debug_enabled = 1;
  5151. return 0;
  5152. }
  5153. early_param("sched_debug", sched_domain_debug_setup);
  5154. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5155. struct cpumask *groupmask)
  5156. {
  5157. struct sched_group *group = sd->groups;
  5158. char str[256];
  5159. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5160. cpumask_clear(groupmask);
  5161. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5162. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5163. printk("does not load-balance\n");
  5164. if (sd->parent)
  5165. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5166. " has parent");
  5167. return -1;
  5168. }
  5169. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5170. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5171. printk(KERN_ERR "ERROR: domain->span does not contain "
  5172. "CPU%d\n", cpu);
  5173. }
  5174. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5175. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5176. " CPU%d\n", cpu);
  5177. }
  5178. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5179. do {
  5180. if (!group) {
  5181. printk("\n");
  5182. printk(KERN_ERR "ERROR: group is NULL\n");
  5183. break;
  5184. }
  5185. if (!group->cpu_power) {
  5186. printk(KERN_CONT "\n");
  5187. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5188. "set\n");
  5189. break;
  5190. }
  5191. if (!cpumask_weight(sched_group_cpus(group))) {
  5192. printk(KERN_CONT "\n");
  5193. printk(KERN_ERR "ERROR: empty group\n");
  5194. break;
  5195. }
  5196. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5197. printk(KERN_CONT "\n");
  5198. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5199. break;
  5200. }
  5201. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5202. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5203. printk(KERN_CONT " %s", str);
  5204. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5205. printk(KERN_CONT " (cpu_power = %d)",
  5206. group->cpu_power);
  5207. }
  5208. group = group->next;
  5209. } while (group != sd->groups);
  5210. printk(KERN_CONT "\n");
  5211. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5212. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5213. if (sd->parent &&
  5214. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5215. printk(KERN_ERR "ERROR: parent span is not a superset "
  5216. "of domain->span\n");
  5217. return 0;
  5218. }
  5219. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5220. {
  5221. cpumask_var_t groupmask;
  5222. int level = 0;
  5223. if (!sched_domain_debug_enabled)
  5224. return;
  5225. if (!sd) {
  5226. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5227. return;
  5228. }
  5229. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5230. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5231. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5232. return;
  5233. }
  5234. for (;;) {
  5235. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5236. break;
  5237. level++;
  5238. sd = sd->parent;
  5239. if (!sd)
  5240. break;
  5241. }
  5242. free_cpumask_var(groupmask);
  5243. }
  5244. #else /* !CONFIG_SCHED_DEBUG */
  5245. # define sched_domain_debug(sd, cpu) do { } while (0)
  5246. #endif /* CONFIG_SCHED_DEBUG */
  5247. static int sd_degenerate(struct sched_domain *sd)
  5248. {
  5249. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5250. return 1;
  5251. /* Following flags need at least 2 groups */
  5252. if (sd->flags & (SD_LOAD_BALANCE |
  5253. SD_BALANCE_NEWIDLE |
  5254. SD_BALANCE_FORK |
  5255. SD_BALANCE_EXEC |
  5256. SD_SHARE_CPUPOWER |
  5257. SD_SHARE_PKG_RESOURCES)) {
  5258. if (sd->groups != sd->groups->next)
  5259. return 0;
  5260. }
  5261. /* Following flags don't use groups */
  5262. if (sd->flags & (SD_WAKE_AFFINE))
  5263. return 0;
  5264. return 1;
  5265. }
  5266. static int
  5267. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5268. {
  5269. unsigned long cflags = sd->flags, pflags = parent->flags;
  5270. if (sd_degenerate(parent))
  5271. return 1;
  5272. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5273. return 0;
  5274. /* Flags needing groups don't count if only 1 group in parent */
  5275. if (parent->groups == parent->groups->next) {
  5276. pflags &= ~(SD_LOAD_BALANCE |
  5277. SD_BALANCE_NEWIDLE |
  5278. SD_BALANCE_FORK |
  5279. SD_BALANCE_EXEC |
  5280. SD_SHARE_CPUPOWER |
  5281. SD_SHARE_PKG_RESOURCES);
  5282. if (nr_node_ids == 1)
  5283. pflags &= ~SD_SERIALIZE;
  5284. }
  5285. if (~cflags & pflags)
  5286. return 0;
  5287. return 1;
  5288. }
  5289. static void free_rootdomain(struct root_domain *rd)
  5290. {
  5291. synchronize_sched();
  5292. cpupri_cleanup(&rd->cpupri);
  5293. free_cpumask_var(rd->rto_mask);
  5294. free_cpumask_var(rd->online);
  5295. free_cpumask_var(rd->span);
  5296. kfree(rd);
  5297. }
  5298. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5299. {
  5300. struct root_domain *old_rd = NULL;
  5301. unsigned long flags;
  5302. raw_spin_lock_irqsave(&rq->lock, flags);
  5303. if (rq->rd) {
  5304. old_rd = rq->rd;
  5305. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5306. set_rq_offline(rq);
  5307. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5308. /*
  5309. * If we dont want to free the old_rt yet then
  5310. * set old_rd to NULL to skip the freeing later
  5311. * in this function:
  5312. */
  5313. if (!atomic_dec_and_test(&old_rd->refcount))
  5314. old_rd = NULL;
  5315. }
  5316. atomic_inc(&rd->refcount);
  5317. rq->rd = rd;
  5318. cpumask_set_cpu(rq->cpu, rd->span);
  5319. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5320. set_rq_online(rq);
  5321. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5322. if (old_rd)
  5323. free_rootdomain(old_rd);
  5324. }
  5325. static int init_rootdomain(struct root_domain *rd)
  5326. {
  5327. memset(rd, 0, sizeof(*rd));
  5328. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5329. goto out;
  5330. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5331. goto free_span;
  5332. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5333. goto free_online;
  5334. if (cpupri_init(&rd->cpupri) != 0)
  5335. goto free_rto_mask;
  5336. return 0;
  5337. free_rto_mask:
  5338. free_cpumask_var(rd->rto_mask);
  5339. free_online:
  5340. free_cpumask_var(rd->online);
  5341. free_span:
  5342. free_cpumask_var(rd->span);
  5343. out:
  5344. return -ENOMEM;
  5345. }
  5346. static void init_defrootdomain(void)
  5347. {
  5348. init_rootdomain(&def_root_domain);
  5349. atomic_set(&def_root_domain.refcount, 1);
  5350. }
  5351. static struct root_domain *alloc_rootdomain(void)
  5352. {
  5353. struct root_domain *rd;
  5354. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5355. if (!rd)
  5356. return NULL;
  5357. if (init_rootdomain(rd) != 0) {
  5358. kfree(rd);
  5359. return NULL;
  5360. }
  5361. return rd;
  5362. }
  5363. /*
  5364. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5365. * hold the hotplug lock.
  5366. */
  5367. static void
  5368. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5369. {
  5370. struct rq *rq = cpu_rq(cpu);
  5371. struct sched_domain *tmp;
  5372. for (tmp = sd; tmp; tmp = tmp->parent)
  5373. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5374. /* Remove the sched domains which do not contribute to scheduling. */
  5375. for (tmp = sd; tmp; ) {
  5376. struct sched_domain *parent = tmp->parent;
  5377. if (!parent)
  5378. break;
  5379. if (sd_parent_degenerate(tmp, parent)) {
  5380. tmp->parent = parent->parent;
  5381. if (parent->parent)
  5382. parent->parent->child = tmp;
  5383. } else
  5384. tmp = tmp->parent;
  5385. }
  5386. if (sd && sd_degenerate(sd)) {
  5387. sd = sd->parent;
  5388. if (sd)
  5389. sd->child = NULL;
  5390. }
  5391. sched_domain_debug(sd, cpu);
  5392. rq_attach_root(rq, rd);
  5393. rcu_assign_pointer(rq->sd, sd);
  5394. }
  5395. /* cpus with isolated domains */
  5396. static cpumask_var_t cpu_isolated_map;
  5397. /* Setup the mask of cpus configured for isolated domains */
  5398. static int __init isolated_cpu_setup(char *str)
  5399. {
  5400. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5401. cpulist_parse(str, cpu_isolated_map);
  5402. return 1;
  5403. }
  5404. __setup("isolcpus=", isolated_cpu_setup);
  5405. /*
  5406. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5407. * to a function which identifies what group(along with sched group) a CPU
  5408. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5409. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5410. *
  5411. * init_sched_build_groups will build a circular linked list of the groups
  5412. * covered by the given span, and will set each group's ->cpumask correctly,
  5413. * and ->cpu_power to 0.
  5414. */
  5415. static void
  5416. init_sched_build_groups(const struct cpumask *span,
  5417. const struct cpumask *cpu_map,
  5418. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5419. struct sched_group **sg,
  5420. struct cpumask *tmpmask),
  5421. struct cpumask *covered, struct cpumask *tmpmask)
  5422. {
  5423. struct sched_group *first = NULL, *last = NULL;
  5424. int i;
  5425. cpumask_clear(covered);
  5426. for_each_cpu(i, span) {
  5427. struct sched_group *sg;
  5428. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5429. int j;
  5430. if (cpumask_test_cpu(i, covered))
  5431. continue;
  5432. cpumask_clear(sched_group_cpus(sg));
  5433. sg->cpu_power = 0;
  5434. for_each_cpu(j, span) {
  5435. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5436. continue;
  5437. cpumask_set_cpu(j, covered);
  5438. cpumask_set_cpu(j, sched_group_cpus(sg));
  5439. }
  5440. if (!first)
  5441. first = sg;
  5442. if (last)
  5443. last->next = sg;
  5444. last = sg;
  5445. }
  5446. last->next = first;
  5447. }
  5448. #define SD_NODES_PER_DOMAIN 16
  5449. #ifdef CONFIG_NUMA
  5450. /**
  5451. * find_next_best_node - find the next node to include in a sched_domain
  5452. * @node: node whose sched_domain we're building
  5453. * @used_nodes: nodes already in the sched_domain
  5454. *
  5455. * Find the next node to include in a given scheduling domain. Simply
  5456. * finds the closest node not already in the @used_nodes map.
  5457. *
  5458. * Should use nodemask_t.
  5459. */
  5460. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5461. {
  5462. int i, n, val, min_val, best_node = 0;
  5463. min_val = INT_MAX;
  5464. for (i = 0; i < nr_node_ids; i++) {
  5465. /* Start at @node */
  5466. n = (node + i) % nr_node_ids;
  5467. if (!nr_cpus_node(n))
  5468. continue;
  5469. /* Skip already used nodes */
  5470. if (node_isset(n, *used_nodes))
  5471. continue;
  5472. /* Simple min distance search */
  5473. val = node_distance(node, n);
  5474. if (val < min_val) {
  5475. min_val = val;
  5476. best_node = n;
  5477. }
  5478. }
  5479. node_set(best_node, *used_nodes);
  5480. return best_node;
  5481. }
  5482. /**
  5483. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5484. * @node: node whose cpumask we're constructing
  5485. * @span: resulting cpumask
  5486. *
  5487. * Given a node, construct a good cpumask for its sched_domain to span. It
  5488. * should be one that prevents unnecessary balancing, but also spreads tasks
  5489. * out optimally.
  5490. */
  5491. static void sched_domain_node_span(int node, struct cpumask *span)
  5492. {
  5493. nodemask_t used_nodes;
  5494. int i;
  5495. cpumask_clear(span);
  5496. nodes_clear(used_nodes);
  5497. cpumask_or(span, span, cpumask_of_node(node));
  5498. node_set(node, used_nodes);
  5499. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5500. int next_node = find_next_best_node(node, &used_nodes);
  5501. cpumask_or(span, span, cpumask_of_node(next_node));
  5502. }
  5503. }
  5504. #endif /* CONFIG_NUMA */
  5505. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5506. /*
  5507. * The cpus mask in sched_group and sched_domain hangs off the end.
  5508. *
  5509. * ( See the the comments in include/linux/sched.h:struct sched_group
  5510. * and struct sched_domain. )
  5511. */
  5512. struct static_sched_group {
  5513. struct sched_group sg;
  5514. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5515. };
  5516. struct static_sched_domain {
  5517. struct sched_domain sd;
  5518. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5519. };
  5520. struct s_data {
  5521. #ifdef CONFIG_NUMA
  5522. int sd_allnodes;
  5523. cpumask_var_t domainspan;
  5524. cpumask_var_t covered;
  5525. cpumask_var_t notcovered;
  5526. #endif
  5527. cpumask_var_t nodemask;
  5528. cpumask_var_t this_sibling_map;
  5529. cpumask_var_t this_core_map;
  5530. cpumask_var_t send_covered;
  5531. cpumask_var_t tmpmask;
  5532. struct sched_group **sched_group_nodes;
  5533. struct root_domain *rd;
  5534. };
  5535. enum s_alloc {
  5536. sa_sched_groups = 0,
  5537. sa_rootdomain,
  5538. sa_tmpmask,
  5539. sa_send_covered,
  5540. sa_this_core_map,
  5541. sa_this_sibling_map,
  5542. sa_nodemask,
  5543. sa_sched_group_nodes,
  5544. #ifdef CONFIG_NUMA
  5545. sa_notcovered,
  5546. sa_covered,
  5547. sa_domainspan,
  5548. #endif
  5549. sa_none,
  5550. };
  5551. /*
  5552. * SMT sched-domains:
  5553. */
  5554. #ifdef CONFIG_SCHED_SMT
  5555. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5556. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5557. static int
  5558. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5559. struct sched_group **sg, struct cpumask *unused)
  5560. {
  5561. if (sg)
  5562. *sg = &per_cpu(sched_groups, cpu).sg;
  5563. return cpu;
  5564. }
  5565. #endif /* CONFIG_SCHED_SMT */
  5566. /*
  5567. * multi-core sched-domains:
  5568. */
  5569. #ifdef CONFIG_SCHED_MC
  5570. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5571. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5572. #endif /* CONFIG_SCHED_MC */
  5573. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5574. static int
  5575. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5576. struct sched_group **sg, struct cpumask *mask)
  5577. {
  5578. int group;
  5579. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5580. group = cpumask_first(mask);
  5581. if (sg)
  5582. *sg = &per_cpu(sched_group_core, group).sg;
  5583. return group;
  5584. }
  5585. #elif defined(CONFIG_SCHED_MC)
  5586. static int
  5587. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5588. struct sched_group **sg, struct cpumask *unused)
  5589. {
  5590. if (sg)
  5591. *sg = &per_cpu(sched_group_core, cpu).sg;
  5592. return cpu;
  5593. }
  5594. #endif
  5595. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5596. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5597. static int
  5598. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5599. struct sched_group **sg, struct cpumask *mask)
  5600. {
  5601. int group;
  5602. #ifdef CONFIG_SCHED_MC
  5603. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5604. group = cpumask_first(mask);
  5605. #elif defined(CONFIG_SCHED_SMT)
  5606. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5607. group = cpumask_first(mask);
  5608. #else
  5609. group = cpu;
  5610. #endif
  5611. if (sg)
  5612. *sg = &per_cpu(sched_group_phys, group).sg;
  5613. return group;
  5614. }
  5615. #ifdef CONFIG_NUMA
  5616. /*
  5617. * The init_sched_build_groups can't handle what we want to do with node
  5618. * groups, so roll our own. Now each node has its own list of groups which
  5619. * gets dynamically allocated.
  5620. */
  5621. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5622. static struct sched_group ***sched_group_nodes_bycpu;
  5623. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5624. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5625. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5626. struct sched_group **sg,
  5627. struct cpumask *nodemask)
  5628. {
  5629. int group;
  5630. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5631. group = cpumask_first(nodemask);
  5632. if (sg)
  5633. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5634. return group;
  5635. }
  5636. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5637. {
  5638. struct sched_group *sg = group_head;
  5639. int j;
  5640. if (!sg)
  5641. return;
  5642. do {
  5643. for_each_cpu(j, sched_group_cpus(sg)) {
  5644. struct sched_domain *sd;
  5645. sd = &per_cpu(phys_domains, j).sd;
  5646. if (j != group_first_cpu(sd->groups)) {
  5647. /*
  5648. * Only add "power" once for each
  5649. * physical package.
  5650. */
  5651. continue;
  5652. }
  5653. sg->cpu_power += sd->groups->cpu_power;
  5654. }
  5655. sg = sg->next;
  5656. } while (sg != group_head);
  5657. }
  5658. static int build_numa_sched_groups(struct s_data *d,
  5659. const struct cpumask *cpu_map, int num)
  5660. {
  5661. struct sched_domain *sd;
  5662. struct sched_group *sg, *prev;
  5663. int n, j;
  5664. cpumask_clear(d->covered);
  5665. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5666. if (cpumask_empty(d->nodemask)) {
  5667. d->sched_group_nodes[num] = NULL;
  5668. goto out;
  5669. }
  5670. sched_domain_node_span(num, d->domainspan);
  5671. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5672. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5673. GFP_KERNEL, num);
  5674. if (!sg) {
  5675. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5676. num);
  5677. return -ENOMEM;
  5678. }
  5679. d->sched_group_nodes[num] = sg;
  5680. for_each_cpu(j, d->nodemask) {
  5681. sd = &per_cpu(node_domains, j).sd;
  5682. sd->groups = sg;
  5683. }
  5684. sg->cpu_power = 0;
  5685. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5686. sg->next = sg;
  5687. cpumask_or(d->covered, d->covered, d->nodemask);
  5688. prev = sg;
  5689. for (j = 0; j < nr_node_ids; j++) {
  5690. n = (num + j) % nr_node_ids;
  5691. cpumask_complement(d->notcovered, d->covered);
  5692. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5693. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5694. if (cpumask_empty(d->tmpmask))
  5695. break;
  5696. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5697. if (cpumask_empty(d->tmpmask))
  5698. continue;
  5699. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5700. GFP_KERNEL, num);
  5701. if (!sg) {
  5702. printk(KERN_WARNING
  5703. "Can not alloc domain group for node %d\n", j);
  5704. return -ENOMEM;
  5705. }
  5706. sg->cpu_power = 0;
  5707. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5708. sg->next = prev->next;
  5709. cpumask_or(d->covered, d->covered, d->tmpmask);
  5710. prev->next = sg;
  5711. prev = sg;
  5712. }
  5713. out:
  5714. return 0;
  5715. }
  5716. #endif /* CONFIG_NUMA */
  5717. #ifdef CONFIG_NUMA
  5718. /* Free memory allocated for various sched_group structures */
  5719. static void free_sched_groups(const struct cpumask *cpu_map,
  5720. struct cpumask *nodemask)
  5721. {
  5722. int cpu, i;
  5723. for_each_cpu(cpu, cpu_map) {
  5724. struct sched_group **sched_group_nodes
  5725. = sched_group_nodes_bycpu[cpu];
  5726. if (!sched_group_nodes)
  5727. continue;
  5728. for (i = 0; i < nr_node_ids; i++) {
  5729. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5730. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5731. if (cpumask_empty(nodemask))
  5732. continue;
  5733. if (sg == NULL)
  5734. continue;
  5735. sg = sg->next;
  5736. next_sg:
  5737. oldsg = sg;
  5738. sg = sg->next;
  5739. kfree(oldsg);
  5740. if (oldsg != sched_group_nodes[i])
  5741. goto next_sg;
  5742. }
  5743. kfree(sched_group_nodes);
  5744. sched_group_nodes_bycpu[cpu] = NULL;
  5745. }
  5746. }
  5747. #else /* !CONFIG_NUMA */
  5748. static void free_sched_groups(const struct cpumask *cpu_map,
  5749. struct cpumask *nodemask)
  5750. {
  5751. }
  5752. #endif /* CONFIG_NUMA */
  5753. /*
  5754. * Initialize sched groups cpu_power.
  5755. *
  5756. * cpu_power indicates the capacity of sched group, which is used while
  5757. * distributing the load between different sched groups in a sched domain.
  5758. * Typically cpu_power for all the groups in a sched domain will be same unless
  5759. * there are asymmetries in the topology. If there are asymmetries, group
  5760. * having more cpu_power will pickup more load compared to the group having
  5761. * less cpu_power.
  5762. */
  5763. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5764. {
  5765. struct sched_domain *child;
  5766. struct sched_group *group;
  5767. long power;
  5768. int weight;
  5769. WARN_ON(!sd || !sd->groups);
  5770. if (cpu != group_first_cpu(sd->groups))
  5771. return;
  5772. child = sd->child;
  5773. sd->groups->cpu_power = 0;
  5774. if (!child) {
  5775. power = SCHED_LOAD_SCALE;
  5776. weight = cpumask_weight(sched_domain_span(sd));
  5777. /*
  5778. * SMT siblings share the power of a single core.
  5779. * Usually multiple threads get a better yield out of
  5780. * that one core than a single thread would have,
  5781. * reflect that in sd->smt_gain.
  5782. */
  5783. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5784. power *= sd->smt_gain;
  5785. power /= weight;
  5786. power >>= SCHED_LOAD_SHIFT;
  5787. }
  5788. sd->groups->cpu_power += power;
  5789. return;
  5790. }
  5791. /*
  5792. * Add cpu_power of each child group to this groups cpu_power.
  5793. */
  5794. group = child->groups;
  5795. do {
  5796. sd->groups->cpu_power += group->cpu_power;
  5797. group = group->next;
  5798. } while (group != child->groups);
  5799. }
  5800. /*
  5801. * Initializers for schedule domains
  5802. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5803. */
  5804. #ifdef CONFIG_SCHED_DEBUG
  5805. # define SD_INIT_NAME(sd, type) sd->name = #type
  5806. #else
  5807. # define SD_INIT_NAME(sd, type) do { } while (0)
  5808. #endif
  5809. #define SD_INIT(sd, type) sd_init_##type(sd)
  5810. #define SD_INIT_FUNC(type) \
  5811. static noinline void sd_init_##type(struct sched_domain *sd) \
  5812. { \
  5813. memset(sd, 0, sizeof(*sd)); \
  5814. *sd = SD_##type##_INIT; \
  5815. sd->level = SD_LV_##type; \
  5816. SD_INIT_NAME(sd, type); \
  5817. }
  5818. SD_INIT_FUNC(CPU)
  5819. #ifdef CONFIG_NUMA
  5820. SD_INIT_FUNC(ALLNODES)
  5821. SD_INIT_FUNC(NODE)
  5822. #endif
  5823. #ifdef CONFIG_SCHED_SMT
  5824. SD_INIT_FUNC(SIBLING)
  5825. #endif
  5826. #ifdef CONFIG_SCHED_MC
  5827. SD_INIT_FUNC(MC)
  5828. #endif
  5829. static int default_relax_domain_level = -1;
  5830. static int __init setup_relax_domain_level(char *str)
  5831. {
  5832. unsigned long val;
  5833. val = simple_strtoul(str, NULL, 0);
  5834. if (val < SD_LV_MAX)
  5835. default_relax_domain_level = val;
  5836. return 1;
  5837. }
  5838. __setup("relax_domain_level=", setup_relax_domain_level);
  5839. static void set_domain_attribute(struct sched_domain *sd,
  5840. struct sched_domain_attr *attr)
  5841. {
  5842. int request;
  5843. if (!attr || attr->relax_domain_level < 0) {
  5844. if (default_relax_domain_level < 0)
  5845. return;
  5846. else
  5847. request = default_relax_domain_level;
  5848. } else
  5849. request = attr->relax_domain_level;
  5850. if (request < sd->level) {
  5851. /* turn off idle balance on this domain */
  5852. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5853. } else {
  5854. /* turn on idle balance on this domain */
  5855. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5856. }
  5857. }
  5858. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5859. const struct cpumask *cpu_map)
  5860. {
  5861. switch (what) {
  5862. case sa_sched_groups:
  5863. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5864. d->sched_group_nodes = NULL;
  5865. case sa_rootdomain:
  5866. free_rootdomain(d->rd); /* fall through */
  5867. case sa_tmpmask:
  5868. free_cpumask_var(d->tmpmask); /* fall through */
  5869. case sa_send_covered:
  5870. free_cpumask_var(d->send_covered); /* fall through */
  5871. case sa_this_core_map:
  5872. free_cpumask_var(d->this_core_map); /* fall through */
  5873. case sa_this_sibling_map:
  5874. free_cpumask_var(d->this_sibling_map); /* fall through */
  5875. case sa_nodemask:
  5876. free_cpumask_var(d->nodemask); /* fall through */
  5877. case sa_sched_group_nodes:
  5878. #ifdef CONFIG_NUMA
  5879. kfree(d->sched_group_nodes); /* fall through */
  5880. case sa_notcovered:
  5881. free_cpumask_var(d->notcovered); /* fall through */
  5882. case sa_covered:
  5883. free_cpumask_var(d->covered); /* fall through */
  5884. case sa_domainspan:
  5885. free_cpumask_var(d->domainspan); /* fall through */
  5886. #endif
  5887. case sa_none:
  5888. break;
  5889. }
  5890. }
  5891. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5892. const struct cpumask *cpu_map)
  5893. {
  5894. #ifdef CONFIG_NUMA
  5895. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5896. return sa_none;
  5897. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5898. return sa_domainspan;
  5899. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5900. return sa_covered;
  5901. /* Allocate the per-node list of sched groups */
  5902. d->sched_group_nodes = kcalloc(nr_node_ids,
  5903. sizeof(struct sched_group *), GFP_KERNEL);
  5904. if (!d->sched_group_nodes) {
  5905. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5906. return sa_notcovered;
  5907. }
  5908. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5909. #endif
  5910. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5911. return sa_sched_group_nodes;
  5912. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5913. return sa_nodemask;
  5914. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5915. return sa_this_sibling_map;
  5916. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5917. return sa_this_core_map;
  5918. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5919. return sa_send_covered;
  5920. d->rd = alloc_rootdomain();
  5921. if (!d->rd) {
  5922. printk(KERN_WARNING "Cannot alloc root domain\n");
  5923. return sa_tmpmask;
  5924. }
  5925. return sa_rootdomain;
  5926. }
  5927. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5928. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5929. {
  5930. struct sched_domain *sd = NULL;
  5931. #ifdef CONFIG_NUMA
  5932. struct sched_domain *parent;
  5933. d->sd_allnodes = 0;
  5934. if (cpumask_weight(cpu_map) >
  5935. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5936. sd = &per_cpu(allnodes_domains, i).sd;
  5937. SD_INIT(sd, ALLNODES);
  5938. set_domain_attribute(sd, attr);
  5939. cpumask_copy(sched_domain_span(sd), cpu_map);
  5940. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5941. d->sd_allnodes = 1;
  5942. }
  5943. parent = sd;
  5944. sd = &per_cpu(node_domains, i).sd;
  5945. SD_INIT(sd, NODE);
  5946. set_domain_attribute(sd, attr);
  5947. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5948. sd->parent = parent;
  5949. if (parent)
  5950. parent->child = sd;
  5951. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5952. #endif
  5953. return sd;
  5954. }
  5955. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5956. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5957. struct sched_domain *parent, int i)
  5958. {
  5959. struct sched_domain *sd;
  5960. sd = &per_cpu(phys_domains, i).sd;
  5961. SD_INIT(sd, CPU);
  5962. set_domain_attribute(sd, attr);
  5963. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5964. sd->parent = parent;
  5965. if (parent)
  5966. parent->child = sd;
  5967. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5968. return sd;
  5969. }
  5970. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5971. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5972. struct sched_domain *parent, int i)
  5973. {
  5974. struct sched_domain *sd = parent;
  5975. #ifdef CONFIG_SCHED_MC
  5976. sd = &per_cpu(core_domains, i).sd;
  5977. SD_INIT(sd, MC);
  5978. set_domain_attribute(sd, attr);
  5979. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5980. sd->parent = parent;
  5981. parent->child = sd;
  5982. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5983. #endif
  5984. return sd;
  5985. }
  5986. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5987. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5988. struct sched_domain *parent, int i)
  5989. {
  5990. struct sched_domain *sd = parent;
  5991. #ifdef CONFIG_SCHED_SMT
  5992. sd = &per_cpu(cpu_domains, i).sd;
  5993. SD_INIT(sd, SIBLING);
  5994. set_domain_attribute(sd, attr);
  5995. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5996. sd->parent = parent;
  5997. parent->child = sd;
  5998. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5999. #endif
  6000. return sd;
  6001. }
  6002. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6003. const struct cpumask *cpu_map, int cpu)
  6004. {
  6005. switch (l) {
  6006. #ifdef CONFIG_SCHED_SMT
  6007. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6008. cpumask_and(d->this_sibling_map, cpu_map,
  6009. topology_thread_cpumask(cpu));
  6010. if (cpu == cpumask_first(d->this_sibling_map))
  6011. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6012. &cpu_to_cpu_group,
  6013. d->send_covered, d->tmpmask);
  6014. break;
  6015. #endif
  6016. #ifdef CONFIG_SCHED_MC
  6017. case SD_LV_MC: /* set up multi-core groups */
  6018. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6019. if (cpu == cpumask_first(d->this_core_map))
  6020. init_sched_build_groups(d->this_core_map, cpu_map,
  6021. &cpu_to_core_group,
  6022. d->send_covered, d->tmpmask);
  6023. break;
  6024. #endif
  6025. case SD_LV_CPU: /* set up physical groups */
  6026. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6027. if (!cpumask_empty(d->nodemask))
  6028. init_sched_build_groups(d->nodemask, cpu_map,
  6029. &cpu_to_phys_group,
  6030. d->send_covered, d->tmpmask);
  6031. break;
  6032. #ifdef CONFIG_NUMA
  6033. case SD_LV_ALLNODES:
  6034. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6035. d->send_covered, d->tmpmask);
  6036. break;
  6037. #endif
  6038. default:
  6039. break;
  6040. }
  6041. }
  6042. /*
  6043. * Build sched domains for a given set of cpus and attach the sched domains
  6044. * to the individual cpus
  6045. */
  6046. static int __build_sched_domains(const struct cpumask *cpu_map,
  6047. struct sched_domain_attr *attr)
  6048. {
  6049. enum s_alloc alloc_state = sa_none;
  6050. struct s_data d;
  6051. struct sched_domain *sd;
  6052. int i;
  6053. #ifdef CONFIG_NUMA
  6054. d.sd_allnodes = 0;
  6055. #endif
  6056. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6057. if (alloc_state != sa_rootdomain)
  6058. goto error;
  6059. alloc_state = sa_sched_groups;
  6060. /*
  6061. * Set up domains for cpus specified by the cpu_map.
  6062. */
  6063. for_each_cpu(i, cpu_map) {
  6064. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6065. cpu_map);
  6066. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6067. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6068. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6069. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6070. }
  6071. for_each_cpu(i, cpu_map) {
  6072. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6073. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6074. }
  6075. /* Set up physical groups */
  6076. for (i = 0; i < nr_node_ids; i++)
  6077. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6078. #ifdef CONFIG_NUMA
  6079. /* Set up node groups */
  6080. if (d.sd_allnodes)
  6081. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6082. for (i = 0; i < nr_node_ids; i++)
  6083. if (build_numa_sched_groups(&d, cpu_map, i))
  6084. goto error;
  6085. #endif
  6086. /* Calculate CPU power for physical packages and nodes */
  6087. #ifdef CONFIG_SCHED_SMT
  6088. for_each_cpu(i, cpu_map) {
  6089. sd = &per_cpu(cpu_domains, i).sd;
  6090. init_sched_groups_power(i, sd);
  6091. }
  6092. #endif
  6093. #ifdef CONFIG_SCHED_MC
  6094. for_each_cpu(i, cpu_map) {
  6095. sd = &per_cpu(core_domains, i).sd;
  6096. init_sched_groups_power(i, sd);
  6097. }
  6098. #endif
  6099. for_each_cpu(i, cpu_map) {
  6100. sd = &per_cpu(phys_domains, i).sd;
  6101. init_sched_groups_power(i, sd);
  6102. }
  6103. #ifdef CONFIG_NUMA
  6104. for (i = 0; i < nr_node_ids; i++)
  6105. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6106. if (d.sd_allnodes) {
  6107. struct sched_group *sg;
  6108. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6109. d.tmpmask);
  6110. init_numa_sched_groups_power(sg);
  6111. }
  6112. #endif
  6113. /* Attach the domains */
  6114. for_each_cpu(i, cpu_map) {
  6115. #ifdef CONFIG_SCHED_SMT
  6116. sd = &per_cpu(cpu_domains, i).sd;
  6117. #elif defined(CONFIG_SCHED_MC)
  6118. sd = &per_cpu(core_domains, i).sd;
  6119. #else
  6120. sd = &per_cpu(phys_domains, i).sd;
  6121. #endif
  6122. cpu_attach_domain(sd, d.rd, i);
  6123. }
  6124. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6125. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6126. return 0;
  6127. error:
  6128. __free_domain_allocs(&d, alloc_state, cpu_map);
  6129. return -ENOMEM;
  6130. }
  6131. static int build_sched_domains(const struct cpumask *cpu_map)
  6132. {
  6133. return __build_sched_domains(cpu_map, NULL);
  6134. }
  6135. static cpumask_var_t *doms_cur; /* current sched domains */
  6136. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6137. static struct sched_domain_attr *dattr_cur;
  6138. /* attribues of custom domains in 'doms_cur' */
  6139. /*
  6140. * Special case: If a kmalloc of a doms_cur partition (array of
  6141. * cpumask) fails, then fallback to a single sched domain,
  6142. * as determined by the single cpumask fallback_doms.
  6143. */
  6144. static cpumask_var_t fallback_doms;
  6145. /*
  6146. * arch_update_cpu_topology lets virtualized architectures update the
  6147. * cpu core maps. It is supposed to return 1 if the topology changed
  6148. * or 0 if it stayed the same.
  6149. */
  6150. int __attribute__((weak)) arch_update_cpu_topology(void)
  6151. {
  6152. return 0;
  6153. }
  6154. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6155. {
  6156. int i;
  6157. cpumask_var_t *doms;
  6158. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6159. if (!doms)
  6160. return NULL;
  6161. for (i = 0; i < ndoms; i++) {
  6162. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6163. free_sched_domains(doms, i);
  6164. return NULL;
  6165. }
  6166. }
  6167. return doms;
  6168. }
  6169. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6170. {
  6171. unsigned int i;
  6172. for (i = 0; i < ndoms; i++)
  6173. free_cpumask_var(doms[i]);
  6174. kfree(doms);
  6175. }
  6176. /*
  6177. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6178. * For now this just excludes isolated cpus, but could be used to
  6179. * exclude other special cases in the future.
  6180. */
  6181. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6182. {
  6183. int err;
  6184. arch_update_cpu_topology();
  6185. ndoms_cur = 1;
  6186. doms_cur = alloc_sched_domains(ndoms_cur);
  6187. if (!doms_cur)
  6188. doms_cur = &fallback_doms;
  6189. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6190. dattr_cur = NULL;
  6191. err = build_sched_domains(doms_cur[0]);
  6192. register_sched_domain_sysctl();
  6193. return err;
  6194. }
  6195. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6196. struct cpumask *tmpmask)
  6197. {
  6198. free_sched_groups(cpu_map, tmpmask);
  6199. }
  6200. /*
  6201. * Detach sched domains from a group of cpus specified in cpu_map
  6202. * These cpus will now be attached to the NULL domain
  6203. */
  6204. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6205. {
  6206. /* Save because hotplug lock held. */
  6207. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6208. int i;
  6209. for_each_cpu(i, cpu_map)
  6210. cpu_attach_domain(NULL, &def_root_domain, i);
  6211. synchronize_sched();
  6212. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6213. }
  6214. /* handle null as "default" */
  6215. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6216. struct sched_domain_attr *new, int idx_new)
  6217. {
  6218. struct sched_domain_attr tmp;
  6219. /* fast path */
  6220. if (!new && !cur)
  6221. return 1;
  6222. tmp = SD_ATTR_INIT;
  6223. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6224. new ? (new + idx_new) : &tmp,
  6225. sizeof(struct sched_domain_attr));
  6226. }
  6227. /*
  6228. * Partition sched domains as specified by the 'ndoms_new'
  6229. * cpumasks in the array doms_new[] of cpumasks. This compares
  6230. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6231. * It destroys each deleted domain and builds each new domain.
  6232. *
  6233. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6234. * The masks don't intersect (don't overlap.) We should setup one
  6235. * sched domain for each mask. CPUs not in any of the cpumasks will
  6236. * not be load balanced. If the same cpumask appears both in the
  6237. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6238. * it as it is.
  6239. *
  6240. * The passed in 'doms_new' should be allocated using
  6241. * alloc_sched_domains. This routine takes ownership of it and will
  6242. * free_sched_domains it when done with it. If the caller failed the
  6243. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6244. * and partition_sched_domains() will fallback to the single partition
  6245. * 'fallback_doms', it also forces the domains to be rebuilt.
  6246. *
  6247. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6248. * ndoms_new == 0 is a special case for destroying existing domains,
  6249. * and it will not create the default domain.
  6250. *
  6251. * Call with hotplug lock held
  6252. */
  6253. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6254. struct sched_domain_attr *dattr_new)
  6255. {
  6256. int i, j, n;
  6257. int new_topology;
  6258. mutex_lock(&sched_domains_mutex);
  6259. /* always unregister in case we don't destroy any domains */
  6260. unregister_sched_domain_sysctl();
  6261. /* Let architecture update cpu core mappings. */
  6262. new_topology = arch_update_cpu_topology();
  6263. n = doms_new ? ndoms_new : 0;
  6264. /* Destroy deleted domains */
  6265. for (i = 0; i < ndoms_cur; i++) {
  6266. for (j = 0; j < n && !new_topology; j++) {
  6267. if (cpumask_equal(doms_cur[i], doms_new[j])
  6268. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6269. goto match1;
  6270. }
  6271. /* no match - a current sched domain not in new doms_new[] */
  6272. detach_destroy_domains(doms_cur[i]);
  6273. match1:
  6274. ;
  6275. }
  6276. if (doms_new == NULL) {
  6277. ndoms_cur = 0;
  6278. doms_new = &fallback_doms;
  6279. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6280. WARN_ON_ONCE(dattr_new);
  6281. }
  6282. /* Build new domains */
  6283. for (i = 0; i < ndoms_new; i++) {
  6284. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6285. if (cpumask_equal(doms_new[i], doms_cur[j])
  6286. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6287. goto match2;
  6288. }
  6289. /* no match - add a new doms_new */
  6290. __build_sched_domains(doms_new[i],
  6291. dattr_new ? dattr_new + i : NULL);
  6292. match2:
  6293. ;
  6294. }
  6295. /* Remember the new sched domains */
  6296. if (doms_cur != &fallback_doms)
  6297. free_sched_domains(doms_cur, ndoms_cur);
  6298. kfree(dattr_cur); /* kfree(NULL) is safe */
  6299. doms_cur = doms_new;
  6300. dattr_cur = dattr_new;
  6301. ndoms_cur = ndoms_new;
  6302. register_sched_domain_sysctl();
  6303. mutex_unlock(&sched_domains_mutex);
  6304. }
  6305. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6306. static void arch_reinit_sched_domains(void)
  6307. {
  6308. get_online_cpus();
  6309. /* Destroy domains first to force the rebuild */
  6310. partition_sched_domains(0, NULL, NULL);
  6311. rebuild_sched_domains();
  6312. put_online_cpus();
  6313. }
  6314. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6315. {
  6316. unsigned int level = 0;
  6317. if (sscanf(buf, "%u", &level) != 1)
  6318. return -EINVAL;
  6319. /*
  6320. * level is always be positive so don't check for
  6321. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6322. * What happens on 0 or 1 byte write,
  6323. * need to check for count as well?
  6324. */
  6325. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6326. return -EINVAL;
  6327. if (smt)
  6328. sched_smt_power_savings = level;
  6329. else
  6330. sched_mc_power_savings = level;
  6331. arch_reinit_sched_domains();
  6332. return count;
  6333. }
  6334. #ifdef CONFIG_SCHED_MC
  6335. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6336. struct sysdev_class_attribute *attr,
  6337. char *page)
  6338. {
  6339. return sprintf(page, "%u\n", sched_mc_power_savings);
  6340. }
  6341. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6342. struct sysdev_class_attribute *attr,
  6343. const char *buf, size_t count)
  6344. {
  6345. return sched_power_savings_store(buf, count, 0);
  6346. }
  6347. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6348. sched_mc_power_savings_show,
  6349. sched_mc_power_savings_store);
  6350. #endif
  6351. #ifdef CONFIG_SCHED_SMT
  6352. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6353. struct sysdev_class_attribute *attr,
  6354. char *page)
  6355. {
  6356. return sprintf(page, "%u\n", sched_smt_power_savings);
  6357. }
  6358. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6359. struct sysdev_class_attribute *attr,
  6360. const char *buf, size_t count)
  6361. {
  6362. return sched_power_savings_store(buf, count, 1);
  6363. }
  6364. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6365. sched_smt_power_savings_show,
  6366. sched_smt_power_savings_store);
  6367. #endif
  6368. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6369. {
  6370. int err = 0;
  6371. #ifdef CONFIG_SCHED_SMT
  6372. if (smt_capable())
  6373. err = sysfs_create_file(&cls->kset.kobj,
  6374. &attr_sched_smt_power_savings.attr);
  6375. #endif
  6376. #ifdef CONFIG_SCHED_MC
  6377. if (!err && mc_capable())
  6378. err = sysfs_create_file(&cls->kset.kobj,
  6379. &attr_sched_mc_power_savings.attr);
  6380. #endif
  6381. return err;
  6382. }
  6383. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6384. /*
  6385. * Update cpusets according to cpu_active mask. If cpusets are
  6386. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6387. * around partition_sched_domains().
  6388. */
  6389. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6390. void *hcpu)
  6391. {
  6392. switch (action & ~CPU_TASKS_FROZEN) {
  6393. case CPU_ONLINE:
  6394. case CPU_DOWN_FAILED:
  6395. cpuset_update_active_cpus();
  6396. return NOTIFY_OK;
  6397. default:
  6398. return NOTIFY_DONE;
  6399. }
  6400. }
  6401. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6402. void *hcpu)
  6403. {
  6404. switch (action & ~CPU_TASKS_FROZEN) {
  6405. case CPU_DOWN_PREPARE:
  6406. cpuset_update_active_cpus();
  6407. return NOTIFY_OK;
  6408. default:
  6409. return NOTIFY_DONE;
  6410. }
  6411. }
  6412. static int update_runtime(struct notifier_block *nfb,
  6413. unsigned long action, void *hcpu)
  6414. {
  6415. int cpu = (int)(long)hcpu;
  6416. switch (action) {
  6417. case CPU_DOWN_PREPARE:
  6418. case CPU_DOWN_PREPARE_FROZEN:
  6419. disable_runtime(cpu_rq(cpu));
  6420. return NOTIFY_OK;
  6421. case CPU_DOWN_FAILED:
  6422. case CPU_DOWN_FAILED_FROZEN:
  6423. case CPU_ONLINE:
  6424. case CPU_ONLINE_FROZEN:
  6425. enable_runtime(cpu_rq(cpu));
  6426. return NOTIFY_OK;
  6427. default:
  6428. return NOTIFY_DONE;
  6429. }
  6430. }
  6431. void __init sched_init_smp(void)
  6432. {
  6433. cpumask_var_t non_isolated_cpus;
  6434. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6435. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6436. #if defined(CONFIG_NUMA)
  6437. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6438. GFP_KERNEL);
  6439. BUG_ON(sched_group_nodes_bycpu == NULL);
  6440. #endif
  6441. get_online_cpus();
  6442. mutex_lock(&sched_domains_mutex);
  6443. arch_init_sched_domains(cpu_active_mask);
  6444. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6445. if (cpumask_empty(non_isolated_cpus))
  6446. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6447. mutex_unlock(&sched_domains_mutex);
  6448. put_online_cpus();
  6449. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6450. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6451. /* RT runtime code needs to handle some hotplug events */
  6452. hotcpu_notifier(update_runtime, 0);
  6453. init_hrtick();
  6454. /* Move init over to a non-isolated CPU */
  6455. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6456. BUG();
  6457. sched_init_granularity();
  6458. free_cpumask_var(non_isolated_cpus);
  6459. init_sched_rt_class();
  6460. }
  6461. #else
  6462. void __init sched_init_smp(void)
  6463. {
  6464. sched_init_granularity();
  6465. }
  6466. #endif /* CONFIG_SMP */
  6467. const_debug unsigned int sysctl_timer_migration = 1;
  6468. int in_sched_functions(unsigned long addr)
  6469. {
  6470. return in_lock_functions(addr) ||
  6471. (addr >= (unsigned long)__sched_text_start
  6472. && addr < (unsigned long)__sched_text_end);
  6473. }
  6474. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6475. {
  6476. cfs_rq->tasks_timeline = RB_ROOT;
  6477. INIT_LIST_HEAD(&cfs_rq->tasks);
  6478. #ifdef CONFIG_FAIR_GROUP_SCHED
  6479. cfs_rq->rq = rq;
  6480. #endif
  6481. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6482. }
  6483. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6484. {
  6485. struct rt_prio_array *array;
  6486. int i;
  6487. array = &rt_rq->active;
  6488. for (i = 0; i < MAX_RT_PRIO; i++) {
  6489. INIT_LIST_HEAD(array->queue + i);
  6490. __clear_bit(i, array->bitmap);
  6491. }
  6492. /* delimiter for bitsearch: */
  6493. __set_bit(MAX_RT_PRIO, array->bitmap);
  6494. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6495. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6496. #ifdef CONFIG_SMP
  6497. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6498. #endif
  6499. #endif
  6500. #ifdef CONFIG_SMP
  6501. rt_rq->rt_nr_migratory = 0;
  6502. rt_rq->overloaded = 0;
  6503. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6504. #endif
  6505. rt_rq->rt_time = 0;
  6506. rt_rq->rt_throttled = 0;
  6507. rt_rq->rt_runtime = 0;
  6508. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6509. #ifdef CONFIG_RT_GROUP_SCHED
  6510. rt_rq->rt_nr_boosted = 0;
  6511. rt_rq->rq = rq;
  6512. #endif
  6513. }
  6514. #ifdef CONFIG_FAIR_GROUP_SCHED
  6515. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6516. struct sched_entity *se, int cpu, int add,
  6517. struct sched_entity *parent)
  6518. {
  6519. struct rq *rq = cpu_rq(cpu);
  6520. tg->cfs_rq[cpu] = cfs_rq;
  6521. init_cfs_rq(cfs_rq, rq);
  6522. cfs_rq->tg = tg;
  6523. if (add)
  6524. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6525. tg->se[cpu] = se;
  6526. /* se could be NULL for init_task_group */
  6527. if (!se)
  6528. return;
  6529. if (!parent)
  6530. se->cfs_rq = &rq->cfs;
  6531. else
  6532. se->cfs_rq = parent->my_q;
  6533. se->my_q = cfs_rq;
  6534. se->load.weight = tg->shares;
  6535. se->load.inv_weight = 0;
  6536. se->parent = parent;
  6537. }
  6538. #endif
  6539. #ifdef CONFIG_RT_GROUP_SCHED
  6540. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6541. struct sched_rt_entity *rt_se, int cpu, int add,
  6542. struct sched_rt_entity *parent)
  6543. {
  6544. struct rq *rq = cpu_rq(cpu);
  6545. tg->rt_rq[cpu] = rt_rq;
  6546. init_rt_rq(rt_rq, rq);
  6547. rt_rq->tg = tg;
  6548. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6549. if (add)
  6550. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6551. tg->rt_se[cpu] = rt_se;
  6552. if (!rt_se)
  6553. return;
  6554. if (!parent)
  6555. rt_se->rt_rq = &rq->rt;
  6556. else
  6557. rt_se->rt_rq = parent->my_q;
  6558. rt_se->my_q = rt_rq;
  6559. rt_se->parent = parent;
  6560. INIT_LIST_HEAD(&rt_se->run_list);
  6561. }
  6562. #endif
  6563. void __init sched_init(void)
  6564. {
  6565. int i, j;
  6566. unsigned long alloc_size = 0, ptr;
  6567. #ifdef CONFIG_FAIR_GROUP_SCHED
  6568. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6569. #endif
  6570. #ifdef CONFIG_RT_GROUP_SCHED
  6571. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6572. #endif
  6573. #ifdef CONFIG_CPUMASK_OFFSTACK
  6574. alloc_size += num_possible_cpus() * cpumask_size();
  6575. #endif
  6576. if (alloc_size) {
  6577. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6578. #ifdef CONFIG_FAIR_GROUP_SCHED
  6579. init_task_group.se = (struct sched_entity **)ptr;
  6580. ptr += nr_cpu_ids * sizeof(void **);
  6581. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6582. ptr += nr_cpu_ids * sizeof(void **);
  6583. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6584. #ifdef CONFIG_RT_GROUP_SCHED
  6585. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6586. ptr += nr_cpu_ids * sizeof(void **);
  6587. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6588. ptr += nr_cpu_ids * sizeof(void **);
  6589. #endif /* CONFIG_RT_GROUP_SCHED */
  6590. #ifdef CONFIG_CPUMASK_OFFSTACK
  6591. for_each_possible_cpu(i) {
  6592. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6593. ptr += cpumask_size();
  6594. }
  6595. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6596. }
  6597. #ifdef CONFIG_SMP
  6598. init_defrootdomain();
  6599. #endif
  6600. init_rt_bandwidth(&def_rt_bandwidth,
  6601. global_rt_period(), global_rt_runtime());
  6602. #ifdef CONFIG_RT_GROUP_SCHED
  6603. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6604. global_rt_period(), global_rt_runtime());
  6605. #endif /* CONFIG_RT_GROUP_SCHED */
  6606. #ifdef CONFIG_CGROUP_SCHED
  6607. list_add(&init_task_group.list, &task_groups);
  6608. INIT_LIST_HEAD(&init_task_group.children);
  6609. #endif /* CONFIG_CGROUP_SCHED */
  6610. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6611. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6612. __alignof__(unsigned long));
  6613. #endif
  6614. for_each_possible_cpu(i) {
  6615. struct rq *rq;
  6616. rq = cpu_rq(i);
  6617. raw_spin_lock_init(&rq->lock);
  6618. rq->nr_running = 0;
  6619. rq->calc_load_active = 0;
  6620. rq->calc_load_update = jiffies + LOAD_FREQ;
  6621. init_cfs_rq(&rq->cfs, rq);
  6622. init_rt_rq(&rq->rt, rq);
  6623. #ifdef CONFIG_FAIR_GROUP_SCHED
  6624. init_task_group.shares = init_task_group_load;
  6625. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6626. #ifdef CONFIG_CGROUP_SCHED
  6627. /*
  6628. * How much cpu bandwidth does init_task_group get?
  6629. *
  6630. * In case of task-groups formed thr' the cgroup filesystem, it
  6631. * gets 100% of the cpu resources in the system. This overall
  6632. * system cpu resource is divided among the tasks of
  6633. * init_task_group and its child task-groups in a fair manner,
  6634. * based on each entity's (task or task-group's) weight
  6635. * (se->load.weight).
  6636. *
  6637. * In other words, if init_task_group has 10 tasks of weight
  6638. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6639. * then A0's share of the cpu resource is:
  6640. *
  6641. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6642. *
  6643. * We achieve this by letting init_task_group's tasks sit
  6644. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6645. */
  6646. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6647. #endif
  6648. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6649. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6650. #ifdef CONFIG_RT_GROUP_SCHED
  6651. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6652. #ifdef CONFIG_CGROUP_SCHED
  6653. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6654. #endif
  6655. #endif
  6656. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6657. rq->cpu_load[j] = 0;
  6658. rq->last_load_update_tick = jiffies;
  6659. #ifdef CONFIG_SMP
  6660. rq->sd = NULL;
  6661. rq->rd = NULL;
  6662. rq->cpu_power = SCHED_LOAD_SCALE;
  6663. rq->post_schedule = 0;
  6664. rq->active_balance = 0;
  6665. rq->next_balance = jiffies;
  6666. rq->push_cpu = 0;
  6667. rq->cpu = i;
  6668. rq->online = 0;
  6669. rq->idle_stamp = 0;
  6670. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6671. rq_attach_root(rq, &def_root_domain);
  6672. #ifdef CONFIG_NO_HZ
  6673. rq->nohz_balance_kick = 0;
  6674. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6675. #endif
  6676. #endif
  6677. init_rq_hrtick(rq);
  6678. atomic_set(&rq->nr_iowait, 0);
  6679. }
  6680. set_load_weight(&init_task);
  6681. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6682. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6683. #endif
  6684. #ifdef CONFIG_SMP
  6685. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6686. #endif
  6687. #ifdef CONFIG_RT_MUTEXES
  6688. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6689. #endif
  6690. /*
  6691. * The boot idle thread does lazy MMU switching as well:
  6692. */
  6693. atomic_inc(&init_mm.mm_count);
  6694. enter_lazy_tlb(&init_mm, current);
  6695. /*
  6696. * Make us the idle thread. Technically, schedule() should not be
  6697. * called from this thread, however somewhere below it might be,
  6698. * but because we are the idle thread, we just pick up running again
  6699. * when this runqueue becomes "idle".
  6700. */
  6701. init_idle(current, smp_processor_id());
  6702. calc_load_update = jiffies + LOAD_FREQ;
  6703. /*
  6704. * During early bootup we pretend to be a normal task:
  6705. */
  6706. current->sched_class = &fair_sched_class;
  6707. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6708. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6709. #ifdef CONFIG_SMP
  6710. #ifdef CONFIG_NO_HZ
  6711. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6712. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6713. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6714. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6715. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6716. #endif
  6717. /* May be allocated at isolcpus cmdline parse time */
  6718. if (cpu_isolated_map == NULL)
  6719. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6720. #endif /* SMP */
  6721. perf_event_init();
  6722. scheduler_running = 1;
  6723. }
  6724. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6725. static inline int preempt_count_equals(int preempt_offset)
  6726. {
  6727. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6728. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6729. }
  6730. void __might_sleep(const char *file, int line, int preempt_offset)
  6731. {
  6732. #ifdef in_atomic
  6733. static unsigned long prev_jiffy; /* ratelimiting */
  6734. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6735. system_state != SYSTEM_RUNNING || oops_in_progress)
  6736. return;
  6737. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6738. return;
  6739. prev_jiffy = jiffies;
  6740. printk(KERN_ERR
  6741. "BUG: sleeping function called from invalid context at %s:%d\n",
  6742. file, line);
  6743. printk(KERN_ERR
  6744. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6745. in_atomic(), irqs_disabled(),
  6746. current->pid, current->comm);
  6747. debug_show_held_locks(current);
  6748. if (irqs_disabled())
  6749. print_irqtrace_events(current);
  6750. dump_stack();
  6751. #endif
  6752. }
  6753. EXPORT_SYMBOL(__might_sleep);
  6754. #endif
  6755. #ifdef CONFIG_MAGIC_SYSRQ
  6756. static void normalize_task(struct rq *rq, struct task_struct *p)
  6757. {
  6758. int on_rq;
  6759. on_rq = p->se.on_rq;
  6760. if (on_rq)
  6761. deactivate_task(rq, p, 0);
  6762. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6763. if (on_rq) {
  6764. activate_task(rq, p, 0);
  6765. resched_task(rq->curr);
  6766. }
  6767. }
  6768. void normalize_rt_tasks(void)
  6769. {
  6770. struct task_struct *g, *p;
  6771. unsigned long flags;
  6772. struct rq *rq;
  6773. read_lock_irqsave(&tasklist_lock, flags);
  6774. do_each_thread(g, p) {
  6775. /*
  6776. * Only normalize user tasks:
  6777. */
  6778. if (!p->mm)
  6779. continue;
  6780. p->se.exec_start = 0;
  6781. #ifdef CONFIG_SCHEDSTATS
  6782. p->se.statistics.wait_start = 0;
  6783. p->se.statistics.sleep_start = 0;
  6784. p->se.statistics.block_start = 0;
  6785. #endif
  6786. if (!rt_task(p)) {
  6787. /*
  6788. * Renice negative nice level userspace
  6789. * tasks back to 0:
  6790. */
  6791. if (TASK_NICE(p) < 0 && p->mm)
  6792. set_user_nice(p, 0);
  6793. continue;
  6794. }
  6795. raw_spin_lock(&p->pi_lock);
  6796. rq = __task_rq_lock(p);
  6797. normalize_task(rq, p);
  6798. __task_rq_unlock(rq);
  6799. raw_spin_unlock(&p->pi_lock);
  6800. } while_each_thread(g, p);
  6801. read_unlock_irqrestore(&tasklist_lock, flags);
  6802. }
  6803. #endif /* CONFIG_MAGIC_SYSRQ */
  6804. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6805. /*
  6806. * These functions are only useful for the IA64 MCA handling, or kdb.
  6807. *
  6808. * They can only be called when the whole system has been
  6809. * stopped - every CPU needs to be quiescent, and no scheduling
  6810. * activity can take place. Using them for anything else would
  6811. * be a serious bug, and as a result, they aren't even visible
  6812. * under any other configuration.
  6813. */
  6814. /**
  6815. * curr_task - return the current task for a given cpu.
  6816. * @cpu: the processor in question.
  6817. *
  6818. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6819. */
  6820. struct task_struct *curr_task(int cpu)
  6821. {
  6822. return cpu_curr(cpu);
  6823. }
  6824. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6825. #ifdef CONFIG_IA64
  6826. /**
  6827. * set_curr_task - set the current task for a given cpu.
  6828. * @cpu: the processor in question.
  6829. * @p: the task pointer to set.
  6830. *
  6831. * Description: This function must only be used when non-maskable interrupts
  6832. * are serviced on a separate stack. It allows the architecture to switch the
  6833. * notion of the current task on a cpu in a non-blocking manner. This function
  6834. * must be called with all CPU's synchronized, and interrupts disabled, the
  6835. * and caller must save the original value of the current task (see
  6836. * curr_task() above) and restore that value before reenabling interrupts and
  6837. * re-starting the system.
  6838. *
  6839. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6840. */
  6841. void set_curr_task(int cpu, struct task_struct *p)
  6842. {
  6843. cpu_curr(cpu) = p;
  6844. }
  6845. #endif
  6846. #ifdef CONFIG_FAIR_GROUP_SCHED
  6847. static void free_fair_sched_group(struct task_group *tg)
  6848. {
  6849. int i;
  6850. for_each_possible_cpu(i) {
  6851. if (tg->cfs_rq)
  6852. kfree(tg->cfs_rq[i]);
  6853. if (tg->se)
  6854. kfree(tg->se[i]);
  6855. }
  6856. kfree(tg->cfs_rq);
  6857. kfree(tg->se);
  6858. }
  6859. static
  6860. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6861. {
  6862. struct cfs_rq *cfs_rq;
  6863. struct sched_entity *se;
  6864. struct rq *rq;
  6865. int i;
  6866. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6867. if (!tg->cfs_rq)
  6868. goto err;
  6869. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6870. if (!tg->se)
  6871. goto err;
  6872. tg->shares = NICE_0_LOAD;
  6873. for_each_possible_cpu(i) {
  6874. rq = cpu_rq(i);
  6875. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6876. GFP_KERNEL, cpu_to_node(i));
  6877. if (!cfs_rq)
  6878. goto err;
  6879. se = kzalloc_node(sizeof(struct sched_entity),
  6880. GFP_KERNEL, cpu_to_node(i));
  6881. if (!se)
  6882. goto err_free_rq;
  6883. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6884. }
  6885. return 1;
  6886. err_free_rq:
  6887. kfree(cfs_rq);
  6888. err:
  6889. return 0;
  6890. }
  6891. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6892. {
  6893. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6894. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6895. }
  6896. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6897. {
  6898. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6899. }
  6900. #else /* !CONFG_FAIR_GROUP_SCHED */
  6901. static inline void free_fair_sched_group(struct task_group *tg)
  6902. {
  6903. }
  6904. static inline
  6905. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6906. {
  6907. return 1;
  6908. }
  6909. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6910. {
  6911. }
  6912. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6913. {
  6914. }
  6915. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6916. #ifdef CONFIG_RT_GROUP_SCHED
  6917. static void free_rt_sched_group(struct task_group *tg)
  6918. {
  6919. int i;
  6920. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6921. for_each_possible_cpu(i) {
  6922. if (tg->rt_rq)
  6923. kfree(tg->rt_rq[i]);
  6924. if (tg->rt_se)
  6925. kfree(tg->rt_se[i]);
  6926. }
  6927. kfree(tg->rt_rq);
  6928. kfree(tg->rt_se);
  6929. }
  6930. static
  6931. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6932. {
  6933. struct rt_rq *rt_rq;
  6934. struct sched_rt_entity *rt_se;
  6935. struct rq *rq;
  6936. int i;
  6937. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6938. if (!tg->rt_rq)
  6939. goto err;
  6940. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6941. if (!tg->rt_se)
  6942. goto err;
  6943. init_rt_bandwidth(&tg->rt_bandwidth,
  6944. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6945. for_each_possible_cpu(i) {
  6946. rq = cpu_rq(i);
  6947. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6948. GFP_KERNEL, cpu_to_node(i));
  6949. if (!rt_rq)
  6950. goto err;
  6951. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6952. GFP_KERNEL, cpu_to_node(i));
  6953. if (!rt_se)
  6954. goto err_free_rq;
  6955. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6956. }
  6957. return 1;
  6958. err_free_rq:
  6959. kfree(rt_rq);
  6960. err:
  6961. return 0;
  6962. }
  6963. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6964. {
  6965. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6966. &cpu_rq(cpu)->leaf_rt_rq_list);
  6967. }
  6968. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6969. {
  6970. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6971. }
  6972. #else /* !CONFIG_RT_GROUP_SCHED */
  6973. static inline void free_rt_sched_group(struct task_group *tg)
  6974. {
  6975. }
  6976. static inline
  6977. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6978. {
  6979. return 1;
  6980. }
  6981. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6982. {
  6983. }
  6984. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6985. {
  6986. }
  6987. #endif /* CONFIG_RT_GROUP_SCHED */
  6988. #ifdef CONFIG_CGROUP_SCHED
  6989. static void free_sched_group(struct task_group *tg)
  6990. {
  6991. free_fair_sched_group(tg);
  6992. free_rt_sched_group(tg);
  6993. kfree(tg);
  6994. }
  6995. /* allocate runqueue etc for a new task group */
  6996. struct task_group *sched_create_group(struct task_group *parent)
  6997. {
  6998. struct task_group *tg;
  6999. unsigned long flags;
  7000. int i;
  7001. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7002. if (!tg)
  7003. return ERR_PTR(-ENOMEM);
  7004. if (!alloc_fair_sched_group(tg, parent))
  7005. goto err;
  7006. if (!alloc_rt_sched_group(tg, parent))
  7007. goto err;
  7008. spin_lock_irqsave(&task_group_lock, flags);
  7009. for_each_possible_cpu(i) {
  7010. register_fair_sched_group(tg, i);
  7011. register_rt_sched_group(tg, i);
  7012. }
  7013. list_add_rcu(&tg->list, &task_groups);
  7014. WARN_ON(!parent); /* root should already exist */
  7015. tg->parent = parent;
  7016. INIT_LIST_HEAD(&tg->children);
  7017. list_add_rcu(&tg->siblings, &parent->children);
  7018. spin_unlock_irqrestore(&task_group_lock, flags);
  7019. return tg;
  7020. err:
  7021. free_sched_group(tg);
  7022. return ERR_PTR(-ENOMEM);
  7023. }
  7024. /* rcu callback to free various structures associated with a task group */
  7025. static void free_sched_group_rcu(struct rcu_head *rhp)
  7026. {
  7027. /* now it should be safe to free those cfs_rqs */
  7028. free_sched_group(container_of(rhp, struct task_group, rcu));
  7029. }
  7030. /* Destroy runqueue etc associated with a task group */
  7031. void sched_destroy_group(struct task_group *tg)
  7032. {
  7033. unsigned long flags;
  7034. int i;
  7035. spin_lock_irqsave(&task_group_lock, flags);
  7036. for_each_possible_cpu(i) {
  7037. unregister_fair_sched_group(tg, i);
  7038. unregister_rt_sched_group(tg, i);
  7039. }
  7040. list_del_rcu(&tg->list);
  7041. list_del_rcu(&tg->siblings);
  7042. spin_unlock_irqrestore(&task_group_lock, flags);
  7043. /* wait for possible concurrent references to cfs_rqs complete */
  7044. call_rcu(&tg->rcu, free_sched_group_rcu);
  7045. }
  7046. /* change task's runqueue when it moves between groups.
  7047. * The caller of this function should have put the task in its new group
  7048. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7049. * reflect its new group.
  7050. */
  7051. void sched_move_task(struct task_struct *tsk)
  7052. {
  7053. int on_rq, running;
  7054. unsigned long flags;
  7055. struct rq *rq;
  7056. rq = task_rq_lock(tsk, &flags);
  7057. running = task_current(rq, tsk);
  7058. on_rq = tsk->se.on_rq;
  7059. if (on_rq)
  7060. dequeue_task(rq, tsk, 0);
  7061. if (unlikely(running))
  7062. tsk->sched_class->put_prev_task(rq, tsk);
  7063. set_task_rq(tsk, task_cpu(tsk));
  7064. #ifdef CONFIG_FAIR_GROUP_SCHED
  7065. if (tsk->sched_class->moved_group)
  7066. tsk->sched_class->moved_group(tsk, on_rq);
  7067. #endif
  7068. if (unlikely(running))
  7069. tsk->sched_class->set_curr_task(rq);
  7070. if (on_rq)
  7071. enqueue_task(rq, tsk, 0);
  7072. task_rq_unlock(rq, &flags);
  7073. }
  7074. #endif /* CONFIG_CGROUP_SCHED */
  7075. #ifdef CONFIG_FAIR_GROUP_SCHED
  7076. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7077. {
  7078. struct cfs_rq *cfs_rq = se->cfs_rq;
  7079. int on_rq;
  7080. on_rq = se->on_rq;
  7081. if (on_rq)
  7082. dequeue_entity(cfs_rq, se, 0);
  7083. se->load.weight = shares;
  7084. se->load.inv_weight = 0;
  7085. if (on_rq)
  7086. enqueue_entity(cfs_rq, se, 0);
  7087. }
  7088. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7089. {
  7090. struct cfs_rq *cfs_rq = se->cfs_rq;
  7091. struct rq *rq = cfs_rq->rq;
  7092. unsigned long flags;
  7093. raw_spin_lock_irqsave(&rq->lock, flags);
  7094. __set_se_shares(se, shares);
  7095. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7096. }
  7097. static DEFINE_MUTEX(shares_mutex);
  7098. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7099. {
  7100. int i;
  7101. unsigned long flags;
  7102. /*
  7103. * We can't change the weight of the root cgroup.
  7104. */
  7105. if (!tg->se[0])
  7106. return -EINVAL;
  7107. if (shares < MIN_SHARES)
  7108. shares = MIN_SHARES;
  7109. else if (shares > MAX_SHARES)
  7110. shares = MAX_SHARES;
  7111. mutex_lock(&shares_mutex);
  7112. if (tg->shares == shares)
  7113. goto done;
  7114. spin_lock_irqsave(&task_group_lock, flags);
  7115. for_each_possible_cpu(i)
  7116. unregister_fair_sched_group(tg, i);
  7117. list_del_rcu(&tg->siblings);
  7118. spin_unlock_irqrestore(&task_group_lock, flags);
  7119. /* wait for any ongoing reference to this group to finish */
  7120. synchronize_sched();
  7121. /*
  7122. * Now we are free to modify the group's share on each cpu
  7123. * w/o tripping rebalance_share or load_balance_fair.
  7124. */
  7125. tg->shares = shares;
  7126. for_each_possible_cpu(i) {
  7127. /*
  7128. * force a rebalance
  7129. */
  7130. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7131. set_se_shares(tg->se[i], shares);
  7132. }
  7133. /*
  7134. * Enable load balance activity on this group, by inserting it back on
  7135. * each cpu's rq->leaf_cfs_rq_list.
  7136. */
  7137. spin_lock_irqsave(&task_group_lock, flags);
  7138. for_each_possible_cpu(i)
  7139. register_fair_sched_group(tg, i);
  7140. list_add_rcu(&tg->siblings, &tg->parent->children);
  7141. spin_unlock_irqrestore(&task_group_lock, flags);
  7142. done:
  7143. mutex_unlock(&shares_mutex);
  7144. return 0;
  7145. }
  7146. unsigned long sched_group_shares(struct task_group *tg)
  7147. {
  7148. return tg->shares;
  7149. }
  7150. #endif
  7151. #ifdef CONFIG_RT_GROUP_SCHED
  7152. /*
  7153. * Ensure that the real time constraints are schedulable.
  7154. */
  7155. static DEFINE_MUTEX(rt_constraints_mutex);
  7156. static unsigned long to_ratio(u64 period, u64 runtime)
  7157. {
  7158. if (runtime == RUNTIME_INF)
  7159. return 1ULL << 20;
  7160. return div64_u64(runtime << 20, period);
  7161. }
  7162. /* Must be called with tasklist_lock held */
  7163. static inline int tg_has_rt_tasks(struct task_group *tg)
  7164. {
  7165. struct task_struct *g, *p;
  7166. do_each_thread(g, p) {
  7167. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7168. return 1;
  7169. } while_each_thread(g, p);
  7170. return 0;
  7171. }
  7172. struct rt_schedulable_data {
  7173. struct task_group *tg;
  7174. u64 rt_period;
  7175. u64 rt_runtime;
  7176. };
  7177. static int tg_schedulable(struct task_group *tg, void *data)
  7178. {
  7179. struct rt_schedulable_data *d = data;
  7180. struct task_group *child;
  7181. unsigned long total, sum = 0;
  7182. u64 period, runtime;
  7183. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7184. runtime = tg->rt_bandwidth.rt_runtime;
  7185. if (tg == d->tg) {
  7186. period = d->rt_period;
  7187. runtime = d->rt_runtime;
  7188. }
  7189. /*
  7190. * Cannot have more runtime than the period.
  7191. */
  7192. if (runtime > period && runtime != RUNTIME_INF)
  7193. return -EINVAL;
  7194. /*
  7195. * Ensure we don't starve existing RT tasks.
  7196. */
  7197. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7198. return -EBUSY;
  7199. total = to_ratio(period, runtime);
  7200. /*
  7201. * Nobody can have more than the global setting allows.
  7202. */
  7203. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7204. return -EINVAL;
  7205. /*
  7206. * The sum of our children's runtime should not exceed our own.
  7207. */
  7208. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7209. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7210. runtime = child->rt_bandwidth.rt_runtime;
  7211. if (child == d->tg) {
  7212. period = d->rt_period;
  7213. runtime = d->rt_runtime;
  7214. }
  7215. sum += to_ratio(period, runtime);
  7216. }
  7217. if (sum > total)
  7218. return -EINVAL;
  7219. return 0;
  7220. }
  7221. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7222. {
  7223. struct rt_schedulable_data data = {
  7224. .tg = tg,
  7225. .rt_period = period,
  7226. .rt_runtime = runtime,
  7227. };
  7228. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7229. }
  7230. static int tg_set_bandwidth(struct task_group *tg,
  7231. u64 rt_period, u64 rt_runtime)
  7232. {
  7233. int i, err = 0;
  7234. mutex_lock(&rt_constraints_mutex);
  7235. read_lock(&tasklist_lock);
  7236. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7237. if (err)
  7238. goto unlock;
  7239. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7240. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7241. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7242. for_each_possible_cpu(i) {
  7243. struct rt_rq *rt_rq = tg->rt_rq[i];
  7244. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7245. rt_rq->rt_runtime = rt_runtime;
  7246. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7247. }
  7248. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7249. unlock:
  7250. read_unlock(&tasklist_lock);
  7251. mutex_unlock(&rt_constraints_mutex);
  7252. return err;
  7253. }
  7254. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7255. {
  7256. u64 rt_runtime, rt_period;
  7257. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7258. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7259. if (rt_runtime_us < 0)
  7260. rt_runtime = RUNTIME_INF;
  7261. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7262. }
  7263. long sched_group_rt_runtime(struct task_group *tg)
  7264. {
  7265. u64 rt_runtime_us;
  7266. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7267. return -1;
  7268. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7269. do_div(rt_runtime_us, NSEC_PER_USEC);
  7270. return rt_runtime_us;
  7271. }
  7272. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7273. {
  7274. u64 rt_runtime, rt_period;
  7275. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7276. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7277. if (rt_period == 0)
  7278. return -EINVAL;
  7279. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7280. }
  7281. long sched_group_rt_period(struct task_group *tg)
  7282. {
  7283. u64 rt_period_us;
  7284. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7285. do_div(rt_period_us, NSEC_PER_USEC);
  7286. return rt_period_us;
  7287. }
  7288. static int sched_rt_global_constraints(void)
  7289. {
  7290. u64 runtime, period;
  7291. int ret = 0;
  7292. if (sysctl_sched_rt_period <= 0)
  7293. return -EINVAL;
  7294. runtime = global_rt_runtime();
  7295. period = global_rt_period();
  7296. /*
  7297. * Sanity check on the sysctl variables.
  7298. */
  7299. if (runtime > period && runtime != RUNTIME_INF)
  7300. return -EINVAL;
  7301. mutex_lock(&rt_constraints_mutex);
  7302. read_lock(&tasklist_lock);
  7303. ret = __rt_schedulable(NULL, 0, 0);
  7304. read_unlock(&tasklist_lock);
  7305. mutex_unlock(&rt_constraints_mutex);
  7306. return ret;
  7307. }
  7308. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7309. {
  7310. /* Don't accept realtime tasks when there is no way for them to run */
  7311. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7312. return 0;
  7313. return 1;
  7314. }
  7315. #else /* !CONFIG_RT_GROUP_SCHED */
  7316. static int sched_rt_global_constraints(void)
  7317. {
  7318. unsigned long flags;
  7319. int i;
  7320. if (sysctl_sched_rt_period <= 0)
  7321. return -EINVAL;
  7322. /*
  7323. * There's always some RT tasks in the root group
  7324. * -- migration, kstopmachine etc..
  7325. */
  7326. if (sysctl_sched_rt_runtime == 0)
  7327. return -EBUSY;
  7328. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7329. for_each_possible_cpu(i) {
  7330. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7331. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7332. rt_rq->rt_runtime = global_rt_runtime();
  7333. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7334. }
  7335. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7336. return 0;
  7337. }
  7338. #endif /* CONFIG_RT_GROUP_SCHED */
  7339. int sched_rt_handler(struct ctl_table *table, int write,
  7340. void __user *buffer, size_t *lenp,
  7341. loff_t *ppos)
  7342. {
  7343. int ret;
  7344. int old_period, old_runtime;
  7345. static DEFINE_MUTEX(mutex);
  7346. mutex_lock(&mutex);
  7347. old_period = sysctl_sched_rt_period;
  7348. old_runtime = sysctl_sched_rt_runtime;
  7349. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7350. if (!ret && write) {
  7351. ret = sched_rt_global_constraints();
  7352. if (ret) {
  7353. sysctl_sched_rt_period = old_period;
  7354. sysctl_sched_rt_runtime = old_runtime;
  7355. } else {
  7356. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7357. def_rt_bandwidth.rt_period =
  7358. ns_to_ktime(global_rt_period());
  7359. }
  7360. }
  7361. mutex_unlock(&mutex);
  7362. return ret;
  7363. }
  7364. #ifdef CONFIG_CGROUP_SCHED
  7365. /* return corresponding task_group object of a cgroup */
  7366. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7367. {
  7368. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7369. struct task_group, css);
  7370. }
  7371. static struct cgroup_subsys_state *
  7372. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7373. {
  7374. struct task_group *tg, *parent;
  7375. if (!cgrp->parent) {
  7376. /* This is early initialization for the top cgroup */
  7377. return &init_task_group.css;
  7378. }
  7379. parent = cgroup_tg(cgrp->parent);
  7380. tg = sched_create_group(parent);
  7381. if (IS_ERR(tg))
  7382. return ERR_PTR(-ENOMEM);
  7383. return &tg->css;
  7384. }
  7385. static void
  7386. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7387. {
  7388. struct task_group *tg = cgroup_tg(cgrp);
  7389. sched_destroy_group(tg);
  7390. }
  7391. static int
  7392. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7393. {
  7394. #ifdef CONFIG_RT_GROUP_SCHED
  7395. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7396. return -EINVAL;
  7397. #else
  7398. /* We don't support RT-tasks being in separate groups */
  7399. if (tsk->sched_class != &fair_sched_class)
  7400. return -EINVAL;
  7401. #endif
  7402. return 0;
  7403. }
  7404. static int
  7405. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7406. struct task_struct *tsk, bool threadgroup)
  7407. {
  7408. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7409. if (retval)
  7410. return retval;
  7411. if (threadgroup) {
  7412. struct task_struct *c;
  7413. rcu_read_lock();
  7414. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7415. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7416. if (retval) {
  7417. rcu_read_unlock();
  7418. return retval;
  7419. }
  7420. }
  7421. rcu_read_unlock();
  7422. }
  7423. return 0;
  7424. }
  7425. static void
  7426. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7427. struct cgroup *old_cont, struct task_struct *tsk,
  7428. bool threadgroup)
  7429. {
  7430. sched_move_task(tsk);
  7431. if (threadgroup) {
  7432. struct task_struct *c;
  7433. rcu_read_lock();
  7434. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7435. sched_move_task(c);
  7436. }
  7437. rcu_read_unlock();
  7438. }
  7439. }
  7440. #ifdef CONFIG_FAIR_GROUP_SCHED
  7441. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7442. u64 shareval)
  7443. {
  7444. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7445. }
  7446. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7447. {
  7448. struct task_group *tg = cgroup_tg(cgrp);
  7449. return (u64) tg->shares;
  7450. }
  7451. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7452. #ifdef CONFIG_RT_GROUP_SCHED
  7453. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7454. s64 val)
  7455. {
  7456. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7457. }
  7458. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7459. {
  7460. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7461. }
  7462. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7463. u64 rt_period_us)
  7464. {
  7465. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7466. }
  7467. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7468. {
  7469. return sched_group_rt_period(cgroup_tg(cgrp));
  7470. }
  7471. #endif /* CONFIG_RT_GROUP_SCHED */
  7472. static struct cftype cpu_files[] = {
  7473. #ifdef CONFIG_FAIR_GROUP_SCHED
  7474. {
  7475. .name = "shares",
  7476. .read_u64 = cpu_shares_read_u64,
  7477. .write_u64 = cpu_shares_write_u64,
  7478. },
  7479. #endif
  7480. #ifdef CONFIG_RT_GROUP_SCHED
  7481. {
  7482. .name = "rt_runtime_us",
  7483. .read_s64 = cpu_rt_runtime_read,
  7484. .write_s64 = cpu_rt_runtime_write,
  7485. },
  7486. {
  7487. .name = "rt_period_us",
  7488. .read_u64 = cpu_rt_period_read_uint,
  7489. .write_u64 = cpu_rt_period_write_uint,
  7490. },
  7491. #endif
  7492. };
  7493. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7494. {
  7495. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7496. }
  7497. struct cgroup_subsys cpu_cgroup_subsys = {
  7498. .name = "cpu",
  7499. .create = cpu_cgroup_create,
  7500. .destroy = cpu_cgroup_destroy,
  7501. .can_attach = cpu_cgroup_can_attach,
  7502. .attach = cpu_cgroup_attach,
  7503. .populate = cpu_cgroup_populate,
  7504. .subsys_id = cpu_cgroup_subsys_id,
  7505. .early_init = 1,
  7506. };
  7507. #endif /* CONFIG_CGROUP_SCHED */
  7508. #ifdef CONFIG_CGROUP_CPUACCT
  7509. /*
  7510. * CPU accounting code for task groups.
  7511. *
  7512. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7513. * (balbir@in.ibm.com).
  7514. */
  7515. /* track cpu usage of a group of tasks and its child groups */
  7516. struct cpuacct {
  7517. struct cgroup_subsys_state css;
  7518. /* cpuusage holds pointer to a u64-type object on every cpu */
  7519. u64 __percpu *cpuusage;
  7520. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7521. struct cpuacct *parent;
  7522. };
  7523. struct cgroup_subsys cpuacct_subsys;
  7524. /* return cpu accounting group corresponding to this container */
  7525. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7526. {
  7527. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7528. struct cpuacct, css);
  7529. }
  7530. /* return cpu accounting group to which this task belongs */
  7531. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7532. {
  7533. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7534. struct cpuacct, css);
  7535. }
  7536. /* create a new cpu accounting group */
  7537. static struct cgroup_subsys_state *cpuacct_create(
  7538. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7539. {
  7540. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7541. int i;
  7542. if (!ca)
  7543. goto out;
  7544. ca->cpuusage = alloc_percpu(u64);
  7545. if (!ca->cpuusage)
  7546. goto out_free_ca;
  7547. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7548. if (percpu_counter_init(&ca->cpustat[i], 0))
  7549. goto out_free_counters;
  7550. if (cgrp->parent)
  7551. ca->parent = cgroup_ca(cgrp->parent);
  7552. return &ca->css;
  7553. out_free_counters:
  7554. while (--i >= 0)
  7555. percpu_counter_destroy(&ca->cpustat[i]);
  7556. free_percpu(ca->cpuusage);
  7557. out_free_ca:
  7558. kfree(ca);
  7559. out:
  7560. return ERR_PTR(-ENOMEM);
  7561. }
  7562. /* destroy an existing cpu accounting group */
  7563. static void
  7564. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7565. {
  7566. struct cpuacct *ca = cgroup_ca(cgrp);
  7567. int i;
  7568. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7569. percpu_counter_destroy(&ca->cpustat[i]);
  7570. free_percpu(ca->cpuusage);
  7571. kfree(ca);
  7572. }
  7573. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7574. {
  7575. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7576. u64 data;
  7577. #ifndef CONFIG_64BIT
  7578. /*
  7579. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7580. */
  7581. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7582. data = *cpuusage;
  7583. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7584. #else
  7585. data = *cpuusage;
  7586. #endif
  7587. return data;
  7588. }
  7589. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7590. {
  7591. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7592. #ifndef CONFIG_64BIT
  7593. /*
  7594. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7595. */
  7596. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7597. *cpuusage = val;
  7598. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7599. #else
  7600. *cpuusage = val;
  7601. #endif
  7602. }
  7603. /* return total cpu usage (in nanoseconds) of a group */
  7604. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7605. {
  7606. struct cpuacct *ca = cgroup_ca(cgrp);
  7607. u64 totalcpuusage = 0;
  7608. int i;
  7609. for_each_present_cpu(i)
  7610. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7611. return totalcpuusage;
  7612. }
  7613. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7614. u64 reset)
  7615. {
  7616. struct cpuacct *ca = cgroup_ca(cgrp);
  7617. int err = 0;
  7618. int i;
  7619. if (reset) {
  7620. err = -EINVAL;
  7621. goto out;
  7622. }
  7623. for_each_present_cpu(i)
  7624. cpuacct_cpuusage_write(ca, i, 0);
  7625. out:
  7626. return err;
  7627. }
  7628. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7629. struct seq_file *m)
  7630. {
  7631. struct cpuacct *ca = cgroup_ca(cgroup);
  7632. u64 percpu;
  7633. int i;
  7634. for_each_present_cpu(i) {
  7635. percpu = cpuacct_cpuusage_read(ca, i);
  7636. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7637. }
  7638. seq_printf(m, "\n");
  7639. return 0;
  7640. }
  7641. static const char *cpuacct_stat_desc[] = {
  7642. [CPUACCT_STAT_USER] = "user",
  7643. [CPUACCT_STAT_SYSTEM] = "system",
  7644. };
  7645. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7646. struct cgroup_map_cb *cb)
  7647. {
  7648. struct cpuacct *ca = cgroup_ca(cgrp);
  7649. int i;
  7650. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7651. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7652. val = cputime64_to_clock_t(val);
  7653. cb->fill(cb, cpuacct_stat_desc[i], val);
  7654. }
  7655. return 0;
  7656. }
  7657. static struct cftype files[] = {
  7658. {
  7659. .name = "usage",
  7660. .read_u64 = cpuusage_read,
  7661. .write_u64 = cpuusage_write,
  7662. },
  7663. {
  7664. .name = "usage_percpu",
  7665. .read_seq_string = cpuacct_percpu_seq_read,
  7666. },
  7667. {
  7668. .name = "stat",
  7669. .read_map = cpuacct_stats_show,
  7670. },
  7671. };
  7672. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7673. {
  7674. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7675. }
  7676. /*
  7677. * charge this task's execution time to its accounting group.
  7678. *
  7679. * called with rq->lock held.
  7680. */
  7681. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7682. {
  7683. struct cpuacct *ca;
  7684. int cpu;
  7685. if (unlikely(!cpuacct_subsys.active))
  7686. return;
  7687. cpu = task_cpu(tsk);
  7688. rcu_read_lock();
  7689. ca = task_ca(tsk);
  7690. for (; ca; ca = ca->parent) {
  7691. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7692. *cpuusage += cputime;
  7693. }
  7694. rcu_read_unlock();
  7695. }
  7696. /*
  7697. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7698. * in cputime_t units. As a result, cpuacct_update_stats calls
  7699. * percpu_counter_add with values large enough to always overflow the
  7700. * per cpu batch limit causing bad SMP scalability.
  7701. *
  7702. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7703. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7704. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7705. */
  7706. #ifdef CONFIG_SMP
  7707. #define CPUACCT_BATCH \
  7708. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7709. #else
  7710. #define CPUACCT_BATCH 0
  7711. #endif
  7712. /*
  7713. * Charge the system/user time to the task's accounting group.
  7714. */
  7715. static void cpuacct_update_stats(struct task_struct *tsk,
  7716. enum cpuacct_stat_index idx, cputime_t val)
  7717. {
  7718. struct cpuacct *ca;
  7719. int batch = CPUACCT_BATCH;
  7720. if (unlikely(!cpuacct_subsys.active))
  7721. return;
  7722. rcu_read_lock();
  7723. ca = task_ca(tsk);
  7724. do {
  7725. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7726. ca = ca->parent;
  7727. } while (ca);
  7728. rcu_read_unlock();
  7729. }
  7730. struct cgroup_subsys cpuacct_subsys = {
  7731. .name = "cpuacct",
  7732. .create = cpuacct_create,
  7733. .destroy = cpuacct_destroy,
  7734. .populate = cpuacct_populate,
  7735. .subsys_id = cpuacct_subsys_id,
  7736. };
  7737. #endif /* CONFIG_CGROUP_CPUACCT */
  7738. #ifndef CONFIG_SMP
  7739. void synchronize_sched_expedited(void)
  7740. {
  7741. barrier();
  7742. }
  7743. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7744. #else /* #ifndef CONFIG_SMP */
  7745. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7746. static int synchronize_sched_expedited_cpu_stop(void *data)
  7747. {
  7748. /*
  7749. * There must be a full memory barrier on each affected CPU
  7750. * between the time that try_stop_cpus() is called and the
  7751. * time that it returns.
  7752. *
  7753. * In the current initial implementation of cpu_stop, the
  7754. * above condition is already met when the control reaches
  7755. * this point and the following smp_mb() is not strictly
  7756. * necessary. Do smp_mb() anyway for documentation and
  7757. * robustness against future implementation changes.
  7758. */
  7759. smp_mb(); /* See above comment block. */
  7760. return 0;
  7761. }
  7762. /*
  7763. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7764. * approach to force grace period to end quickly. This consumes
  7765. * significant time on all CPUs, and is thus not recommended for
  7766. * any sort of common-case code.
  7767. *
  7768. * Note that it is illegal to call this function while holding any
  7769. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7770. * observe this restriction will result in deadlock.
  7771. */
  7772. void synchronize_sched_expedited(void)
  7773. {
  7774. int snap, trycount = 0;
  7775. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7776. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7777. get_online_cpus();
  7778. while (try_stop_cpus(cpu_online_mask,
  7779. synchronize_sched_expedited_cpu_stop,
  7780. NULL) == -EAGAIN) {
  7781. put_online_cpus();
  7782. if (trycount++ < 10)
  7783. udelay(trycount * num_online_cpus());
  7784. else {
  7785. synchronize_sched();
  7786. return;
  7787. }
  7788. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7789. smp_mb(); /* ensure test happens before caller kfree */
  7790. return;
  7791. }
  7792. get_online_cpus();
  7793. }
  7794. atomic_inc(&synchronize_sched_expedited_count);
  7795. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7796. put_online_cpus();
  7797. }
  7798. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7799. #endif /* #else #ifndef CONFIG_SMP */