pid.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #define pid_hashfn(nr, ns) \
  39. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  40. static struct hlist_head *pid_hash;
  41. static unsigned int pidhash_shift = 4;
  42. struct pid init_struct_pid = INIT_STRUCT_PID;
  43. int pid_max = PID_MAX_DEFAULT;
  44. #define RESERVED_PIDS 300
  45. int pid_max_min = RESERVED_PIDS + 1;
  46. int pid_max_max = PID_MAX_LIMIT;
  47. #define BITS_PER_PAGE (PAGE_SIZE*8)
  48. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  49. static inline int mk_pid(struct pid_namespace *pid_ns,
  50. struct pidmap *map, int off)
  51. {
  52. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  53. }
  54. #define find_next_offset(map, off) \
  55. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  56. /*
  57. * PID-map pages start out as NULL, they get allocated upon
  58. * first use and are never deallocated. This way a low pid_max
  59. * value does not cause lots of bitmaps to be allocated, but
  60. * the scheme scales to up to 4 million PIDs, runtime.
  61. */
  62. struct pid_namespace init_pid_ns = {
  63. .kref = {
  64. .refcount = ATOMIC_INIT(2),
  65. },
  66. .pidmap = {
  67. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  68. },
  69. .last_pid = 0,
  70. .level = 0,
  71. .child_reaper = &init_task,
  72. };
  73. EXPORT_SYMBOL_GPL(init_pid_ns);
  74. int is_container_init(struct task_struct *tsk)
  75. {
  76. int ret = 0;
  77. struct pid *pid;
  78. rcu_read_lock();
  79. pid = task_pid(tsk);
  80. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  81. ret = 1;
  82. rcu_read_unlock();
  83. return ret;
  84. }
  85. EXPORT_SYMBOL(is_container_init);
  86. /*
  87. * Note: disable interrupts while the pidmap_lock is held as an
  88. * interrupt might come in and do read_lock(&tasklist_lock).
  89. *
  90. * If we don't disable interrupts there is a nasty deadlock between
  91. * detach_pid()->free_pid() and another cpu that does
  92. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  93. * read_lock(&tasklist_lock);
  94. *
  95. * After we clean up the tasklist_lock and know there are no
  96. * irq handlers that take it we can leave the interrupts enabled.
  97. * For now it is easier to be safe than to prove it can't happen.
  98. */
  99. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  100. static void free_pidmap(struct upid *upid)
  101. {
  102. int nr = upid->nr;
  103. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  104. int offset = nr & BITS_PER_PAGE_MASK;
  105. clear_bit(offset, map->page);
  106. atomic_inc(&map->nr_free);
  107. }
  108. /*
  109. * If we started walking pids at 'base', is 'a' seen before 'b'?
  110. */
  111. static int pid_before(int base, int a, int b)
  112. {
  113. /*
  114. * This is the same as saying
  115. *
  116. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  117. * and that mapping orders 'a' and 'b' with respect to 'base'.
  118. */
  119. return (unsigned)(a - base) < (unsigned)(b - base);
  120. }
  121. /*
  122. * We might be racing with someone else trying to set pid_ns->last_pid.
  123. * We want the winner to have the "later" value, because if the
  124. * "earlier" value prevails, then a pid may get reused immediately.
  125. *
  126. * Since pids rollover, it is not sufficient to just pick the bigger
  127. * value. We have to consider where we started counting from.
  128. *
  129. * 'base' is the value of pid_ns->last_pid that we observed when
  130. * we started looking for a pid.
  131. *
  132. * 'pid' is the pid that we eventually found.
  133. */
  134. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  135. {
  136. int prev;
  137. int last_write = base;
  138. do {
  139. prev = last_write;
  140. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  141. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  142. }
  143. static int alloc_pidmap(struct pid_namespace *pid_ns)
  144. {
  145. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  146. struct pidmap *map;
  147. pid = last + 1;
  148. if (pid >= pid_max)
  149. pid = RESERVED_PIDS;
  150. offset = pid & BITS_PER_PAGE_MASK;
  151. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  152. /*
  153. * If last_pid points into the middle of the map->page we
  154. * want to scan this bitmap block twice, the second time
  155. * we start with offset == 0 (or RESERVED_PIDS).
  156. */
  157. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  158. for (i = 0; i <= max_scan; ++i) {
  159. if (unlikely(!map->page)) {
  160. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  161. /*
  162. * Free the page if someone raced with us
  163. * installing it:
  164. */
  165. spin_lock_irq(&pidmap_lock);
  166. if (!map->page) {
  167. map->page = page;
  168. page = NULL;
  169. }
  170. spin_unlock_irq(&pidmap_lock);
  171. kfree(page);
  172. if (unlikely(!map->page))
  173. break;
  174. }
  175. if (likely(atomic_read(&map->nr_free))) {
  176. do {
  177. if (!test_and_set_bit(offset, map->page)) {
  178. atomic_dec(&map->nr_free);
  179. set_last_pid(pid_ns, last, pid);
  180. return pid;
  181. }
  182. offset = find_next_offset(map, offset);
  183. pid = mk_pid(pid_ns, map, offset);
  184. } while (offset < BITS_PER_PAGE && pid < pid_max);
  185. }
  186. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  187. ++map;
  188. offset = 0;
  189. } else {
  190. map = &pid_ns->pidmap[0];
  191. offset = RESERVED_PIDS;
  192. if (unlikely(last == offset))
  193. break;
  194. }
  195. pid = mk_pid(pid_ns, map, offset);
  196. }
  197. return -1;
  198. }
  199. int next_pidmap(struct pid_namespace *pid_ns, int last)
  200. {
  201. int offset;
  202. struct pidmap *map, *end;
  203. offset = (last + 1) & BITS_PER_PAGE_MASK;
  204. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  205. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  206. for (; map < end; map++, offset = 0) {
  207. if (unlikely(!map->page))
  208. continue;
  209. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  210. if (offset < BITS_PER_PAGE)
  211. return mk_pid(pid_ns, map, offset);
  212. }
  213. return -1;
  214. }
  215. void put_pid(struct pid *pid)
  216. {
  217. struct pid_namespace *ns;
  218. if (!pid)
  219. return;
  220. ns = pid->numbers[pid->level].ns;
  221. if ((atomic_read(&pid->count) == 1) ||
  222. atomic_dec_and_test(&pid->count)) {
  223. kmem_cache_free(ns->pid_cachep, pid);
  224. put_pid_ns(ns);
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(put_pid);
  228. static void delayed_put_pid(struct rcu_head *rhp)
  229. {
  230. struct pid *pid = container_of(rhp, struct pid, rcu);
  231. put_pid(pid);
  232. }
  233. void free_pid(struct pid *pid)
  234. {
  235. /* We can be called with write_lock_irq(&tasklist_lock) held */
  236. int i;
  237. unsigned long flags;
  238. spin_lock_irqsave(&pidmap_lock, flags);
  239. for (i = 0; i <= pid->level; i++)
  240. hlist_del_rcu(&pid->numbers[i].pid_chain);
  241. spin_unlock_irqrestore(&pidmap_lock, flags);
  242. for (i = 0; i <= pid->level; i++)
  243. free_pidmap(pid->numbers + i);
  244. call_rcu(&pid->rcu, delayed_put_pid);
  245. }
  246. struct pid *alloc_pid(struct pid_namespace *ns)
  247. {
  248. struct pid *pid;
  249. enum pid_type type;
  250. int i, nr;
  251. struct pid_namespace *tmp;
  252. struct upid *upid;
  253. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  254. if (!pid)
  255. goto out;
  256. tmp = ns;
  257. for (i = ns->level; i >= 0; i--) {
  258. nr = alloc_pidmap(tmp);
  259. if (nr < 0)
  260. goto out_free;
  261. pid->numbers[i].nr = nr;
  262. pid->numbers[i].ns = tmp;
  263. tmp = tmp->parent;
  264. }
  265. get_pid_ns(ns);
  266. pid->level = ns->level;
  267. atomic_set(&pid->count, 1);
  268. for (type = 0; type < PIDTYPE_MAX; ++type)
  269. INIT_HLIST_HEAD(&pid->tasks[type]);
  270. upid = pid->numbers + ns->level;
  271. spin_lock_irq(&pidmap_lock);
  272. for ( ; upid >= pid->numbers; --upid)
  273. hlist_add_head_rcu(&upid->pid_chain,
  274. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  275. spin_unlock_irq(&pidmap_lock);
  276. out:
  277. return pid;
  278. out_free:
  279. while (++i <= ns->level)
  280. free_pidmap(pid->numbers + i);
  281. kmem_cache_free(ns->pid_cachep, pid);
  282. pid = NULL;
  283. goto out;
  284. }
  285. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  286. {
  287. struct hlist_node *elem;
  288. struct upid *pnr;
  289. hlist_for_each_entry_rcu(pnr, elem,
  290. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  291. if (pnr->nr == nr && pnr->ns == ns)
  292. return container_of(pnr, struct pid,
  293. numbers[ns->level]);
  294. return NULL;
  295. }
  296. EXPORT_SYMBOL_GPL(find_pid_ns);
  297. struct pid *find_vpid(int nr)
  298. {
  299. return find_pid_ns(nr, current->nsproxy->pid_ns);
  300. }
  301. EXPORT_SYMBOL_GPL(find_vpid);
  302. /*
  303. * attach_pid() must be called with the tasklist_lock write-held.
  304. */
  305. void attach_pid(struct task_struct *task, enum pid_type type,
  306. struct pid *pid)
  307. {
  308. struct pid_link *link;
  309. link = &task->pids[type];
  310. link->pid = pid;
  311. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  312. }
  313. static void __change_pid(struct task_struct *task, enum pid_type type,
  314. struct pid *new)
  315. {
  316. struct pid_link *link;
  317. struct pid *pid;
  318. int tmp;
  319. link = &task->pids[type];
  320. pid = link->pid;
  321. hlist_del_rcu(&link->node);
  322. link->pid = new;
  323. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  324. if (!hlist_empty(&pid->tasks[tmp]))
  325. return;
  326. free_pid(pid);
  327. }
  328. void detach_pid(struct task_struct *task, enum pid_type type)
  329. {
  330. __change_pid(task, type, NULL);
  331. }
  332. void change_pid(struct task_struct *task, enum pid_type type,
  333. struct pid *pid)
  334. {
  335. __change_pid(task, type, pid);
  336. attach_pid(task, type, pid);
  337. }
  338. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  339. void transfer_pid(struct task_struct *old, struct task_struct *new,
  340. enum pid_type type)
  341. {
  342. new->pids[type].pid = old->pids[type].pid;
  343. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  344. }
  345. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  346. {
  347. struct task_struct *result = NULL;
  348. if (pid) {
  349. struct hlist_node *first;
  350. first = rcu_dereference_check(pid->tasks[type].first,
  351. rcu_read_lock_held() ||
  352. lockdep_tasklist_lock_is_held());
  353. if (first)
  354. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  355. }
  356. return result;
  357. }
  358. EXPORT_SYMBOL(pid_task);
  359. /*
  360. * Must be called under rcu_read_lock().
  361. */
  362. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  363. {
  364. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  365. }
  366. struct task_struct *find_task_by_vpid(pid_t vnr)
  367. {
  368. return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
  369. }
  370. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  371. {
  372. struct pid *pid;
  373. rcu_read_lock();
  374. if (type != PIDTYPE_PID)
  375. task = task->group_leader;
  376. pid = get_pid(task->pids[type].pid);
  377. rcu_read_unlock();
  378. return pid;
  379. }
  380. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  381. {
  382. struct task_struct *result;
  383. rcu_read_lock();
  384. result = pid_task(pid, type);
  385. if (result)
  386. get_task_struct(result);
  387. rcu_read_unlock();
  388. return result;
  389. }
  390. struct pid *find_get_pid(pid_t nr)
  391. {
  392. struct pid *pid;
  393. rcu_read_lock();
  394. pid = get_pid(find_vpid(nr));
  395. rcu_read_unlock();
  396. return pid;
  397. }
  398. EXPORT_SYMBOL_GPL(find_get_pid);
  399. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  400. {
  401. struct upid *upid;
  402. pid_t nr = 0;
  403. if (pid && ns->level <= pid->level) {
  404. upid = &pid->numbers[ns->level];
  405. if (upid->ns == ns)
  406. nr = upid->nr;
  407. }
  408. return nr;
  409. }
  410. pid_t pid_vnr(struct pid *pid)
  411. {
  412. return pid_nr_ns(pid, current->nsproxy->pid_ns);
  413. }
  414. EXPORT_SYMBOL_GPL(pid_vnr);
  415. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  416. struct pid_namespace *ns)
  417. {
  418. pid_t nr = 0;
  419. rcu_read_lock();
  420. if (!ns)
  421. ns = current->nsproxy->pid_ns;
  422. if (likely(pid_alive(task))) {
  423. if (type != PIDTYPE_PID)
  424. task = task->group_leader;
  425. nr = pid_nr_ns(task->pids[type].pid, ns);
  426. }
  427. rcu_read_unlock();
  428. return nr;
  429. }
  430. EXPORT_SYMBOL(__task_pid_nr_ns);
  431. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  432. {
  433. return pid_nr_ns(task_tgid(tsk), ns);
  434. }
  435. EXPORT_SYMBOL(task_tgid_nr_ns);
  436. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  437. {
  438. return ns_of_pid(task_pid(tsk));
  439. }
  440. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  441. /*
  442. * Used by proc to find the first pid that is greater than or equal to nr.
  443. *
  444. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  445. */
  446. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  447. {
  448. struct pid *pid;
  449. do {
  450. pid = find_pid_ns(nr, ns);
  451. if (pid)
  452. break;
  453. nr = next_pidmap(ns, nr);
  454. } while (nr > 0);
  455. return pid;
  456. }
  457. /*
  458. * The pid hash table is scaled according to the amount of memory in the
  459. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  460. * more.
  461. */
  462. void __init pidhash_init(void)
  463. {
  464. int i, pidhash_size;
  465. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  466. HASH_EARLY | HASH_SMALL,
  467. &pidhash_shift, NULL, 4096);
  468. pidhash_size = 1 << pidhash_shift;
  469. for (i = 0; i < pidhash_size; i++)
  470. INIT_HLIST_HEAD(&pid_hash[i]);
  471. }
  472. void __init pidmap_init(void)
  473. {
  474. /* bump default and minimum pid_max based on number of cpus */
  475. pid_max = min(pid_max_max, max_t(int, pid_max,
  476. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  477. pid_max_min = max_t(int, pid_max_min,
  478. PIDS_PER_CPU_MIN * num_possible_cpus());
  479. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  480. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  481. /* Reserve PID 0. We never call free_pidmap(0) */
  482. set_bit(0, init_pid_ns.pidmap[0].page);
  483. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  484. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  485. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  486. }