task_nommu.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. #include <linux/mm.h>
  2. #include <linux/file.h>
  3. #include <linux/fdtable.h>
  4. #include <linux/fs_struct.h>
  5. #include <linux/mount.h>
  6. #include <linux/ptrace.h>
  7. #include <linux/slab.h>
  8. #include <linux/seq_file.h>
  9. #include "internal.h"
  10. /*
  11. * Logic: we've got two memory sums for each process, "shared", and
  12. * "non-shared". Shared memory may get counted more than once, for
  13. * each process that owns it. Non-shared memory is counted
  14. * accurately.
  15. */
  16. void task_mem(struct seq_file *m, struct mm_struct *mm)
  17. {
  18. struct vm_area_struct *vma;
  19. struct vm_region *region;
  20. struct rb_node *p;
  21. unsigned long bytes = 0, sbytes = 0, slack = 0, size;
  22. down_read(&mm->mmap_sem);
  23. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  24. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  25. bytes += kobjsize(vma);
  26. region = vma->vm_region;
  27. if (region) {
  28. size = kobjsize(region);
  29. size += region->vm_end - region->vm_start;
  30. } else {
  31. size = vma->vm_end - vma->vm_start;
  32. }
  33. if (atomic_read(&mm->mm_count) > 1 ||
  34. vma->vm_flags & VM_MAYSHARE) {
  35. sbytes += size;
  36. } else {
  37. bytes += size;
  38. if (region)
  39. slack = region->vm_end - vma->vm_end;
  40. }
  41. }
  42. if (atomic_read(&mm->mm_count) > 1)
  43. sbytes += kobjsize(mm);
  44. else
  45. bytes += kobjsize(mm);
  46. if (current->fs && current->fs->users > 1)
  47. sbytes += kobjsize(current->fs);
  48. else
  49. bytes += kobjsize(current->fs);
  50. if (current->files && atomic_read(&current->files->count) > 1)
  51. sbytes += kobjsize(current->files);
  52. else
  53. bytes += kobjsize(current->files);
  54. if (current->sighand && atomic_read(&current->sighand->count) > 1)
  55. sbytes += kobjsize(current->sighand);
  56. else
  57. bytes += kobjsize(current->sighand);
  58. bytes += kobjsize(current); /* includes kernel stack */
  59. seq_printf(m,
  60. "Mem:\t%8lu bytes\n"
  61. "Slack:\t%8lu bytes\n"
  62. "Shared:\t%8lu bytes\n",
  63. bytes, slack, sbytes);
  64. up_read(&mm->mmap_sem);
  65. }
  66. unsigned long task_vsize(struct mm_struct *mm)
  67. {
  68. struct vm_area_struct *vma;
  69. struct rb_node *p;
  70. unsigned long vsize = 0;
  71. down_read(&mm->mmap_sem);
  72. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  73. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  74. vsize += vma->vm_end - vma->vm_start;
  75. }
  76. up_read(&mm->mmap_sem);
  77. return vsize;
  78. }
  79. int task_statm(struct mm_struct *mm, int *shared, int *text,
  80. int *data, int *resident)
  81. {
  82. struct vm_area_struct *vma;
  83. struct vm_region *region;
  84. struct rb_node *p;
  85. int size = kobjsize(mm);
  86. down_read(&mm->mmap_sem);
  87. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  88. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  89. size += kobjsize(vma);
  90. region = vma->vm_region;
  91. if (region) {
  92. size += kobjsize(region);
  93. size += region->vm_end - region->vm_start;
  94. }
  95. }
  96. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  97. >> PAGE_SHIFT;
  98. *data = (PAGE_ALIGN(mm->start_stack) - (mm->start_data & PAGE_MASK))
  99. >> PAGE_SHIFT;
  100. up_read(&mm->mmap_sem);
  101. size >>= PAGE_SHIFT;
  102. size += *text + *data;
  103. *resident = size;
  104. return size;
  105. }
  106. static void pad_len_spaces(struct seq_file *m, int len)
  107. {
  108. len = 25 + sizeof(void*) * 6 - len;
  109. if (len < 1)
  110. len = 1;
  111. seq_printf(m, "%*c", len, ' ');
  112. }
  113. /*
  114. * display a single VMA to a sequenced file
  115. */
  116. static int nommu_vma_show(struct seq_file *m, struct vm_area_struct *vma)
  117. {
  118. struct mm_struct *mm = vma->vm_mm;
  119. unsigned long ino = 0;
  120. struct file *file;
  121. dev_t dev = 0;
  122. int flags, len;
  123. unsigned long long pgoff = 0;
  124. flags = vma->vm_flags;
  125. file = vma->vm_file;
  126. if (file) {
  127. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  128. dev = inode->i_sb->s_dev;
  129. ino = inode->i_ino;
  130. pgoff = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
  131. }
  132. seq_printf(m,
  133. "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  134. vma->vm_start,
  135. vma->vm_end,
  136. flags & VM_READ ? 'r' : '-',
  137. flags & VM_WRITE ? 'w' : '-',
  138. flags & VM_EXEC ? 'x' : '-',
  139. flags & VM_MAYSHARE ? flags & VM_SHARED ? 'S' : 's' : 'p',
  140. pgoff,
  141. MAJOR(dev), MINOR(dev), ino, &len);
  142. if (file) {
  143. pad_len_spaces(m, len);
  144. seq_path(m, &file->f_path, "");
  145. } else if (mm) {
  146. if (vma->vm_start <= mm->start_stack &&
  147. vma->vm_end >= mm->start_stack) {
  148. pad_len_spaces(m, len);
  149. seq_puts(m, "[stack]");
  150. }
  151. }
  152. seq_putc(m, '\n');
  153. return 0;
  154. }
  155. /*
  156. * display mapping lines for a particular process's /proc/pid/maps
  157. */
  158. static int show_map(struct seq_file *m, void *_p)
  159. {
  160. struct rb_node *p = _p;
  161. return nommu_vma_show(m, rb_entry(p, struct vm_area_struct, vm_rb));
  162. }
  163. static void *m_start(struct seq_file *m, loff_t *pos)
  164. {
  165. struct proc_maps_private *priv = m->private;
  166. struct mm_struct *mm;
  167. struct rb_node *p;
  168. loff_t n = *pos;
  169. /* pin the task and mm whilst we play with them */
  170. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  171. if (!priv->task)
  172. return NULL;
  173. mm = mm_for_maps(priv->task);
  174. if (!mm) {
  175. put_task_struct(priv->task);
  176. priv->task = NULL;
  177. return NULL;
  178. }
  179. down_read(&mm->mmap_sem);
  180. /* start from the Nth VMA */
  181. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p))
  182. if (n-- == 0)
  183. return p;
  184. return NULL;
  185. }
  186. static void m_stop(struct seq_file *m, void *_vml)
  187. {
  188. struct proc_maps_private *priv = m->private;
  189. if (priv->task) {
  190. struct mm_struct *mm = priv->task->mm;
  191. up_read(&mm->mmap_sem);
  192. mmput(mm);
  193. put_task_struct(priv->task);
  194. }
  195. }
  196. static void *m_next(struct seq_file *m, void *_p, loff_t *pos)
  197. {
  198. struct rb_node *p = _p;
  199. (*pos)++;
  200. return p ? rb_next(p) : NULL;
  201. }
  202. static const struct seq_operations proc_pid_maps_ops = {
  203. .start = m_start,
  204. .next = m_next,
  205. .stop = m_stop,
  206. .show = show_map
  207. };
  208. static int maps_open(struct inode *inode, struct file *file)
  209. {
  210. struct proc_maps_private *priv;
  211. int ret = -ENOMEM;
  212. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  213. if (priv) {
  214. priv->pid = proc_pid(inode);
  215. ret = seq_open(file, &proc_pid_maps_ops);
  216. if (!ret) {
  217. struct seq_file *m = file->private_data;
  218. m->private = priv;
  219. } else {
  220. kfree(priv);
  221. }
  222. }
  223. return ret;
  224. }
  225. const struct file_operations proc_maps_operations = {
  226. .open = maps_open,
  227. .read = seq_read,
  228. .llseek = seq_lseek,
  229. .release = seq_release_private,
  230. };