segment.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  99. int);
  100. #define nilfs_cnt32_gt(a, b) \
  101. (typecheck(__u32, a) && typecheck(__u32, b) && \
  102. ((__s32)(b) - (__s32)(a) < 0))
  103. #define nilfs_cnt32_ge(a, b) \
  104. (typecheck(__u32, a) && typecheck(__u32, b) && \
  105. ((__s32)(a) - (__s32)(b) >= 0))
  106. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  107. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  108. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  109. {
  110. struct nilfs_transaction_info *cur_ti = current->journal_info;
  111. void *save = NULL;
  112. if (cur_ti) {
  113. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  114. return ++cur_ti->ti_count;
  115. else {
  116. /*
  117. * If journal_info field is occupied by other FS,
  118. * it is saved and will be restored on
  119. * nilfs_transaction_commit().
  120. */
  121. printk(KERN_WARNING
  122. "NILFS warning: journal info from a different "
  123. "FS\n");
  124. save = current->journal_info;
  125. }
  126. }
  127. if (!ti) {
  128. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  129. if (!ti)
  130. return -ENOMEM;
  131. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  132. } else {
  133. ti->ti_flags = 0;
  134. }
  135. ti->ti_count = 0;
  136. ti->ti_save = save;
  137. ti->ti_magic = NILFS_TI_MAGIC;
  138. current->journal_info = ti;
  139. return 0;
  140. }
  141. /**
  142. * nilfs_transaction_begin - start indivisible file operations.
  143. * @sb: super block
  144. * @ti: nilfs_transaction_info
  145. * @vacancy_check: flags for vacancy rate checks
  146. *
  147. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  148. * the segment semaphore, to make a segment construction and write tasks
  149. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  150. * The region enclosed by these two functions can be nested. To avoid a
  151. * deadlock, the semaphore is only acquired or released in the outermost call.
  152. *
  153. * This function allocates a nilfs_transaction_info struct to keep context
  154. * information on it. It is initialized and hooked onto the current task in
  155. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  156. * instead; otherwise a new struct is assigned from a slab.
  157. *
  158. * When @vacancy_check flag is set, this function will check the amount of
  159. * free space, and will wait for the GC to reclaim disk space if low capacity.
  160. *
  161. * Return Value: On success, 0 is returned. On error, one of the following
  162. * negative error code is returned.
  163. *
  164. * %-ENOMEM - Insufficient memory available.
  165. *
  166. * %-ENOSPC - No space left on device
  167. */
  168. int nilfs_transaction_begin(struct super_block *sb,
  169. struct nilfs_transaction_info *ti,
  170. int vacancy_check)
  171. {
  172. struct nilfs_sb_info *sbi;
  173. struct the_nilfs *nilfs;
  174. int ret = nilfs_prepare_segment_lock(ti);
  175. if (unlikely(ret < 0))
  176. return ret;
  177. if (ret > 0)
  178. return 0;
  179. sbi = NILFS_SB(sb);
  180. nilfs = sbi->s_nilfs;
  181. down_read(&nilfs->ns_segctor_sem);
  182. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  183. up_read(&nilfs->ns_segctor_sem);
  184. ret = -ENOSPC;
  185. goto failed;
  186. }
  187. return 0;
  188. failed:
  189. ti = current->journal_info;
  190. current->journal_info = ti->ti_save;
  191. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  192. kmem_cache_free(nilfs_transaction_cachep, ti);
  193. return ret;
  194. }
  195. /**
  196. * nilfs_transaction_commit - commit indivisible file operations.
  197. * @sb: super block
  198. *
  199. * nilfs_transaction_commit() releases the read semaphore which is
  200. * acquired by nilfs_transaction_begin(). This is only performed
  201. * in outermost call of this function. If a commit flag is set,
  202. * nilfs_transaction_commit() sets a timer to start the segment
  203. * constructor. If a sync flag is set, it starts construction
  204. * directly.
  205. */
  206. int nilfs_transaction_commit(struct super_block *sb)
  207. {
  208. struct nilfs_transaction_info *ti = current->journal_info;
  209. struct nilfs_sb_info *sbi;
  210. struct nilfs_sc_info *sci;
  211. int err = 0;
  212. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  213. ti->ti_flags |= NILFS_TI_COMMIT;
  214. if (ti->ti_count > 0) {
  215. ti->ti_count--;
  216. return 0;
  217. }
  218. sbi = NILFS_SB(sb);
  219. sci = NILFS_SC(sbi);
  220. if (sci != NULL) {
  221. if (ti->ti_flags & NILFS_TI_COMMIT)
  222. nilfs_segctor_start_timer(sci);
  223. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  224. sci->sc_watermark)
  225. nilfs_segctor_do_flush(sci, 0);
  226. }
  227. up_read(&sbi->s_nilfs->ns_segctor_sem);
  228. current->journal_info = ti->ti_save;
  229. if (ti->ti_flags & NILFS_TI_SYNC)
  230. err = nilfs_construct_segment(sb);
  231. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  232. kmem_cache_free(nilfs_transaction_cachep, ti);
  233. return err;
  234. }
  235. void nilfs_transaction_abort(struct super_block *sb)
  236. {
  237. struct nilfs_transaction_info *ti = current->journal_info;
  238. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  239. if (ti->ti_count > 0) {
  240. ti->ti_count--;
  241. return;
  242. }
  243. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  244. current->journal_info = ti->ti_save;
  245. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  246. kmem_cache_free(nilfs_transaction_cachep, ti);
  247. }
  248. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  249. {
  250. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  251. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  252. struct the_nilfs *nilfs = sbi->s_nilfs;
  253. if (!sci || !sci->sc_flush_request)
  254. return;
  255. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  256. up_read(&nilfs->ns_segctor_sem);
  257. down_write(&nilfs->ns_segctor_sem);
  258. if (sci->sc_flush_request &&
  259. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  260. struct nilfs_transaction_info *ti = current->journal_info;
  261. ti->ti_flags |= NILFS_TI_WRITER;
  262. nilfs_segctor_do_immediate_flush(sci);
  263. ti->ti_flags &= ~NILFS_TI_WRITER;
  264. }
  265. downgrade_write(&nilfs->ns_segctor_sem);
  266. }
  267. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  268. struct nilfs_transaction_info *ti,
  269. int gcflag)
  270. {
  271. struct nilfs_transaction_info *cur_ti = current->journal_info;
  272. WARN_ON(cur_ti);
  273. ti->ti_flags = NILFS_TI_WRITER;
  274. ti->ti_count = 0;
  275. ti->ti_save = cur_ti;
  276. ti->ti_magic = NILFS_TI_MAGIC;
  277. INIT_LIST_HEAD(&ti->ti_garbage);
  278. current->journal_info = ti;
  279. for (;;) {
  280. down_write(&sbi->s_nilfs->ns_segctor_sem);
  281. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  282. break;
  283. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  284. up_write(&sbi->s_nilfs->ns_segctor_sem);
  285. yield();
  286. }
  287. if (gcflag)
  288. ti->ti_flags |= NILFS_TI_GC;
  289. }
  290. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  291. {
  292. struct nilfs_transaction_info *ti = current->journal_info;
  293. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  294. BUG_ON(ti->ti_count > 0);
  295. up_write(&sbi->s_nilfs->ns_segctor_sem);
  296. current->journal_info = ti->ti_save;
  297. if (!list_empty(&ti->ti_garbage))
  298. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  299. }
  300. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  301. struct nilfs_segsum_pointer *ssp,
  302. unsigned bytes)
  303. {
  304. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  305. unsigned blocksize = sci->sc_super->s_blocksize;
  306. void *p;
  307. if (unlikely(ssp->offset + bytes > blocksize)) {
  308. ssp->offset = 0;
  309. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  310. &segbuf->sb_segsum_buffers));
  311. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  312. }
  313. p = ssp->bh->b_data + ssp->offset;
  314. ssp->offset += bytes;
  315. return p;
  316. }
  317. /**
  318. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  319. * @sci: nilfs_sc_info
  320. */
  321. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  322. {
  323. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  324. struct buffer_head *sumbh;
  325. unsigned sumbytes;
  326. unsigned flags = 0;
  327. int err;
  328. if (nilfs_doing_gc())
  329. flags = NILFS_SS_GC;
  330. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime,
  331. sci->sc_sbi->s_nilfs->ns_cno);
  332. if (unlikely(err))
  333. return err;
  334. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  335. sumbytes = segbuf->sb_sum.sumbytes;
  336. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  337. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  338. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  339. return 0;
  340. }
  341. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  342. {
  343. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  344. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  345. return -E2BIG; /* The current segment is filled up
  346. (internal code) */
  347. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  348. return nilfs_segctor_reset_segment_buffer(sci);
  349. }
  350. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  351. {
  352. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  353. int err;
  354. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  355. err = nilfs_segctor_feed_segment(sci);
  356. if (err)
  357. return err;
  358. segbuf = sci->sc_curseg;
  359. }
  360. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  361. if (likely(!err))
  362. segbuf->sb_sum.flags |= NILFS_SS_SR;
  363. return err;
  364. }
  365. /*
  366. * Functions for making segment summary and payloads
  367. */
  368. static int nilfs_segctor_segsum_block_required(
  369. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  370. unsigned binfo_size)
  371. {
  372. unsigned blocksize = sci->sc_super->s_blocksize;
  373. /* Size of finfo and binfo is enough small against blocksize */
  374. return ssp->offset + binfo_size +
  375. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  376. blocksize;
  377. }
  378. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  379. struct inode *inode)
  380. {
  381. sci->sc_curseg->sb_sum.nfinfo++;
  382. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  383. nilfs_segctor_map_segsum_entry(
  384. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  385. if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  386. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  387. /* skip finfo */
  388. }
  389. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  390. struct inode *inode)
  391. {
  392. struct nilfs_finfo *finfo;
  393. struct nilfs_inode_info *ii;
  394. struct nilfs_segment_buffer *segbuf;
  395. if (sci->sc_blk_cnt == 0)
  396. return;
  397. ii = NILFS_I(inode);
  398. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  399. sizeof(*finfo));
  400. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  401. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  402. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  403. finfo->fi_cno = cpu_to_le64(ii->i_cno);
  404. segbuf = sci->sc_curseg;
  405. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  406. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  407. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  408. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  409. }
  410. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  411. struct buffer_head *bh,
  412. struct inode *inode,
  413. unsigned binfo_size)
  414. {
  415. struct nilfs_segment_buffer *segbuf;
  416. int required, err = 0;
  417. retry:
  418. segbuf = sci->sc_curseg;
  419. required = nilfs_segctor_segsum_block_required(
  420. sci, &sci->sc_binfo_ptr, binfo_size);
  421. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  422. nilfs_segctor_end_finfo(sci, inode);
  423. err = nilfs_segctor_feed_segment(sci);
  424. if (err)
  425. return err;
  426. goto retry;
  427. }
  428. if (unlikely(required)) {
  429. err = nilfs_segbuf_extend_segsum(segbuf);
  430. if (unlikely(err))
  431. goto failed;
  432. }
  433. if (sci->sc_blk_cnt == 0)
  434. nilfs_segctor_begin_finfo(sci, inode);
  435. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  436. /* Substitution to vblocknr is delayed until update_blocknr() */
  437. nilfs_segbuf_add_file_buffer(segbuf, bh);
  438. sci->sc_blk_cnt++;
  439. failed:
  440. return err;
  441. }
  442. static int nilfs_handle_bmap_error(int err, const char *fname,
  443. struct inode *inode, struct super_block *sb)
  444. {
  445. if (err == -EINVAL) {
  446. nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
  447. inode->i_ino);
  448. err = -EIO;
  449. }
  450. return err;
  451. }
  452. /*
  453. * Callback functions that enumerate, mark, and collect dirty blocks
  454. */
  455. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  456. struct buffer_head *bh, struct inode *inode)
  457. {
  458. int err;
  459. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  460. if (unlikely(err < 0))
  461. return nilfs_handle_bmap_error(err, __func__, inode,
  462. sci->sc_super);
  463. err = nilfs_segctor_add_file_block(sci, bh, inode,
  464. sizeof(struct nilfs_binfo_v));
  465. if (!err)
  466. sci->sc_datablk_cnt++;
  467. return err;
  468. }
  469. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  470. struct buffer_head *bh,
  471. struct inode *inode)
  472. {
  473. int err;
  474. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  475. if (unlikely(err < 0))
  476. return nilfs_handle_bmap_error(err, __func__, inode,
  477. sci->sc_super);
  478. return 0;
  479. }
  480. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  481. struct buffer_head *bh,
  482. struct inode *inode)
  483. {
  484. WARN_ON(!buffer_dirty(bh));
  485. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  486. }
  487. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  488. struct nilfs_segsum_pointer *ssp,
  489. union nilfs_binfo *binfo)
  490. {
  491. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  492. sci, ssp, sizeof(*binfo_v));
  493. *binfo_v = binfo->bi_v;
  494. }
  495. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  496. struct nilfs_segsum_pointer *ssp,
  497. union nilfs_binfo *binfo)
  498. {
  499. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  500. sci, ssp, sizeof(*vblocknr));
  501. *vblocknr = binfo->bi_v.bi_vblocknr;
  502. }
  503. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  504. .collect_data = nilfs_collect_file_data,
  505. .collect_node = nilfs_collect_file_node,
  506. .collect_bmap = nilfs_collect_file_bmap,
  507. .write_data_binfo = nilfs_write_file_data_binfo,
  508. .write_node_binfo = nilfs_write_file_node_binfo,
  509. };
  510. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  511. struct buffer_head *bh, struct inode *inode)
  512. {
  513. int err;
  514. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  515. if (unlikely(err < 0))
  516. return nilfs_handle_bmap_error(err, __func__, inode,
  517. sci->sc_super);
  518. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  519. if (!err)
  520. sci->sc_datablk_cnt++;
  521. return err;
  522. }
  523. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  524. struct buffer_head *bh, struct inode *inode)
  525. {
  526. WARN_ON(!buffer_dirty(bh));
  527. return nilfs_segctor_add_file_block(sci, bh, inode,
  528. sizeof(struct nilfs_binfo_dat));
  529. }
  530. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  531. struct nilfs_segsum_pointer *ssp,
  532. union nilfs_binfo *binfo)
  533. {
  534. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  535. sizeof(*blkoff));
  536. *blkoff = binfo->bi_dat.bi_blkoff;
  537. }
  538. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  539. struct nilfs_segsum_pointer *ssp,
  540. union nilfs_binfo *binfo)
  541. {
  542. struct nilfs_binfo_dat *binfo_dat =
  543. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  544. *binfo_dat = binfo->bi_dat;
  545. }
  546. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  547. .collect_data = nilfs_collect_dat_data,
  548. .collect_node = nilfs_collect_file_node,
  549. .collect_bmap = nilfs_collect_dat_bmap,
  550. .write_data_binfo = nilfs_write_dat_data_binfo,
  551. .write_node_binfo = nilfs_write_dat_node_binfo,
  552. };
  553. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  554. .collect_data = nilfs_collect_file_data,
  555. .collect_node = NULL,
  556. .collect_bmap = NULL,
  557. .write_data_binfo = nilfs_write_file_data_binfo,
  558. .write_node_binfo = NULL,
  559. };
  560. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  561. struct list_head *listp,
  562. size_t nlimit,
  563. loff_t start, loff_t end)
  564. {
  565. struct address_space *mapping = inode->i_mapping;
  566. struct pagevec pvec;
  567. pgoff_t index = 0, last = ULONG_MAX;
  568. size_t ndirties = 0;
  569. int i;
  570. if (unlikely(start != 0 || end != LLONG_MAX)) {
  571. /*
  572. * A valid range is given for sync-ing data pages. The
  573. * range is rounded to per-page; extra dirty buffers
  574. * may be included if blocksize < pagesize.
  575. */
  576. index = start >> PAGE_SHIFT;
  577. last = end >> PAGE_SHIFT;
  578. }
  579. pagevec_init(&pvec, 0);
  580. repeat:
  581. if (unlikely(index > last) ||
  582. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  583. min_t(pgoff_t, last - index,
  584. PAGEVEC_SIZE - 1) + 1))
  585. return ndirties;
  586. for (i = 0; i < pagevec_count(&pvec); i++) {
  587. struct buffer_head *bh, *head;
  588. struct page *page = pvec.pages[i];
  589. if (unlikely(page->index > last))
  590. break;
  591. if (mapping->host) {
  592. lock_page(page);
  593. if (!page_has_buffers(page))
  594. create_empty_buffers(page,
  595. 1 << inode->i_blkbits, 0);
  596. unlock_page(page);
  597. }
  598. bh = head = page_buffers(page);
  599. do {
  600. if (!buffer_dirty(bh))
  601. continue;
  602. get_bh(bh);
  603. list_add_tail(&bh->b_assoc_buffers, listp);
  604. ndirties++;
  605. if (unlikely(ndirties >= nlimit)) {
  606. pagevec_release(&pvec);
  607. cond_resched();
  608. return ndirties;
  609. }
  610. } while (bh = bh->b_this_page, bh != head);
  611. }
  612. pagevec_release(&pvec);
  613. cond_resched();
  614. goto repeat;
  615. }
  616. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  617. struct list_head *listp)
  618. {
  619. struct nilfs_inode_info *ii = NILFS_I(inode);
  620. struct address_space *mapping = &ii->i_btnode_cache;
  621. struct pagevec pvec;
  622. struct buffer_head *bh, *head;
  623. unsigned int i;
  624. pgoff_t index = 0;
  625. pagevec_init(&pvec, 0);
  626. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  627. PAGEVEC_SIZE)) {
  628. for (i = 0; i < pagevec_count(&pvec); i++) {
  629. bh = head = page_buffers(pvec.pages[i]);
  630. do {
  631. if (buffer_dirty(bh)) {
  632. get_bh(bh);
  633. list_add_tail(&bh->b_assoc_buffers,
  634. listp);
  635. }
  636. bh = bh->b_this_page;
  637. } while (bh != head);
  638. }
  639. pagevec_release(&pvec);
  640. cond_resched();
  641. }
  642. }
  643. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  644. struct list_head *head, int force)
  645. {
  646. struct nilfs_inode_info *ii, *n;
  647. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  648. unsigned nv = 0;
  649. while (!list_empty(head)) {
  650. spin_lock(&sbi->s_inode_lock);
  651. list_for_each_entry_safe(ii, n, head, i_dirty) {
  652. list_del_init(&ii->i_dirty);
  653. if (force) {
  654. if (unlikely(ii->i_bh)) {
  655. brelse(ii->i_bh);
  656. ii->i_bh = NULL;
  657. }
  658. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  659. set_bit(NILFS_I_QUEUED, &ii->i_state);
  660. list_add_tail(&ii->i_dirty,
  661. &sbi->s_dirty_files);
  662. continue;
  663. }
  664. ivec[nv++] = ii;
  665. if (nv == SC_N_INODEVEC)
  666. break;
  667. }
  668. spin_unlock(&sbi->s_inode_lock);
  669. for (pii = ivec; nv > 0; pii++, nv--)
  670. iput(&(*pii)->vfs_inode);
  671. }
  672. }
  673. static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
  674. {
  675. struct the_nilfs *nilfs = sbi->s_nilfs;
  676. int ret = 0;
  677. if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
  678. ret++;
  679. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  680. ret++;
  681. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  682. ret++;
  683. if (ret || nilfs_doing_gc())
  684. if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
  685. ret++;
  686. return ret;
  687. }
  688. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  689. {
  690. return list_empty(&sci->sc_dirty_files) &&
  691. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  692. sci->sc_nfreesegs == 0 &&
  693. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  694. }
  695. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  696. {
  697. struct nilfs_sb_info *sbi = sci->sc_sbi;
  698. int ret = 0;
  699. if (nilfs_test_metadata_dirty(sbi))
  700. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  701. spin_lock(&sbi->s_inode_lock);
  702. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  703. ret++;
  704. spin_unlock(&sbi->s_inode_lock);
  705. return ret;
  706. }
  707. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  708. {
  709. struct nilfs_sb_info *sbi = sci->sc_sbi;
  710. struct the_nilfs *nilfs = sbi->s_nilfs;
  711. nilfs_mdt_clear_dirty(sbi->s_ifile);
  712. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  713. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  714. nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
  715. }
  716. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  717. {
  718. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  719. struct buffer_head *bh_cp;
  720. struct nilfs_checkpoint *raw_cp;
  721. int err;
  722. /* XXX: this interface will be changed */
  723. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  724. &raw_cp, &bh_cp);
  725. if (likely(!err)) {
  726. /* The following code is duplicated with cpfile. But, it is
  727. needed to collect the checkpoint even if it was not newly
  728. created */
  729. nilfs_mdt_mark_buffer_dirty(bh_cp);
  730. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  731. nilfs_cpfile_put_checkpoint(
  732. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  733. } else
  734. WARN_ON(err == -EINVAL || err == -ENOENT);
  735. return err;
  736. }
  737. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  738. {
  739. struct nilfs_sb_info *sbi = sci->sc_sbi;
  740. struct the_nilfs *nilfs = sbi->s_nilfs;
  741. struct buffer_head *bh_cp;
  742. struct nilfs_checkpoint *raw_cp;
  743. int err;
  744. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  745. &raw_cp, &bh_cp);
  746. if (unlikely(err)) {
  747. WARN_ON(err == -EINVAL || err == -ENOENT);
  748. goto failed_ibh;
  749. }
  750. raw_cp->cp_snapshot_list.ssl_next = 0;
  751. raw_cp->cp_snapshot_list.ssl_prev = 0;
  752. raw_cp->cp_inodes_count =
  753. cpu_to_le64(atomic_read(&sbi->s_inodes_count));
  754. raw_cp->cp_blocks_count =
  755. cpu_to_le64(atomic_read(&sbi->s_blocks_count));
  756. raw_cp->cp_nblk_inc =
  757. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  758. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  759. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  760. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  761. nilfs_checkpoint_clear_minor(raw_cp);
  762. else
  763. nilfs_checkpoint_set_minor(raw_cp);
  764. nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
  765. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  766. return 0;
  767. failed_ibh:
  768. return err;
  769. }
  770. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  771. struct nilfs_inode_info *ii)
  772. {
  773. struct buffer_head *ibh;
  774. struct nilfs_inode *raw_inode;
  775. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  776. ibh = ii->i_bh;
  777. BUG_ON(!ibh);
  778. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  779. ibh);
  780. nilfs_bmap_write(ii->i_bmap, raw_inode);
  781. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  782. }
  783. }
  784. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
  785. struct inode *ifile)
  786. {
  787. struct nilfs_inode_info *ii;
  788. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  789. nilfs_fill_in_file_bmap(ifile, ii);
  790. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  791. }
  792. }
  793. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  794. struct the_nilfs *nilfs)
  795. {
  796. struct buffer_head *bh_sr;
  797. struct nilfs_super_root *raw_sr;
  798. unsigned isz = nilfs->ns_inode_size;
  799. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  800. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  801. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  802. raw_sr->sr_nongc_ctime
  803. = cpu_to_le64(nilfs_doing_gc() ?
  804. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  805. raw_sr->sr_flags = 0;
  806. nilfs_write_inode_common(nilfs_dat_inode(nilfs), (void *)raw_sr +
  807. NILFS_SR_DAT_OFFSET(isz), 1);
  808. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  809. NILFS_SR_CPFILE_OFFSET(isz), 1);
  810. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  811. NILFS_SR_SUFILE_OFFSET(isz), 1);
  812. }
  813. static void nilfs_redirty_inodes(struct list_head *head)
  814. {
  815. struct nilfs_inode_info *ii;
  816. list_for_each_entry(ii, head, i_dirty) {
  817. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  818. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  819. }
  820. }
  821. static void nilfs_drop_collected_inodes(struct list_head *head)
  822. {
  823. struct nilfs_inode_info *ii;
  824. list_for_each_entry(ii, head, i_dirty) {
  825. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  826. continue;
  827. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  828. set_bit(NILFS_I_UPDATED, &ii->i_state);
  829. }
  830. }
  831. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  832. struct inode *inode,
  833. struct list_head *listp,
  834. int (*collect)(struct nilfs_sc_info *,
  835. struct buffer_head *,
  836. struct inode *))
  837. {
  838. struct buffer_head *bh, *n;
  839. int err = 0;
  840. if (collect) {
  841. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  842. list_del_init(&bh->b_assoc_buffers);
  843. err = collect(sci, bh, inode);
  844. brelse(bh);
  845. if (unlikely(err))
  846. goto dispose_buffers;
  847. }
  848. return 0;
  849. }
  850. dispose_buffers:
  851. while (!list_empty(listp)) {
  852. bh = list_entry(listp->next, struct buffer_head,
  853. b_assoc_buffers);
  854. list_del_init(&bh->b_assoc_buffers);
  855. brelse(bh);
  856. }
  857. return err;
  858. }
  859. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  860. {
  861. /* Remaining number of blocks within segment buffer */
  862. return sci->sc_segbuf_nblocks -
  863. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  864. }
  865. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  866. struct inode *inode,
  867. struct nilfs_sc_operations *sc_ops)
  868. {
  869. LIST_HEAD(data_buffers);
  870. LIST_HEAD(node_buffers);
  871. int err;
  872. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  873. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  874. n = nilfs_lookup_dirty_data_buffers(
  875. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  876. if (n > rest) {
  877. err = nilfs_segctor_apply_buffers(
  878. sci, inode, &data_buffers,
  879. sc_ops->collect_data);
  880. BUG_ON(!err); /* always receive -E2BIG or true error */
  881. goto break_or_fail;
  882. }
  883. }
  884. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  885. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  886. err = nilfs_segctor_apply_buffers(
  887. sci, inode, &data_buffers, sc_ops->collect_data);
  888. if (unlikely(err)) {
  889. /* dispose node list */
  890. nilfs_segctor_apply_buffers(
  891. sci, inode, &node_buffers, NULL);
  892. goto break_or_fail;
  893. }
  894. sci->sc_stage.flags |= NILFS_CF_NODE;
  895. }
  896. /* Collect node */
  897. err = nilfs_segctor_apply_buffers(
  898. sci, inode, &node_buffers, sc_ops->collect_node);
  899. if (unlikely(err))
  900. goto break_or_fail;
  901. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  902. err = nilfs_segctor_apply_buffers(
  903. sci, inode, &node_buffers, sc_ops->collect_bmap);
  904. if (unlikely(err))
  905. goto break_or_fail;
  906. nilfs_segctor_end_finfo(sci, inode);
  907. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  908. break_or_fail:
  909. return err;
  910. }
  911. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  912. struct inode *inode)
  913. {
  914. LIST_HEAD(data_buffers);
  915. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  916. int err;
  917. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  918. sci->sc_dsync_start,
  919. sci->sc_dsync_end);
  920. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  921. nilfs_collect_file_data);
  922. if (!err) {
  923. nilfs_segctor_end_finfo(sci, inode);
  924. BUG_ON(n > rest);
  925. /* always receive -E2BIG or true error if n > rest */
  926. }
  927. return err;
  928. }
  929. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  930. {
  931. struct nilfs_sb_info *sbi = sci->sc_sbi;
  932. struct the_nilfs *nilfs = sbi->s_nilfs;
  933. struct list_head *head;
  934. struct nilfs_inode_info *ii;
  935. size_t ndone;
  936. int err = 0;
  937. switch (sci->sc_stage.scnt) {
  938. case NILFS_ST_INIT:
  939. /* Pre-processes */
  940. sci->sc_stage.flags = 0;
  941. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  942. sci->sc_nblk_inc = 0;
  943. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  944. if (mode == SC_LSEG_DSYNC) {
  945. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  946. goto dsync_mode;
  947. }
  948. }
  949. sci->sc_stage.dirty_file_ptr = NULL;
  950. sci->sc_stage.gc_inode_ptr = NULL;
  951. if (mode == SC_FLUSH_DAT) {
  952. sci->sc_stage.scnt = NILFS_ST_DAT;
  953. goto dat_stage;
  954. }
  955. sci->sc_stage.scnt++; /* Fall through */
  956. case NILFS_ST_GC:
  957. if (nilfs_doing_gc()) {
  958. head = &sci->sc_gc_inodes;
  959. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  960. head, i_dirty);
  961. list_for_each_entry_continue(ii, head, i_dirty) {
  962. err = nilfs_segctor_scan_file(
  963. sci, &ii->vfs_inode,
  964. &nilfs_sc_file_ops);
  965. if (unlikely(err)) {
  966. sci->sc_stage.gc_inode_ptr = list_entry(
  967. ii->i_dirty.prev,
  968. struct nilfs_inode_info,
  969. i_dirty);
  970. goto break_or_fail;
  971. }
  972. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  973. }
  974. sci->sc_stage.gc_inode_ptr = NULL;
  975. }
  976. sci->sc_stage.scnt++; /* Fall through */
  977. case NILFS_ST_FILE:
  978. head = &sci->sc_dirty_files;
  979. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  980. i_dirty);
  981. list_for_each_entry_continue(ii, head, i_dirty) {
  982. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  983. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  984. &nilfs_sc_file_ops);
  985. if (unlikely(err)) {
  986. sci->sc_stage.dirty_file_ptr =
  987. list_entry(ii->i_dirty.prev,
  988. struct nilfs_inode_info,
  989. i_dirty);
  990. goto break_or_fail;
  991. }
  992. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  993. /* XXX: required ? */
  994. }
  995. sci->sc_stage.dirty_file_ptr = NULL;
  996. if (mode == SC_FLUSH_FILE) {
  997. sci->sc_stage.scnt = NILFS_ST_DONE;
  998. return 0;
  999. }
  1000. sci->sc_stage.scnt++;
  1001. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1002. /* Fall through */
  1003. case NILFS_ST_IFILE:
  1004. err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
  1005. &nilfs_sc_file_ops);
  1006. if (unlikely(err))
  1007. break;
  1008. sci->sc_stage.scnt++;
  1009. /* Creating a checkpoint */
  1010. err = nilfs_segctor_create_checkpoint(sci);
  1011. if (unlikely(err))
  1012. break;
  1013. /* Fall through */
  1014. case NILFS_ST_CPFILE:
  1015. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1016. &nilfs_sc_file_ops);
  1017. if (unlikely(err))
  1018. break;
  1019. sci->sc_stage.scnt++; /* Fall through */
  1020. case NILFS_ST_SUFILE:
  1021. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1022. sci->sc_nfreesegs, &ndone);
  1023. if (unlikely(err)) {
  1024. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1025. sci->sc_freesegs, ndone,
  1026. NULL);
  1027. break;
  1028. }
  1029. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1030. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1031. &nilfs_sc_file_ops);
  1032. if (unlikely(err))
  1033. break;
  1034. sci->sc_stage.scnt++; /* Fall through */
  1035. case NILFS_ST_DAT:
  1036. dat_stage:
  1037. err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
  1038. &nilfs_sc_dat_ops);
  1039. if (unlikely(err))
  1040. break;
  1041. if (mode == SC_FLUSH_DAT) {
  1042. sci->sc_stage.scnt = NILFS_ST_DONE;
  1043. return 0;
  1044. }
  1045. sci->sc_stage.scnt++; /* Fall through */
  1046. case NILFS_ST_SR:
  1047. if (mode == SC_LSEG_SR) {
  1048. /* Appending a super root */
  1049. err = nilfs_segctor_add_super_root(sci);
  1050. if (unlikely(err))
  1051. break;
  1052. }
  1053. /* End of a logical segment */
  1054. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1055. sci->sc_stage.scnt = NILFS_ST_DONE;
  1056. return 0;
  1057. case NILFS_ST_DSYNC:
  1058. dsync_mode:
  1059. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1060. ii = sci->sc_dsync_inode;
  1061. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1062. break;
  1063. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1064. if (unlikely(err))
  1065. break;
  1066. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1067. sci->sc_stage.scnt = NILFS_ST_DONE;
  1068. return 0;
  1069. case NILFS_ST_DONE:
  1070. return 0;
  1071. default:
  1072. BUG();
  1073. }
  1074. break_or_fail:
  1075. return err;
  1076. }
  1077. /**
  1078. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1079. * @sci: nilfs_sc_info
  1080. * @nilfs: nilfs object
  1081. */
  1082. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1083. struct the_nilfs *nilfs)
  1084. {
  1085. struct nilfs_segment_buffer *segbuf, *prev;
  1086. __u64 nextnum;
  1087. int err, alloc = 0;
  1088. segbuf = nilfs_segbuf_new(sci->sc_super);
  1089. if (unlikely(!segbuf))
  1090. return -ENOMEM;
  1091. if (list_empty(&sci->sc_write_logs)) {
  1092. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1093. nilfs->ns_pseg_offset, nilfs);
  1094. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1095. nilfs_shift_to_next_segment(nilfs);
  1096. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1097. }
  1098. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1099. nextnum = nilfs->ns_nextnum;
  1100. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1101. /* Start from the head of a new full segment */
  1102. alloc++;
  1103. } else {
  1104. /* Continue logs */
  1105. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1106. nilfs_segbuf_map_cont(segbuf, prev);
  1107. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1108. nextnum = prev->sb_nextnum;
  1109. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1110. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1111. segbuf->sb_sum.seg_seq++;
  1112. alloc++;
  1113. }
  1114. }
  1115. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1116. if (err)
  1117. goto failed;
  1118. if (alloc) {
  1119. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1120. if (err)
  1121. goto failed;
  1122. }
  1123. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1124. BUG_ON(!list_empty(&sci->sc_segbufs));
  1125. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1126. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1127. return 0;
  1128. failed:
  1129. nilfs_segbuf_free(segbuf);
  1130. return err;
  1131. }
  1132. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1133. struct the_nilfs *nilfs, int nadd)
  1134. {
  1135. struct nilfs_segment_buffer *segbuf, *prev;
  1136. struct inode *sufile = nilfs->ns_sufile;
  1137. __u64 nextnextnum;
  1138. LIST_HEAD(list);
  1139. int err, ret, i;
  1140. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1141. /*
  1142. * Since the segment specified with nextnum might be allocated during
  1143. * the previous construction, the buffer including its segusage may
  1144. * not be dirty. The following call ensures that the buffer is dirty
  1145. * and will pin the buffer on memory until the sufile is written.
  1146. */
  1147. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1148. if (unlikely(err))
  1149. return err;
  1150. for (i = 0; i < nadd; i++) {
  1151. /* extend segment info */
  1152. err = -ENOMEM;
  1153. segbuf = nilfs_segbuf_new(sci->sc_super);
  1154. if (unlikely(!segbuf))
  1155. goto failed;
  1156. /* map this buffer to region of segment on-disk */
  1157. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1158. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1159. /* allocate the next next full segment */
  1160. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1161. if (unlikely(err))
  1162. goto failed_segbuf;
  1163. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1164. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1165. list_add_tail(&segbuf->sb_list, &list);
  1166. prev = segbuf;
  1167. }
  1168. list_splice_tail(&list, &sci->sc_segbufs);
  1169. return 0;
  1170. failed_segbuf:
  1171. nilfs_segbuf_free(segbuf);
  1172. failed:
  1173. list_for_each_entry(segbuf, &list, sb_list) {
  1174. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1175. WARN_ON(ret); /* never fails */
  1176. }
  1177. nilfs_destroy_logs(&list);
  1178. return err;
  1179. }
  1180. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1181. struct the_nilfs *nilfs)
  1182. {
  1183. struct nilfs_segment_buffer *segbuf, *prev;
  1184. struct inode *sufile = nilfs->ns_sufile;
  1185. int ret;
  1186. segbuf = NILFS_FIRST_SEGBUF(logs);
  1187. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1188. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1189. WARN_ON(ret); /* never fails */
  1190. }
  1191. if (atomic_read(&segbuf->sb_err)) {
  1192. /* Case 1: The first segment failed */
  1193. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1194. /* Case 1a: Partial segment appended into an existing
  1195. segment */
  1196. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1197. segbuf->sb_fseg_end);
  1198. else /* Case 1b: New full segment */
  1199. set_nilfs_discontinued(nilfs);
  1200. }
  1201. prev = segbuf;
  1202. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1203. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1204. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1205. WARN_ON(ret); /* never fails */
  1206. }
  1207. if (atomic_read(&segbuf->sb_err) &&
  1208. segbuf->sb_segnum != nilfs->ns_nextnum)
  1209. /* Case 2: extended segment (!= next) failed */
  1210. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1211. prev = segbuf;
  1212. }
  1213. }
  1214. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1215. struct inode *sufile)
  1216. {
  1217. struct nilfs_segment_buffer *segbuf;
  1218. unsigned long live_blocks;
  1219. int ret;
  1220. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1221. live_blocks = segbuf->sb_sum.nblocks +
  1222. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1223. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1224. live_blocks,
  1225. sci->sc_seg_ctime);
  1226. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1227. }
  1228. }
  1229. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1230. {
  1231. struct nilfs_segment_buffer *segbuf;
  1232. int ret;
  1233. segbuf = NILFS_FIRST_SEGBUF(logs);
  1234. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1235. segbuf->sb_pseg_start -
  1236. segbuf->sb_fseg_start, 0);
  1237. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1238. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1239. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1240. 0, 0);
  1241. WARN_ON(ret); /* always succeed */
  1242. }
  1243. }
  1244. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1245. struct nilfs_segment_buffer *last,
  1246. struct inode *sufile)
  1247. {
  1248. struct nilfs_segment_buffer *segbuf = last;
  1249. int ret;
  1250. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1251. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1252. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1253. WARN_ON(ret);
  1254. }
  1255. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1256. }
  1257. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1258. struct the_nilfs *nilfs, int mode)
  1259. {
  1260. struct nilfs_cstage prev_stage = sci->sc_stage;
  1261. int err, nadd = 1;
  1262. /* Collection retry loop */
  1263. for (;;) {
  1264. sci->sc_nblk_this_inc = 0;
  1265. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1266. err = nilfs_segctor_reset_segment_buffer(sci);
  1267. if (unlikely(err))
  1268. goto failed;
  1269. err = nilfs_segctor_collect_blocks(sci, mode);
  1270. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1271. if (!err)
  1272. break;
  1273. if (unlikely(err != -E2BIG))
  1274. goto failed;
  1275. /* The current segment is filled up */
  1276. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1277. break;
  1278. nilfs_clear_logs(&sci->sc_segbufs);
  1279. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1280. if (unlikely(err))
  1281. return err;
  1282. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1283. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1284. sci->sc_freesegs,
  1285. sci->sc_nfreesegs,
  1286. NULL);
  1287. WARN_ON(err); /* do not happen */
  1288. }
  1289. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1290. sci->sc_stage = prev_stage;
  1291. }
  1292. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1293. return 0;
  1294. failed:
  1295. return err;
  1296. }
  1297. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1298. struct buffer_head *new_bh)
  1299. {
  1300. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1301. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1302. /* The caller must release old_bh */
  1303. }
  1304. static int
  1305. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1306. struct nilfs_segment_buffer *segbuf,
  1307. int mode)
  1308. {
  1309. struct inode *inode = NULL;
  1310. sector_t blocknr;
  1311. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1312. unsigned long nblocks = 0, ndatablk = 0;
  1313. struct nilfs_sc_operations *sc_op = NULL;
  1314. struct nilfs_segsum_pointer ssp;
  1315. struct nilfs_finfo *finfo = NULL;
  1316. union nilfs_binfo binfo;
  1317. struct buffer_head *bh, *bh_org;
  1318. ino_t ino = 0;
  1319. int err = 0;
  1320. if (!nfinfo)
  1321. goto out;
  1322. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1323. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1324. ssp.offset = sizeof(struct nilfs_segment_summary);
  1325. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1326. if (bh == segbuf->sb_super_root)
  1327. break;
  1328. if (!finfo) {
  1329. finfo = nilfs_segctor_map_segsum_entry(
  1330. sci, &ssp, sizeof(*finfo));
  1331. ino = le64_to_cpu(finfo->fi_ino);
  1332. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1333. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1334. if (buffer_nilfs_node(bh))
  1335. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1336. else
  1337. inode = NILFS_AS_I(bh->b_page->mapping);
  1338. if (mode == SC_LSEG_DSYNC)
  1339. sc_op = &nilfs_sc_dsync_ops;
  1340. else if (ino == NILFS_DAT_INO)
  1341. sc_op = &nilfs_sc_dat_ops;
  1342. else /* file blocks */
  1343. sc_op = &nilfs_sc_file_ops;
  1344. }
  1345. bh_org = bh;
  1346. get_bh(bh_org);
  1347. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1348. &binfo);
  1349. if (bh != bh_org)
  1350. nilfs_list_replace_buffer(bh_org, bh);
  1351. brelse(bh_org);
  1352. if (unlikely(err))
  1353. goto failed_bmap;
  1354. if (ndatablk > 0)
  1355. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1356. else
  1357. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1358. blocknr++;
  1359. if (--nblocks == 0) {
  1360. finfo = NULL;
  1361. if (--nfinfo == 0)
  1362. break;
  1363. } else if (ndatablk > 0)
  1364. ndatablk--;
  1365. }
  1366. out:
  1367. return 0;
  1368. failed_bmap:
  1369. err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
  1370. return err;
  1371. }
  1372. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1373. {
  1374. struct nilfs_segment_buffer *segbuf;
  1375. int err;
  1376. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1377. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1378. if (unlikely(err))
  1379. return err;
  1380. nilfs_segbuf_fill_in_segsum(segbuf);
  1381. }
  1382. return 0;
  1383. }
  1384. static int
  1385. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1386. {
  1387. struct page *clone_page;
  1388. struct buffer_head *bh, *head, *bh2;
  1389. void *kaddr;
  1390. bh = head = page_buffers(page);
  1391. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1392. if (unlikely(!clone_page))
  1393. return -ENOMEM;
  1394. bh2 = page_buffers(clone_page);
  1395. kaddr = kmap_atomic(page, KM_USER0);
  1396. do {
  1397. if (list_empty(&bh->b_assoc_buffers))
  1398. continue;
  1399. get_bh(bh2);
  1400. page_cache_get(clone_page); /* for each bh */
  1401. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1402. bh2->b_blocknr = bh->b_blocknr;
  1403. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1404. list_add_tail(&bh->b_assoc_buffers, out);
  1405. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1406. kunmap_atomic(kaddr, KM_USER0);
  1407. if (!TestSetPageWriteback(clone_page))
  1408. inc_zone_page_state(clone_page, NR_WRITEBACK);
  1409. unlock_page(clone_page);
  1410. return 0;
  1411. }
  1412. static int nilfs_test_page_to_be_frozen(struct page *page)
  1413. {
  1414. struct address_space *mapping = page->mapping;
  1415. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1416. return 0;
  1417. if (page_mapped(page)) {
  1418. ClearPageChecked(page);
  1419. return 1;
  1420. }
  1421. return PageChecked(page);
  1422. }
  1423. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1424. {
  1425. if (!page || PageWriteback(page))
  1426. /* For split b-tree node pages, this function may be called
  1427. twice. We ignore the 2nd or later calls by this check. */
  1428. return 0;
  1429. lock_page(page);
  1430. clear_page_dirty_for_io(page);
  1431. set_page_writeback(page);
  1432. unlock_page(page);
  1433. if (nilfs_test_page_to_be_frozen(page)) {
  1434. int err = nilfs_copy_replace_page_buffers(page, out);
  1435. if (unlikely(err))
  1436. return err;
  1437. }
  1438. return 0;
  1439. }
  1440. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1441. struct page **failed_page)
  1442. {
  1443. struct nilfs_segment_buffer *segbuf;
  1444. struct page *bd_page = NULL, *fs_page = NULL;
  1445. struct list_head *list = &sci->sc_copied_buffers;
  1446. int err;
  1447. *failed_page = NULL;
  1448. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1449. struct buffer_head *bh;
  1450. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1451. b_assoc_buffers) {
  1452. if (bh->b_page != bd_page) {
  1453. if (bd_page) {
  1454. lock_page(bd_page);
  1455. clear_page_dirty_for_io(bd_page);
  1456. set_page_writeback(bd_page);
  1457. unlock_page(bd_page);
  1458. }
  1459. bd_page = bh->b_page;
  1460. }
  1461. }
  1462. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1463. b_assoc_buffers) {
  1464. if (bh == segbuf->sb_super_root) {
  1465. if (bh->b_page != bd_page) {
  1466. lock_page(bd_page);
  1467. clear_page_dirty_for_io(bd_page);
  1468. set_page_writeback(bd_page);
  1469. unlock_page(bd_page);
  1470. bd_page = bh->b_page;
  1471. }
  1472. break;
  1473. }
  1474. if (bh->b_page != fs_page) {
  1475. err = nilfs_begin_page_io(fs_page, list);
  1476. if (unlikely(err)) {
  1477. *failed_page = fs_page;
  1478. goto out;
  1479. }
  1480. fs_page = bh->b_page;
  1481. }
  1482. }
  1483. }
  1484. if (bd_page) {
  1485. lock_page(bd_page);
  1486. clear_page_dirty_for_io(bd_page);
  1487. set_page_writeback(bd_page);
  1488. unlock_page(bd_page);
  1489. }
  1490. err = nilfs_begin_page_io(fs_page, list);
  1491. if (unlikely(err))
  1492. *failed_page = fs_page;
  1493. out:
  1494. return err;
  1495. }
  1496. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1497. struct the_nilfs *nilfs)
  1498. {
  1499. int ret;
  1500. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1501. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1502. return ret;
  1503. }
  1504. static void __nilfs_end_page_io(struct page *page, int err)
  1505. {
  1506. if (!err) {
  1507. if (!nilfs_page_buffers_clean(page))
  1508. __set_page_dirty_nobuffers(page);
  1509. ClearPageError(page);
  1510. } else {
  1511. __set_page_dirty_nobuffers(page);
  1512. SetPageError(page);
  1513. }
  1514. if (buffer_nilfs_allocated(page_buffers(page))) {
  1515. if (TestClearPageWriteback(page))
  1516. dec_zone_page_state(page, NR_WRITEBACK);
  1517. } else
  1518. end_page_writeback(page);
  1519. }
  1520. static void nilfs_end_page_io(struct page *page, int err)
  1521. {
  1522. if (!page)
  1523. return;
  1524. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1525. /*
  1526. * For b-tree node pages, this function may be called twice
  1527. * or more because they might be split in a segment.
  1528. */
  1529. if (PageDirty(page)) {
  1530. /*
  1531. * For pages holding split b-tree node buffers, dirty
  1532. * flag on the buffers may be cleared discretely.
  1533. * In that case, the page is once redirtied for
  1534. * remaining buffers, and it must be cancelled if
  1535. * all the buffers get cleaned later.
  1536. */
  1537. lock_page(page);
  1538. if (nilfs_page_buffers_clean(page))
  1539. __nilfs_clear_page_dirty(page);
  1540. unlock_page(page);
  1541. }
  1542. return;
  1543. }
  1544. __nilfs_end_page_io(page, err);
  1545. }
  1546. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1547. {
  1548. struct buffer_head *bh, *head;
  1549. struct page *page;
  1550. while (!list_empty(list)) {
  1551. bh = list_entry(list->next, struct buffer_head,
  1552. b_assoc_buffers);
  1553. page = bh->b_page;
  1554. page_cache_get(page);
  1555. head = bh = page_buffers(page);
  1556. do {
  1557. if (!list_empty(&bh->b_assoc_buffers)) {
  1558. list_del_init(&bh->b_assoc_buffers);
  1559. if (!err) {
  1560. set_buffer_uptodate(bh);
  1561. clear_buffer_dirty(bh);
  1562. clear_buffer_nilfs_volatile(bh);
  1563. }
  1564. brelse(bh); /* for b_assoc_buffers */
  1565. }
  1566. } while ((bh = bh->b_this_page) != head);
  1567. __nilfs_end_page_io(page, err);
  1568. page_cache_release(page);
  1569. }
  1570. }
  1571. static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
  1572. int err)
  1573. {
  1574. struct nilfs_segment_buffer *segbuf;
  1575. struct page *bd_page = NULL, *fs_page = NULL;
  1576. struct buffer_head *bh;
  1577. if (list_empty(logs))
  1578. return;
  1579. list_for_each_entry(segbuf, logs, sb_list) {
  1580. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1581. b_assoc_buffers) {
  1582. if (bh->b_page != bd_page) {
  1583. if (bd_page)
  1584. end_page_writeback(bd_page);
  1585. bd_page = bh->b_page;
  1586. }
  1587. }
  1588. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1589. b_assoc_buffers) {
  1590. if (bh == segbuf->sb_super_root) {
  1591. if (bh->b_page != bd_page) {
  1592. end_page_writeback(bd_page);
  1593. bd_page = bh->b_page;
  1594. }
  1595. break;
  1596. }
  1597. if (bh->b_page != fs_page) {
  1598. nilfs_end_page_io(fs_page, err);
  1599. if (fs_page && fs_page == failed_page)
  1600. return;
  1601. fs_page = bh->b_page;
  1602. }
  1603. }
  1604. }
  1605. if (bd_page)
  1606. end_page_writeback(bd_page);
  1607. nilfs_end_page_io(fs_page, err);
  1608. }
  1609. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1610. struct the_nilfs *nilfs, int err)
  1611. {
  1612. LIST_HEAD(logs);
  1613. int ret;
  1614. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1615. ret = nilfs_wait_on_logs(&logs);
  1616. nilfs_abort_logs(&logs, NULL, ret ? : err);
  1617. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1618. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1619. nilfs_free_incomplete_logs(&logs, nilfs);
  1620. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1621. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1622. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1623. sci->sc_freesegs,
  1624. sci->sc_nfreesegs,
  1625. NULL);
  1626. WARN_ON(ret); /* do not happen */
  1627. }
  1628. nilfs_destroy_logs(&logs);
  1629. }
  1630. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1631. struct nilfs_segment_buffer *segbuf)
  1632. {
  1633. nilfs->ns_segnum = segbuf->sb_segnum;
  1634. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1635. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1636. + segbuf->sb_sum.nblocks;
  1637. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1638. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1639. }
  1640. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1641. {
  1642. struct nilfs_segment_buffer *segbuf;
  1643. struct page *bd_page = NULL, *fs_page = NULL;
  1644. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  1645. int update_sr = false;
  1646. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1647. struct buffer_head *bh;
  1648. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1649. b_assoc_buffers) {
  1650. set_buffer_uptodate(bh);
  1651. clear_buffer_dirty(bh);
  1652. if (bh->b_page != bd_page) {
  1653. if (bd_page)
  1654. end_page_writeback(bd_page);
  1655. bd_page = bh->b_page;
  1656. }
  1657. }
  1658. /*
  1659. * We assume that the buffers which belong to the same page
  1660. * continue over the buffer list.
  1661. * Under this assumption, the last BHs of pages is
  1662. * identifiable by the discontinuity of bh->b_page
  1663. * (page != fs_page).
  1664. *
  1665. * For B-tree node blocks, however, this assumption is not
  1666. * guaranteed. The cleanup code of B-tree node pages needs
  1667. * special care.
  1668. */
  1669. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1670. b_assoc_buffers) {
  1671. set_buffer_uptodate(bh);
  1672. clear_buffer_dirty(bh);
  1673. clear_buffer_nilfs_volatile(bh);
  1674. if (bh == segbuf->sb_super_root) {
  1675. if (bh->b_page != bd_page) {
  1676. end_page_writeback(bd_page);
  1677. bd_page = bh->b_page;
  1678. }
  1679. update_sr = true;
  1680. break;
  1681. }
  1682. if (bh->b_page != fs_page) {
  1683. nilfs_end_page_io(fs_page, 0);
  1684. fs_page = bh->b_page;
  1685. }
  1686. }
  1687. if (!nilfs_segbuf_simplex(segbuf)) {
  1688. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1689. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1690. sci->sc_lseg_stime = jiffies;
  1691. }
  1692. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1693. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1694. }
  1695. }
  1696. /*
  1697. * Since pages may continue over multiple segment buffers,
  1698. * end of the last page must be checked outside of the loop.
  1699. */
  1700. if (bd_page)
  1701. end_page_writeback(bd_page);
  1702. nilfs_end_page_io(fs_page, 0);
  1703. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1704. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1705. if (nilfs_doing_gc()) {
  1706. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1707. if (update_sr)
  1708. nilfs_commit_gcdat_inode(nilfs);
  1709. } else
  1710. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1711. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1712. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1713. nilfs_set_next_segment(nilfs, segbuf);
  1714. if (update_sr) {
  1715. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1716. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1717. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1718. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1719. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1720. nilfs_segctor_clear_metadata_dirty(sci);
  1721. } else
  1722. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1723. }
  1724. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1725. {
  1726. int ret;
  1727. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1728. if (!ret) {
  1729. nilfs_segctor_complete_write(sci);
  1730. nilfs_destroy_logs(&sci->sc_write_logs);
  1731. }
  1732. return ret;
  1733. }
  1734. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1735. struct nilfs_sb_info *sbi)
  1736. {
  1737. struct nilfs_inode_info *ii, *n;
  1738. __u64 cno = sbi->s_nilfs->ns_cno;
  1739. spin_lock(&sbi->s_inode_lock);
  1740. retry:
  1741. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1742. if (!ii->i_bh) {
  1743. struct buffer_head *ibh;
  1744. int err;
  1745. spin_unlock(&sbi->s_inode_lock);
  1746. err = nilfs_ifile_get_inode_block(
  1747. sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
  1748. if (unlikely(err)) {
  1749. nilfs_warning(sbi->s_super, __func__,
  1750. "failed to get inode block.\n");
  1751. return err;
  1752. }
  1753. nilfs_mdt_mark_buffer_dirty(ibh);
  1754. nilfs_mdt_mark_dirty(sbi->s_ifile);
  1755. spin_lock(&sbi->s_inode_lock);
  1756. if (likely(!ii->i_bh))
  1757. ii->i_bh = ibh;
  1758. else
  1759. brelse(ibh);
  1760. goto retry;
  1761. }
  1762. ii->i_cno = cno;
  1763. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1764. set_bit(NILFS_I_BUSY, &ii->i_state);
  1765. list_del(&ii->i_dirty);
  1766. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1767. }
  1768. spin_unlock(&sbi->s_inode_lock);
  1769. NILFS_I(sbi->s_ifile)->i_cno = cno;
  1770. return 0;
  1771. }
  1772. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1773. struct nilfs_sb_info *sbi)
  1774. {
  1775. struct nilfs_transaction_info *ti = current->journal_info;
  1776. struct nilfs_inode_info *ii, *n;
  1777. __u64 cno = sbi->s_nilfs->ns_cno;
  1778. spin_lock(&sbi->s_inode_lock);
  1779. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1780. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1781. test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1782. /* The current checkpoint number (=nilfs->ns_cno) is
  1783. changed between check-in and check-out only if the
  1784. super root is written out. So, we can update i_cno
  1785. for the inodes that remain in the dirty list. */
  1786. ii->i_cno = cno;
  1787. continue;
  1788. }
  1789. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1790. brelse(ii->i_bh);
  1791. ii->i_bh = NULL;
  1792. list_del(&ii->i_dirty);
  1793. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1794. }
  1795. spin_unlock(&sbi->s_inode_lock);
  1796. }
  1797. /*
  1798. * Main procedure of segment constructor
  1799. */
  1800. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1801. {
  1802. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1803. struct the_nilfs *nilfs = sbi->s_nilfs;
  1804. struct page *failed_page;
  1805. int err;
  1806. sci->sc_stage.scnt = NILFS_ST_INIT;
  1807. err = nilfs_segctor_check_in_files(sci, sbi);
  1808. if (unlikely(err))
  1809. goto out;
  1810. if (nilfs_test_metadata_dirty(sbi))
  1811. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1812. if (nilfs_segctor_clean(sci))
  1813. goto out;
  1814. do {
  1815. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1816. err = nilfs_segctor_begin_construction(sci, nilfs);
  1817. if (unlikely(err))
  1818. goto out;
  1819. /* Update time stamp */
  1820. sci->sc_seg_ctime = get_seconds();
  1821. err = nilfs_segctor_collect(sci, nilfs, mode);
  1822. if (unlikely(err))
  1823. goto failed;
  1824. /* Avoid empty segment */
  1825. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1826. nilfs_segbuf_empty(sci->sc_curseg)) {
  1827. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1828. goto out;
  1829. }
  1830. err = nilfs_segctor_assign(sci, mode);
  1831. if (unlikely(err))
  1832. goto failed;
  1833. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1834. nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
  1835. if (mode == SC_LSEG_SR &&
  1836. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1837. err = nilfs_segctor_fill_in_checkpoint(sci);
  1838. if (unlikely(err))
  1839. goto failed_to_write;
  1840. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1841. }
  1842. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1843. /* Write partial segments */
  1844. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1845. if (err) {
  1846. nilfs_abort_logs(&sci->sc_segbufs, failed_page, err);
  1847. goto failed_to_write;
  1848. }
  1849. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1850. nilfs->ns_crc_seed);
  1851. err = nilfs_segctor_write(sci, nilfs);
  1852. if (unlikely(err))
  1853. goto failed_to_write;
  1854. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1855. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1856. /*
  1857. * At this point, we avoid double buffering
  1858. * for blocksize < pagesize because page dirty
  1859. * flag is turned off during write and dirty
  1860. * buffers are not properly collected for
  1861. * pages crossing over segments.
  1862. */
  1863. err = nilfs_segctor_wait(sci);
  1864. if (err)
  1865. goto failed_to_write;
  1866. }
  1867. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1868. out:
  1869. nilfs_segctor_check_out_files(sci, sbi);
  1870. return err;
  1871. failed_to_write:
  1872. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1873. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1874. failed:
  1875. if (nilfs_doing_gc())
  1876. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1877. nilfs_segctor_abort_construction(sci, nilfs, err);
  1878. goto out;
  1879. }
  1880. /**
  1881. * nilfs_segctor_start_timer - set timer of background write
  1882. * @sci: nilfs_sc_info
  1883. *
  1884. * If the timer has already been set, it ignores the new request.
  1885. * This function MUST be called within a section locking the segment
  1886. * semaphore.
  1887. */
  1888. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1889. {
  1890. spin_lock(&sci->sc_state_lock);
  1891. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1892. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1893. add_timer(&sci->sc_timer);
  1894. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1895. }
  1896. spin_unlock(&sci->sc_state_lock);
  1897. }
  1898. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1899. {
  1900. spin_lock(&sci->sc_state_lock);
  1901. if (!(sci->sc_flush_request & (1 << bn))) {
  1902. unsigned long prev_req = sci->sc_flush_request;
  1903. sci->sc_flush_request |= (1 << bn);
  1904. if (!prev_req)
  1905. wake_up(&sci->sc_wait_daemon);
  1906. }
  1907. spin_unlock(&sci->sc_state_lock);
  1908. }
  1909. /**
  1910. * nilfs_flush_segment - trigger a segment construction for resource control
  1911. * @sb: super block
  1912. * @ino: inode number of the file to be flushed out.
  1913. */
  1914. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1915. {
  1916. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1917. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1918. if (!sci || nilfs_doing_construction())
  1919. return;
  1920. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1921. /* assign bit 0 to data files */
  1922. }
  1923. struct nilfs_segctor_wait_request {
  1924. wait_queue_t wq;
  1925. __u32 seq;
  1926. int err;
  1927. atomic_t done;
  1928. };
  1929. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1930. {
  1931. struct nilfs_segctor_wait_request wait_req;
  1932. int err = 0;
  1933. spin_lock(&sci->sc_state_lock);
  1934. init_wait(&wait_req.wq);
  1935. wait_req.err = 0;
  1936. atomic_set(&wait_req.done, 0);
  1937. wait_req.seq = ++sci->sc_seq_request;
  1938. spin_unlock(&sci->sc_state_lock);
  1939. init_waitqueue_entry(&wait_req.wq, current);
  1940. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1941. set_current_state(TASK_INTERRUPTIBLE);
  1942. wake_up(&sci->sc_wait_daemon);
  1943. for (;;) {
  1944. if (atomic_read(&wait_req.done)) {
  1945. err = wait_req.err;
  1946. break;
  1947. }
  1948. if (!signal_pending(current)) {
  1949. schedule();
  1950. continue;
  1951. }
  1952. err = -ERESTARTSYS;
  1953. break;
  1954. }
  1955. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1956. return err;
  1957. }
  1958. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1959. {
  1960. struct nilfs_segctor_wait_request *wrq, *n;
  1961. unsigned long flags;
  1962. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1963. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1964. wq.task_list) {
  1965. if (!atomic_read(&wrq->done) &&
  1966. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1967. wrq->err = err;
  1968. atomic_set(&wrq->done, 1);
  1969. }
  1970. if (atomic_read(&wrq->done)) {
  1971. wrq->wq.func(&wrq->wq,
  1972. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1973. 0, NULL);
  1974. }
  1975. }
  1976. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1977. }
  1978. /**
  1979. * nilfs_construct_segment - construct a logical segment
  1980. * @sb: super block
  1981. *
  1982. * Return Value: On success, 0 is retured. On errors, one of the following
  1983. * negative error code is returned.
  1984. *
  1985. * %-EROFS - Read only filesystem.
  1986. *
  1987. * %-EIO - I/O error
  1988. *
  1989. * %-ENOSPC - No space left on device (only in a panic state).
  1990. *
  1991. * %-ERESTARTSYS - Interrupted.
  1992. *
  1993. * %-ENOMEM - Insufficient memory available.
  1994. */
  1995. int nilfs_construct_segment(struct super_block *sb)
  1996. {
  1997. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1998. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1999. struct nilfs_transaction_info *ti;
  2000. int err;
  2001. if (!sci)
  2002. return -EROFS;
  2003. /* A call inside transactions causes a deadlock. */
  2004. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  2005. err = nilfs_segctor_sync(sci);
  2006. return err;
  2007. }
  2008. /**
  2009. * nilfs_construct_dsync_segment - construct a data-only logical segment
  2010. * @sb: super block
  2011. * @inode: inode whose data blocks should be written out
  2012. * @start: start byte offset
  2013. * @end: end byte offset (inclusive)
  2014. *
  2015. * Return Value: On success, 0 is retured. On errors, one of the following
  2016. * negative error code is returned.
  2017. *
  2018. * %-EROFS - Read only filesystem.
  2019. *
  2020. * %-EIO - I/O error
  2021. *
  2022. * %-ENOSPC - No space left on device (only in a panic state).
  2023. *
  2024. * %-ERESTARTSYS - Interrupted.
  2025. *
  2026. * %-ENOMEM - Insufficient memory available.
  2027. */
  2028. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2029. loff_t start, loff_t end)
  2030. {
  2031. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2032. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2033. struct nilfs_inode_info *ii;
  2034. struct nilfs_transaction_info ti;
  2035. int err = 0;
  2036. if (!sci)
  2037. return -EROFS;
  2038. nilfs_transaction_lock(sbi, &ti, 0);
  2039. ii = NILFS_I(inode);
  2040. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2041. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2042. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2043. nilfs_discontinued(sbi->s_nilfs)) {
  2044. nilfs_transaction_unlock(sbi);
  2045. err = nilfs_segctor_sync(sci);
  2046. return err;
  2047. }
  2048. spin_lock(&sbi->s_inode_lock);
  2049. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2050. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2051. spin_unlock(&sbi->s_inode_lock);
  2052. nilfs_transaction_unlock(sbi);
  2053. return 0;
  2054. }
  2055. spin_unlock(&sbi->s_inode_lock);
  2056. sci->sc_dsync_inode = ii;
  2057. sci->sc_dsync_start = start;
  2058. sci->sc_dsync_end = end;
  2059. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2060. nilfs_transaction_unlock(sbi);
  2061. return err;
  2062. }
  2063. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2064. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2065. /**
  2066. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2067. * @sci: segment constructor object
  2068. */
  2069. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2070. {
  2071. spin_lock(&sci->sc_state_lock);
  2072. sci->sc_seq_accepted = sci->sc_seq_request;
  2073. spin_unlock(&sci->sc_state_lock);
  2074. del_timer_sync(&sci->sc_timer);
  2075. }
  2076. /**
  2077. * nilfs_segctor_notify - notify the result of request to caller threads
  2078. * @sci: segment constructor object
  2079. * @mode: mode of log forming
  2080. * @err: error code to be notified
  2081. */
  2082. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2083. {
  2084. /* Clear requests (even when the construction failed) */
  2085. spin_lock(&sci->sc_state_lock);
  2086. if (mode == SC_LSEG_SR) {
  2087. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2088. sci->sc_seq_done = sci->sc_seq_accepted;
  2089. nilfs_segctor_wakeup(sci, err);
  2090. sci->sc_flush_request = 0;
  2091. } else {
  2092. if (mode == SC_FLUSH_FILE)
  2093. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2094. else if (mode == SC_FLUSH_DAT)
  2095. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2096. /* re-enable timer if checkpoint creation was not done */
  2097. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2098. time_before(jiffies, sci->sc_timer.expires))
  2099. add_timer(&sci->sc_timer);
  2100. }
  2101. spin_unlock(&sci->sc_state_lock);
  2102. }
  2103. /**
  2104. * nilfs_segctor_construct - form logs and write them to disk
  2105. * @sci: segment constructor object
  2106. * @mode: mode of log forming
  2107. */
  2108. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2109. {
  2110. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2111. struct the_nilfs *nilfs = sbi->s_nilfs;
  2112. struct nilfs_super_block **sbp;
  2113. int err = 0;
  2114. nilfs_segctor_accept(sci);
  2115. if (nilfs_discontinued(nilfs))
  2116. mode = SC_LSEG_SR;
  2117. if (!nilfs_segctor_confirm(sci))
  2118. err = nilfs_segctor_do_construct(sci, mode);
  2119. if (likely(!err)) {
  2120. if (mode != SC_FLUSH_DAT)
  2121. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2122. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2123. nilfs_discontinued(nilfs)) {
  2124. down_write(&nilfs->ns_sem);
  2125. err = -EIO;
  2126. sbp = nilfs_prepare_super(sbi,
  2127. nilfs_sb_will_flip(nilfs));
  2128. if (likely(sbp)) {
  2129. nilfs_set_log_cursor(sbp[0], nilfs);
  2130. err = nilfs_commit_super(sbi, NILFS_SB_COMMIT);
  2131. }
  2132. up_write(&nilfs->ns_sem);
  2133. }
  2134. }
  2135. nilfs_segctor_notify(sci, mode, err);
  2136. return err;
  2137. }
  2138. static void nilfs_construction_timeout(unsigned long data)
  2139. {
  2140. struct task_struct *p = (struct task_struct *)data;
  2141. wake_up_process(p);
  2142. }
  2143. static void
  2144. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2145. {
  2146. struct nilfs_inode_info *ii, *n;
  2147. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2148. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2149. continue;
  2150. hlist_del_init(&ii->vfs_inode.i_hash);
  2151. list_del_init(&ii->i_dirty);
  2152. nilfs_clear_gcinode(&ii->vfs_inode);
  2153. }
  2154. }
  2155. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2156. void **kbufs)
  2157. {
  2158. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2159. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2160. struct the_nilfs *nilfs = sbi->s_nilfs;
  2161. struct nilfs_transaction_info ti;
  2162. int err;
  2163. if (unlikely(!sci))
  2164. return -EROFS;
  2165. nilfs_transaction_lock(sbi, &ti, 1);
  2166. err = nilfs_init_gcdat_inode(nilfs);
  2167. if (unlikely(err))
  2168. goto out_unlock;
  2169. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2170. if (unlikely(err))
  2171. goto out_unlock;
  2172. sci->sc_freesegs = kbufs[4];
  2173. sci->sc_nfreesegs = argv[4].v_nmembs;
  2174. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2175. for (;;) {
  2176. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2177. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2178. if (likely(!err))
  2179. break;
  2180. nilfs_warning(sb, __func__,
  2181. "segment construction failed. (err=%d)", err);
  2182. set_current_state(TASK_INTERRUPTIBLE);
  2183. schedule_timeout(sci->sc_interval);
  2184. }
  2185. if (nilfs_test_opt(sbi, DISCARD)) {
  2186. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2187. sci->sc_nfreesegs);
  2188. if (ret) {
  2189. printk(KERN_WARNING
  2190. "NILFS warning: error %d on discard request, "
  2191. "turning discards off for the device\n", ret);
  2192. nilfs_clear_opt(sbi, DISCARD);
  2193. }
  2194. }
  2195. out_unlock:
  2196. sci->sc_freesegs = NULL;
  2197. sci->sc_nfreesegs = 0;
  2198. nilfs_clear_gcdat_inode(nilfs);
  2199. nilfs_transaction_unlock(sbi);
  2200. return err;
  2201. }
  2202. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2203. {
  2204. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2205. struct nilfs_transaction_info ti;
  2206. nilfs_transaction_lock(sbi, &ti, 0);
  2207. nilfs_segctor_construct(sci, mode);
  2208. /*
  2209. * Unclosed segment should be retried. We do this using sc_timer.
  2210. * Timeout of sc_timer will invoke complete construction which leads
  2211. * to close the current logical segment.
  2212. */
  2213. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2214. nilfs_segctor_start_timer(sci);
  2215. nilfs_transaction_unlock(sbi);
  2216. }
  2217. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2218. {
  2219. int mode = 0;
  2220. int err;
  2221. spin_lock(&sci->sc_state_lock);
  2222. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2223. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2224. spin_unlock(&sci->sc_state_lock);
  2225. if (mode) {
  2226. err = nilfs_segctor_do_construct(sci, mode);
  2227. spin_lock(&sci->sc_state_lock);
  2228. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2229. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2230. spin_unlock(&sci->sc_state_lock);
  2231. }
  2232. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2233. }
  2234. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2235. {
  2236. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2237. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2238. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2239. return SC_FLUSH_FILE;
  2240. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2241. return SC_FLUSH_DAT;
  2242. }
  2243. return SC_LSEG_SR;
  2244. }
  2245. /**
  2246. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2247. * @arg: pointer to a struct nilfs_sc_info.
  2248. *
  2249. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2250. * to execute segment constructions.
  2251. */
  2252. static int nilfs_segctor_thread(void *arg)
  2253. {
  2254. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2255. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2256. int timeout = 0;
  2257. sci->sc_timer.data = (unsigned long)current;
  2258. sci->sc_timer.function = nilfs_construction_timeout;
  2259. /* start sync. */
  2260. sci->sc_task = current;
  2261. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2262. printk(KERN_INFO
  2263. "segctord starting. Construction interval = %lu seconds, "
  2264. "CP frequency < %lu seconds\n",
  2265. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2266. spin_lock(&sci->sc_state_lock);
  2267. loop:
  2268. for (;;) {
  2269. int mode;
  2270. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2271. goto end_thread;
  2272. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2273. mode = SC_LSEG_SR;
  2274. else if (!sci->sc_flush_request)
  2275. break;
  2276. else
  2277. mode = nilfs_segctor_flush_mode(sci);
  2278. spin_unlock(&sci->sc_state_lock);
  2279. nilfs_segctor_thread_construct(sci, mode);
  2280. spin_lock(&sci->sc_state_lock);
  2281. timeout = 0;
  2282. }
  2283. if (freezing(current)) {
  2284. spin_unlock(&sci->sc_state_lock);
  2285. refrigerator();
  2286. spin_lock(&sci->sc_state_lock);
  2287. } else {
  2288. DEFINE_WAIT(wait);
  2289. int should_sleep = 1;
  2290. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2291. TASK_INTERRUPTIBLE);
  2292. if (sci->sc_seq_request != sci->sc_seq_done)
  2293. should_sleep = 0;
  2294. else if (sci->sc_flush_request)
  2295. should_sleep = 0;
  2296. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2297. should_sleep = time_before(jiffies,
  2298. sci->sc_timer.expires);
  2299. if (should_sleep) {
  2300. spin_unlock(&sci->sc_state_lock);
  2301. schedule();
  2302. spin_lock(&sci->sc_state_lock);
  2303. }
  2304. finish_wait(&sci->sc_wait_daemon, &wait);
  2305. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2306. time_after_eq(jiffies, sci->sc_timer.expires));
  2307. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2308. set_nilfs_discontinued(nilfs);
  2309. }
  2310. goto loop;
  2311. end_thread:
  2312. spin_unlock(&sci->sc_state_lock);
  2313. /* end sync. */
  2314. sci->sc_task = NULL;
  2315. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2316. return 0;
  2317. }
  2318. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2319. {
  2320. struct task_struct *t;
  2321. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2322. if (IS_ERR(t)) {
  2323. int err = PTR_ERR(t);
  2324. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2325. err);
  2326. return err;
  2327. }
  2328. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2329. return 0;
  2330. }
  2331. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2332. {
  2333. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2334. while (sci->sc_task) {
  2335. wake_up(&sci->sc_wait_daemon);
  2336. spin_unlock(&sci->sc_state_lock);
  2337. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2338. spin_lock(&sci->sc_state_lock);
  2339. }
  2340. }
  2341. /*
  2342. * Setup & clean-up functions
  2343. */
  2344. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
  2345. {
  2346. struct nilfs_sc_info *sci;
  2347. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2348. if (!sci)
  2349. return NULL;
  2350. sci->sc_sbi = sbi;
  2351. sci->sc_super = sbi->s_super;
  2352. init_waitqueue_head(&sci->sc_wait_request);
  2353. init_waitqueue_head(&sci->sc_wait_daemon);
  2354. init_waitqueue_head(&sci->sc_wait_task);
  2355. spin_lock_init(&sci->sc_state_lock);
  2356. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2357. INIT_LIST_HEAD(&sci->sc_segbufs);
  2358. INIT_LIST_HEAD(&sci->sc_write_logs);
  2359. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2360. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2361. init_timer(&sci->sc_timer);
  2362. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2363. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2364. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2365. if (sbi->s_interval)
  2366. sci->sc_interval = sbi->s_interval;
  2367. if (sbi->s_watermark)
  2368. sci->sc_watermark = sbi->s_watermark;
  2369. return sci;
  2370. }
  2371. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2372. {
  2373. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2374. /* The segctord thread was stopped and its timer was removed.
  2375. But some tasks remain. */
  2376. do {
  2377. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2378. struct nilfs_transaction_info ti;
  2379. nilfs_transaction_lock(sbi, &ti, 0);
  2380. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2381. nilfs_transaction_unlock(sbi);
  2382. } while (ret && retrycount-- > 0);
  2383. }
  2384. /**
  2385. * nilfs_segctor_destroy - destroy the segment constructor.
  2386. * @sci: nilfs_sc_info
  2387. *
  2388. * nilfs_segctor_destroy() kills the segctord thread and frees
  2389. * the nilfs_sc_info struct.
  2390. * Caller must hold the segment semaphore.
  2391. */
  2392. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2393. {
  2394. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2395. int flag;
  2396. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2397. spin_lock(&sci->sc_state_lock);
  2398. nilfs_segctor_kill_thread(sci);
  2399. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2400. || sci->sc_seq_request != sci->sc_seq_done);
  2401. spin_unlock(&sci->sc_state_lock);
  2402. if (flag || !nilfs_segctor_confirm(sci))
  2403. nilfs_segctor_write_out(sci);
  2404. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2405. if (!list_empty(&sci->sc_dirty_files)) {
  2406. nilfs_warning(sbi->s_super, __func__,
  2407. "dirty file(s) after the final construction\n");
  2408. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2409. }
  2410. WARN_ON(!list_empty(&sci->sc_segbufs));
  2411. WARN_ON(!list_empty(&sci->sc_write_logs));
  2412. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2413. del_timer_sync(&sci->sc_timer);
  2414. kfree(sci);
  2415. }
  2416. /**
  2417. * nilfs_attach_segment_constructor - attach a segment constructor
  2418. * @sbi: nilfs_sb_info
  2419. *
  2420. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2421. * initializes it, and starts the segment constructor.
  2422. *
  2423. * Return Value: On success, 0 is returned. On error, one of the following
  2424. * negative error code is returned.
  2425. *
  2426. * %-ENOMEM - Insufficient memory available.
  2427. */
  2428. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
  2429. {
  2430. struct the_nilfs *nilfs = sbi->s_nilfs;
  2431. int err;
  2432. if (NILFS_SC(sbi)) {
  2433. /*
  2434. * This happens if the filesystem was remounted
  2435. * read/write after nilfs_error degenerated it into a
  2436. * read-only mount.
  2437. */
  2438. nilfs_detach_segment_constructor(sbi);
  2439. }
  2440. sbi->s_sc_info = nilfs_segctor_new(sbi);
  2441. if (!sbi->s_sc_info)
  2442. return -ENOMEM;
  2443. nilfs_attach_writer(nilfs, sbi);
  2444. err = nilfs_segctor_start_thread(NILFS_SC(sbi));
  2445. if (err) {
  2446. nilfs_detach_writer(nilfs, sbi);
  2447. kfree(sbi->s_sc_info);
  2448. sbi->s_sc_info = NULL;
  2449. }
  2450. return err;
  2451. }
  2452. /**
  2453. * nilfs_detach_segment_constructor - destroy the segment constructor
  2454. * @sbi: nilfs_sb_info
  2455. *
  2456. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2457. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2458. */
  2459. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2460. {
  2461. struct the_nilfs *nilfs = sbi->s_nilfs;
  2462. LIST_HEAD(garbage_list);
  2463. down_write(&nilfs->ns_segctor_sem);
  2464. if (NILFS_SC(sbi)) {
  2465. nilfs_segctor_destroy(NILFS_SC(sbi));
  2466. sbi->s_sc_info = NULL;
  2467. }
  2468. /* Force to free the list of dirty files */
  2469. spin_lock(&sbi->s_inode_lock);
  2470. if (!list_empty(&sbi->s_dirty_files)) {
  2471. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2472. nilfs_warning(sbi->s_super, __func__,
  2473. "Non empty dirty list after the last "
  2474. "segment construction\n");
  2475. }
  2476. spin_unlock(&sbi->s_inode_lock);
  2477. up_write(&nilfs->ns_segctor_sem);
  2478. nilfs_dispose_list(sbi, &garbage_list, 1);
  2479. nilfs_detach_writer(nilfs, sbi);
  2480. }