read.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665
  1. /*
  2. * linux/fs/nfs/read.c
  3. *
  4. * Block I/O for NFS
  5. *
  6. * Partial copy of Linus' read cache modifications to fs/nfs/file.c
  7. * modified for async RPC by okir@monad.swb.de
  8. */
  9. #include <linux/time.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/fcntl.h>
  13. #include <linux/stat.h>
  14. #include <linux/mm.h>
  15. #include <linux/slab.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sunrpc/clnt.h>
  18. #include <linux/nfs_fs.h>
  19. #include <linux/nfs_page.h>
  20. #include <asm/system.h>
  21. #include "nfs4_fs.h"
  22. #include "internal.h"
  23. #include "iostat.h"
  24. #include "fscache.h"
  25. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  26. static int nfs_pagein_multi(struct inode *, struct list_head *, unsigned int, size_t, int);
  27. static int nfs_pagein_one(struct inode *, struct list_head *, unsigned int, size_t, int);
  28. static const struct rpc_call_ops nfs_read_partial_ops;
  29. static const struct rpc_call_ops nfs_read_full_ops;
  30. static struct kmem_cache *nfs_rdata_cachep;
  31. static mempool_t *nfs_rdata_mempool;
  32. #define MIN_POOL_READ (32)
  33. struct nfs_read_data *nfs_readdata_alloc(unsigned int pagecount)
  34. {
  35. struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, GFP_KERNEL);
  36. if (p) {
  37. memset(p, 0, sizeof(*p));
  38. INIT_LIST_HEAD(&p->pages);
  39. p->npages = pagecount;
  40. p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
  41. if (pagecount <= ARRAY_SIZE(p->page_array))
  42. p->pagevec = p->page_array;
  43. else {
  44. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL);
  45. if (!p->pagevec) {
  46. mempool_free(p, nfs_rdata_mempool);
  47. p = NULL;
  48. }
  49. }
  50. }
  51. return p;
  52. }
  53. void nfs_readdata_free(struct nfs_read_data *p)
  54. {
  55. if (p && (p->pagevec != &p->page_array[0]))
  56. kfree(p->pagevec);
  57. mempool_free(p, nfs_rdata_mempool);
  58. }
  59. static void nfs_readdata_release(struct nfs_read_data *rdata)
  60. {
  61. put_nfs_open_context(rdata->args.context);
  62. nfs_readdata_free(rdata);
  63. }
  64. static
  65. int nfs_return_empty_page(struct page *page)
  66. {
  67. zero_user(page, 0, PAGE_CACHE_SIZE);
  68. SetPageUptodate(page);
  69. unlock_page(page);
  70. return 0;
  71. }
  72. static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
  73. {
  74. unsigned int remainder = data->args.count - data->res.count;
  75. unsigned int base = data->args.pgbase + data->res.count;
  76. unsigned int pglen;
  77. struct page **pages;
  78. if (data->res.eof == 0 || remainder == 0)
  79. return;
  80. /*
  81. * Note: "remainder" can never be negative, since we check for
  82. * this in the XDR code.
  83. */
  84. pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
  85. base &= ~PAGE_CACHE_MASK;
  86. pglen = PAGE_CACHE_SIZE - base;
  87. for (;;) {
  88. if (remainder <= pglen) {
  89. zero_user(*pages, base, remainder);
  90. break;
  91. }
  92. zero_user(*pages, base, pglen);
  93. pages++;
  94. remainder -= pglen;
  95. pglen = PAGE_CACHE_SIZE;
  96. base = 0;
  97. }
  98. }
  99. int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
  100. struct page *page)
  101. {
  102. LIST_HEAD(one_request);
  103. struct nfs_page *new;
  104. unsigned int len;
  105. len = nfs_page_length(page);
  106. if (len == 0)
  107. return nfs_return_empty_page(page);
  108. new = nfs_create_request(ctx, inode, page, 0, len);
  109. if (IS_ERR(new)) {
  110. unlock_page(page);
  111. return PTR_ERR(new);
  112. }
  113. if (len < PAGE_CACHE_SIZE)
  114. zero_user_segment(page, len, PAGE_CACHE_SIZE);
  115. nfs_list_add_request(new, &one_request);
  116. if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
  117. nfs_pagein_multi(inode, &one_request, 1, len, 0);
  118. else
  119. nfs_pagein_one(inode, &one_request, 1, len, 0);
  120. return 0;
  121. }
  122. static void nfs_readpage_release(struct nfs_page *req)
  123. {
  124. struct inode *d_inode = req->wb_context->path.dentry->d_inode;
  125. if (PageUptodate(req->wb_page))
  126. nfs_readpage_to_fscache(d_inode, req->wb_page, 0);
  127. unlock_page(req->wb_page);
  128. dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
  129. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  130. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  131. req->wb_bytes,
  132. (long long)req_offset(req));
  133. nfs_clear_request(req);
  134. nfs_release_request(req);
  135. }
  136. /*
  137. * Set up the NFS read request struct
  138. */
  139. static int nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
  140. const struct rpc_call_ops *call_ops,
  141. unsigned int count, unsigned int offset)
  142. {
  143. struct inode *inode = req->wb_context->path.dentry->d_inode;
  144. int swap_flags = IS_SWAPFILE(inode) ? NFS_RPC_SWAPFLAGS : 0;
  145. struct rpc_task *task;
  146. struct rpc_message msg = {
  147. .rpc_argp = &data->args,
  148. .rpc_resp = &data->res,
  149. .rpc_cred = req->wb_context->cred,
  150. };
  151. struct rpc_task_setup task_setup_data = {
  152. .task = &data->task,
  153. .rpc_client = NFS_CLIENT(inode),
  154. .rpc_message = &msg,
  155. .callback_ops = call_ops,
  156. .callback_data = data,
  157. .workqueue = nfsiod_workqueue,
  158. .flags = RPC_TASK_ASYNC | swap_flags,
  159. };
  160. data->req = req;
  161. data->inode = inode;
  162. data->cred = msg.rpc_cred;
  163. data->args.fh = NFS_FH(inode);
  164. data->args.offset = req_offset(req) + offset;
  165. data->args.pgbase = req->wb_pgbase + offset;
  166. data->args.pages = data->pagevec;
  167. data->args.count = count;
  168. data->args.context = get_nfs_open_context(req->wb_context);
  169. data->args.lock_context = req->wb_lock_context;
  170. data->res.fattr = &data->fattr;
  171. data->res.count = count;
  172. data->res.eof = 0;
  173. nfs_fattr_init(&data->fattr);
  174. /* Set up the initial task struct. */
  175. NFS_PROTO(inode)->read_setup(data, &msg);
  176. dprintk("NFS: %5u initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  177. data->task.tk_pid,
  178. inode->i_sb->s_id,
  179. (long long)NFS_FILEID(inode),
  180. count,
  181. (unsigned long long)data->args.offset);
  182. task = rpc_run_task(&task_setup_data);
  183. if (IS_ERR(task))
  184. return PTR_ERR(task);
  185. rpc_put_task(task);
  186. return 0;
  187. }
  188. static void
  189. nfs_async_read_error(struct list_head *head)
  190. {
  191. struct nfs_page *req;
  192. while (!list_empty(head)) {
  193. req = nfs_list_entry(head->next);
  194. nfs_list_remove_request(req);
  195. SetPageError(req->wb_page);
  196. nfs_readpage_release(req);
  197. }
  198. }
  199. /*
  200. * Generate multiple requests to fill a single page.
  201. *
  202. * We optimize to reduce the number of read operations on the wire. If we
  203. * detect that we're reading a page, or an area of a page, that is past the
  204. * end of file, we do not generate NFS read operations but just clear the
  205. * parts of the page that would have come back zero from the server anyway.
  206. *
  207. * We rely on the cached value of i_size to make this determination; another
  208. * client can fill pages on the server past our cached end-of-file, but we
  209. * won't see the new data until our attribute cache is updated. This is more
  210. * or less conventional NFS client behavior.
  211. */
  212. static int nfs_pagein_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int flags)
  213. {
  214. struct nfs_page *req = nfs_list_entry(head->next);
  215. struct page *page = req->wb_page;
  216. struct nfs_read_data *data;
  217. size_t rsize = NFS_SERVER(inode)->rsize, nbytes;
  218. unsigned int offset;
  219. int requests = 0;
  220. int ret = 0;
  221. LIST_HEAD(list);
  222. nfs_list_remove_request(req);
  223. nbytes = count;
  224. do {
  225. size_t len = min(nbytes,rsize);
  226. data = nfs_readdata_alloc(1);
  227. if (!data)
  228. goto out_bad;
  229. list_add(&data->pages, &list);
  230. requests++;
  231. nbytes -= len;
  232. } while(nbytes != 0);
  233. atomic_set(&req->wb_complete, requests);
  234. ClearPageError(page);
  235. offset = 0;
  236. nbytes = count;
  237. do {
  238. int ret2;
  239. data = list_entry(list.next, struct nfs_read_data, pages);
  240. list_del_init(&data->pages);
  241. data->pagevec[0] = page;
  242. if (nbytes < rsize)
  243. rsize = nbytes;
  244. ret2 = nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
  245. rsize, offset);
  246. if (ret == 0)
  247. ret = ret2;
  248. offset += rsize;
  249. nbytes -= rsize;
  250. } while (nbytes != 0);
  251. return ret;
  252. out_bad:
  253. while (!list_empty(&list)) {
  254. data = list_entry(list.next, struct nfs_read_data, pages);
  255. list_del(&data->pages);
  256. nfs_readdata_free(data);
  257. }
  258. SetPageError(page);
  259. nfs_readpage_release(req);
  260. return -ENOMEM;
  261. }
  262. static int nfs_pagein_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int flags)
  263. {
  264. struct nfs_page *req;
  265. struct page **pages;
  266. struct nfs_read_data *data;
  267. int ret = -ENOMEM;
  268. data = nfs_readdata_alloc(npages);
  269. if (!data)
  270. goto out_bad;
  271. pages = data->pagevec;
  272. while (!list_empty(head)) {
  273. req = nfs_list_entry(head->next);
  274. nfs_list_remove_request(req);
  275. nfs_list_add_request(req, &data->pages);
  276. ClearPageError(req->wb_page);
  277. *pages++ = req->wb_page;
  278. }
  279. req = nfs_list_entry(data->pages.next);
  280. return nfs_read_rpcsetup(req, data, &nfs_read_full_ops, count, 0);
  281. out_bad:
  282. nfs_async_read_error(head);
  283. return ret;
  284. }
  285. /*
  286. * This is the callback from RPC telling us whether a reply was
  287. * received or some error occurred (timeout or socket shutdown).
  288. */
  289. int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
  290. {
  291. int status;
  292. dprintk("NFS: %s: %5u, (status %d)\n", __func__, task->tk_pid,
  293. task->tk_status);
  294. status = NFS_PROTO(data->inode)->read_done(task, data);
  295. if (status != 0)
  296. return status;
  297. nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, data->res.count);
  298. if (task->tk_status == -ESTALE) {
  299. set_bit(NFS_INO_STALE, &NFS_I(data->inode)->flags);
  300. nfs_mark_for_revalidate(data->inode);
  301. }
  302. return 0;
  303. }
  304. static void nfs_readpage_retry(struct rpc_task *task, struct nfs_read_data *data)
  305. {
  306. struct nfs_readargs *argp = &data->args;
  307. struct nfs_readres *resp = &data->res;
  308. if (resp->eof || resp->count == argp->count)
  309. return;
  310. /* This is a short read! */
  311. nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
  312. /* Has the server at least made some progress? */
  313. if (resp->count == 0)
  314. return;
  315. /* Yes, so retry the read at the end of the data */
  316. argp->offset += resp->count;
  317. argp->pgbase += resp->count;
  318. argp->count -= resp->count;
  319. nfs_restart_rpc(task, NFS_SERVER(data->inode)->nfs_client);
  320. }
  321. /*
  322. * Handle a read reply that fills part of a page.
  323. */
  324. static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
  325. {
  326. struct nfs_read_data *data = calldata;
  327. if (nfs_readpage_result(task, data) != 0)
  328. return;
  329. if (task->tk_status < 0)
  330. return;
  331. nfs_readpage_truncate_uninitialised_page(data);
  332. nfs_readpage_retry(task, data);
  333. }
  334. static void nfs_readpage_release_partial(void *calldata)
  335. {
  336. struct nfs_read_data *data = calldata;
  337. struct nfs_page *req = data->req;
  338. struct page *page = req->wb_page;
  339. int status = data->task.tk_status;
  340. if (status < 0)
  341. SetPageError(page);
  342. if (atomic_dec_and_test(&req->wb_complete)) {
  343. if (!PageError(page))
  344. SetPageUptodate(page);
  345. nfs_readpage_release(req);
  346. }
  347. nfs_readdata_release(calldata);
  348. }
  349. #if defined(CONFIG_NFS_V4_1)
  350. void nfs_read_prepare(struct rpc_task *task, void *calldata)
  351. {
  352. struct nfs_read_data *data = calldata;
  353. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  354. &data->args.seq_args, &data->res.seq_res,
  355. 0, task))
  356. return;
  357. rpc_call_start(task);
  358. }
  359. #endif /* CONFIG_NFS_V4_1 */
  360. static const struct rpc_call_ops nfs_read_partial_ops = {
  361. #if defined(CONFIG_NFS_V4_1)
  362. .rpc_call_prepare = nfs_read_prepare,
  363. #endif /* CONFIG_NFS_V4_1 */
  364. .rpc_call_done = nfs_readpage_result_partial,
  365. .rpc_release = nfs_readpage_release_partial,
  366. };
  367. static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
  368. {
  369. unsigned int count = data->res.count;
  370. unsigned int base = data->args.pgbase;
  371. struct page **pages;
  372. if (data->res.eof)
  373. count = data->args.count;
  374. if (unlikely(count == 0))
  375. return;
  376. pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
  377. base &= ~PAGE_CACHE_MASK;
  378. count += base;
  379. for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
  380. SetPageUptodate(*pages);
  381. if (count == 0)
  382. return;
  383. /* Was this a short read? */
  384. if (data->res.eof || data->res.count == data->args.count)
  385. SetPageUptodate(*pages);
  386. }
  387. /*
  388. * This is the callback from RPC telling us whether a reply was
  389. * received or some error occurred (timeout or socket shutdown).
  390. */
  391. static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
  392. {
  393. struct nfs_read_data *data = calldata;
  394. if (nfs_readpage_result(task, data) != 0)
  395. return;
  396. if (task->tk_status < 0)
  397. return;
  398. /*
  399. * Note: nfs_readpage_retry may change the values of
  400. * data->args. In the multi-page case, we therefore need
  401. * to ensure that we call nfs_readpage_set_pages_uptodate()
  402. * first.
  403. */
  404. nfs_readpage_truncate_uninitialised_page(data);
  405. nfs_readpage_set_pages_uptodate(data);
  406. nfs_readpage_retry(task, data);
  407. }
  408. static void nfs_readpage_release_full(void *calldata)
  409. {
  410. struct nfs_read_data *data = calldata;
  411. while (!list_empty(&data->pages)) {
  412. struct nfs_page *req = nfs_list_entry(data->pages.next);
  413. nfs_list_remove_request(req);
  414. nfs_readpage_release(req);
  415. }
  416. nfs_readdata_release(calldata);
  417. }
  418. static const struct rpc_call_ops nfs_read_full_ops = {
  419. #if defined(CONFIG_NFS_V4_1)
  420. .rpc_call_prepare = nfs_read_prepare,
  421. #endif /* CONFIG_NFS_V4_1 */
  422. .rpc_call_done = nfs_readpage_result_full,
  423. .rpc_release = nfs_readpage_release_full,
  424. };
  425. /*
  426. * Read a page over NFS.
  427. * We read the page synchronously in the following case:
  428. * - The error flag is set for this page. This happens only when a
  429. * previous async read operation failed.
  430. */
  431. int nfs_readpage(struct file *file, struct page *page)
  432. {
  433. struct nfs_open_context *ctx;
  434. struct inode *inode = page->mapping->host;
  435. int error;
  436. dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
  437. page, PAGE_CACHE_SIZE, page->index);
  438. nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
  439. nfs_add_stats(inode, NFSIOS_READPAGES, 1);
  440. /*
  441. * Try to flush any pending writes to the file..
  442. *
  443. * NOTE! Because we own the page lock, there cannot
  444. * be any new pending writes generated at this point
  445. * for this page (other pages can be written to).
  446. */
  447. error = nfs_wb_page(inode, page);
  448. if (error)
  449. goto out_unlock;
  450. if (PageUptodate(page))
  451. goto out_unlock;
  452. error = -ESTALE;
  453. if (NFS_STALE(inode))
  454. goto out_unlock;
  455. if (file == NULL) {
  456. error = -EBADF;
  457. ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
  458. if (ctx == NULL)
  459. goto out_unlock;
  460. } else
  461. ctx = get_nfs_open_context(nfs_file_open_context(file));
  462. if (!IS_SYNC(inode)) {
  463. error = nfs_readpage_from_fscache(ctx, inode, page);
  464. if (error == 0)
  465. goto out;
  466. }
  467. error = nfs_readpage_async(ctx, inode, page);
  468. out:
  469. put_nfs_open_context(ctx);
  470. return error;
  471. out_unlock:
  472. unlock_page(page);
  473. return error;
  474. }
  475. struct nfs_readdesc {
  476. struct nfs_pageio_descriptor *pgio;
  477. struct nfs_open_context *ctx;
  478. };
  479. static int
  480. readpage_async_filler(void *data, struct page *page)
  481. {
  482. struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
  483. struct inode *inode = page->mapping->host;
  484. struct nfs_page *new;
  485. unsigned int len;
  486. int error;
  487. len = nfs_page_length(page);
  488. if (len == 0)
  489. return nfs_return_empty_page(page);
  490. new = nfs_create_request(desc->ctx, inode, page, 0, len);
  491. if (IS_ERR(new))
  492. goto out_error;
  493. if (len < PAGE_CACHE_SIZE)
  494. zero_user_segment(page, len, PAGE_CACHE_SIZE);
  495. if (!nfs_pageio_add_request(desc->pgio, new)) {
  496. error = desc->pgio->pg_error;
  497. goto out_unlock;
  498. }
  499. return 0;
  500. out_error:
  501. error = PTR_ERR(new);
  502. SetPageError(page);
  503. out_unlock:
  504. unlock_page(page);
  505. return error;
  506. }
  507. int nfs_readpages(struct file *filp, struct address_space *mapping,
  508. struct list_head *pages, unsigned nr_pages)
  509. {
  510. struct nfs_pageio_descriptor pgio;
  511. struct nfs_readdesc desc = {
  512. .pgio = &pgio,
  513. };
  514. struct inode *inode = mapping->host;
  515. struct nfs_server *server = NFS_SERVER(inode);
  516. size_t rsize = server->rsize;
  517. unsigned long npages;
  518. int ret = -ESTALE;
  519. dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
  520. inode->i_sb->s_id,
  521. (long long)NFS_FILEID(inode),
  522. nr_pages);
  523. nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
  524. if (NFS_STALE(inode))
  525. goto out;
  526. if (filp == NULL) {
  527. desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
  528. if (desc.ctx == NULL)
  529. return -EBADF;
  530. } else
  531. desc.ctx = get_nfs_open_context(nfs_file_open_context(filp));
  532. /* attempt to read as many of the pages as possible from the cache
  533. * - this returns -ENOBUFS immediately if the cookie is negative
  534. */
  535. ret = nfs_readpages_from_fscache(desc.ctx, inode, mapping,
  536. pages, &nr_pages);
  537. if (ret == 0)
  538. goto read_complete; /* all pages were read */
  539. if (rsize < PAGE_CACHE_SIZE)
  540. nfs_pageio_init(&pgio, inode, nfs_pagein_multi, rsize, 0);
  541. else
  542. nfs_pageio_init(&pgio, inode, nfs_pagein_one, rsize, 0);
  543. ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
  544. nfs_pageio_complete(&pgio);
  545. npages = (pgio.pg_bytes_written + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  546. nfs_add_stats(inode, NFSIOS_READPAGES, npages);
  547. read_complete:
  548. put_nfs_open_context(desc.ctx);
  549. out:
  550. return ret;
  551. }
  552. int __init nfs_init_readpagecache(void)
  553. {
  554. nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
  555. sizeof(struct nfs_read_data),
  556. 0, SLAB_HWCACHE_ALIGN,
  557. NULL);
  558. if (nfs_rdata_cachep == NULL)
  559. return -ENOMEM;
  560. nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
  561. nfs_rdata_cachep);
  562. if (nfs_rdata_mempool == NULL)
  563. return -ENOMEM;
  564. return 0;
  565. }
  566. void nfs_destroy_readpagecache(void)
  567. {
  568. mempool_destroy(nfs_rdata_mempool);
  569. kmem_cache_destroy(nfs_rdata_cachep);
  570. }