direct.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/nfs_fs.h>
  48. #include <linux/nfs_page.h>
  49. #include <linux/sunrpc/clnt.h>
  50. #include <asm/system.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/atomic.h>
  53. #include "internal.h"
  54. #include "iostat.h"
  55. #define NFSDBG_FACILITY NFSDBG_VFS
  56. static struct kmem_cache *nfs_direct_cachep;
  57. /*
  58. * This represents a set of asynchronous requests that we're waiting on
  59. */
  60. struct nfs_direct_req {
  61. struct kref kref; /* release manager */
  62. /* I/O parameters */
  63. struct nfs_open_context *ctx; /* file open context info */
  64. struct nfs_lock_context *l_ctx; /* Lock context info */
  65. struct kiocb * iocb; /* controlling i/o request */
  66. struct inode * inode; /* target file of i/o */
  67. /* completion state */
  68. atomic_t io_count; /* i/os we're waiting for */
  69. spinlock_t lock; /* protect completion state */
  70. ssize_t count, /* bytes actually processed */
  71. error; /* any reported error */
  72. struct completion completion; /* wait for i/o completion */
  73. /* commit state */
  74. struct list_head rewrite_list; /* saved nfs_write_data structs */
  75. struct nfs_write_data * commit_data; /* special write_data for commits */
  76. int flags;
  77. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  78. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  79. struct nfs_writeverf verf; /* unstable write verifier */
  80. };
  81. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  82. static const struct rpc_call_ops nfs_write_direct_ops;
  83. static inline void get_dreq(struct nfs_direct_req *dreq)
  84. {
  85. atomic_inc(&dreq->io_count);
  86. }
  87. static inline int put_dreq(struct nfs_direct_req *dreq)
  88. {
  89. return atomic_dec_and_test(&dreq->io_count);
  90. }
  91. /**
  92. * nfs_direct_IO - NFS address space operation for direct I/O
  93. * @rw: direction (read or write)
  94. * @iocb: target I/O control block
  95. * @iov: array of vectors that define I/O buffer
  96. * @pos: offset in file to begin the operation
  97. * @nr_segs: size of iovec array
  98. *
  99. * The presence of this routine in the address space ops vector means
  100. * the NFS client supports direct I/O. However, we shunt off direct
  101. * read and write requests before the VFS gets them, so this method
  102. * should never be called.
  103. */
  104. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  105. {
  106. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  107. iocb->ki_filp->f_path.dentry->d_name.name,
  108. (long long) pos, nr_segs);
  109. return -EINVAL;
  110. }
  111. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  112. {
  113. unsigned int npages;
  114. unsigned int i;
  115. if (count == 0)
  116. return;
  117. pages += (pgbase >> PAGE_SHIFT);
  118. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  119. for (i = 0; i < npages; i++) {
  120. struct page *page = pages[i];
  121. if (!PageCompound(page))
  122. set_page_dirty(page);
  123. }
  124. }
  125. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  126. {
  127. unsigned int i;
  128. for (i = 0; i < npages; i++)
  129. page_cache_release(pages[i]);
  130. }
  131. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  132. {
  133. struct nfs_direct_req *dreq;
  134. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  135. if (!dreq)
  136. return NULL;
  137. kref_init(&dreq->kref);
  138. kref_get(&dreq->kref);
  139. init_completion(&dreq->completion);
  140. INIT_LIST_HEAD(&dreq->rewrite_list);
  141. dreq->iocb = NULL;
  142. dreq->ctx = NULL;
  143. dreq->l_ctx = NULL;
  144. spin_lock_init(&dreq->lock);
  145. atomic_set(&dreq->io_count, 0);
  146. dreq->count = 0;
  147. dreq->error = 0;
  148. dreq->flags = 0;
  149. return dreq;
  150. }
  151. static void nfs_direct_req_free(struct kref *kref)
  152. {
  153. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  154. if (dreq->l_ctx != NULL)
  155. nfs_put_lock_context(dreq->l_ctx);
  156. if (dreq->ctx != NULL)
  157. put_nfs_open_context(dreq->ctx);
  158. kmem_cache_free(nfs_direct_cachep, dreq);
  159. }
  160. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  161. {
  162. kref_put(&dreq->kref, nfs_direct_req_free);
  163. }
  164. /*
  165. * Collects and returns the final error value/byte-count.
  166. */
  167. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  168. {
  169. ssize_t result = -EIOCBQUEUED;
  170. /* Async requests don't wait here */
  171. if (dreq->iocb)
  172. goto out;
  173. result = wait_for_completion_killable(&dreq->completion);
  174. if (!result)
  175. result = dreq->error;
  176. if (!result)
  177. result = dreq->count;
  178. out:
  179. return (ssize_t) result;
  180. }
  181. /*
  182. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  183. * the iocb is still valid here if this is a synchronous request.
  184. */
  185. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  186. {
  187. if (dreq->iocb) {
  188. long res = (long) dreq->error;
  189. if (!res)
  190. res = (long) dreq->count;
  191. aio_complete(dreq->iocb, res, 0);
  192. }
  193. complete_all(&dreq->completion);
  194. nfs_direct_req_release(dreq);
  195. }
  196. /*
  197. * We must hold a reference to all the pages in this direct read request
  198. * until the RPCs complete. This could be long *after* we are woken up in
  199. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  200. */
  201. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  202. {
  203. struct nfs_read_data *data = calldata;
  204. nfs_readpage_result(task, data);
  205. }
  206. static void nfs_direct_read_release(void *calldata)
  207. {
  208. struct nfs_read_data *data = calldata;
  209. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  210. int status = data->task.tk_status;
  211. spin_lock(&dreq->lock);
  212. if (unlikely(status < 0)) {
  213. dreq->error = status;
  214. spin_unlock(&dreq->lock);
  215. } else {
  216. dreq->count += data->res.count;
  217. spin_unlock(&dreq->lock);
  218. nfs_direct_dirty_pages(data->pagevec,
  219. data->args.pgbase,
  220. data->res.count);
  221. }
  222. nfs_direct_release_pages(data->pagevec, data->npages);
  223. if (put_dreq(dreq))
  224. nfs_direct_complete(dreq);
  225. nfs_readdata_free(data);
  226. }
  227. static const struct rpc_call_ops nfs_read_direct_ops = {
  228. #if defined(CONFIG_NFS_V4_1)
  229. .rpc_call_prepare = nfs_read_prepare,
  230. #endif /* CONFIG_NFS_V4_1 */
  231. .rpc_call_done = nfs_direct_read_result,
  232. .rpc_release = nfs_direct_read_release,
  233. };
  234. /*
  235. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  236. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  237. * bail and stop sending more reads. Read length accounting is
  238. * handled automatically by nfs_direct_read_result(). Otherwise, if
  239. * no requests have been sent, just return an error.
  240. */
  241. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  242. const struct iovec *iov,
  243. loff_t pos)
  244. {
  245. struct nfs_open_context *ctx = dreq->ctx;
  246. struct inode *inode = ctx->path.dentry->d_inode;
  247. unsigned long user_addr = (unsigned long)iov->iov_base;
  248. size_t count = iov->iov_len;
  249. size_t rsize = NFS_SERVER(inode)->rsize;
  250. struct rpc_task *task;
  251. struct rpc_message msg = {
  252. .rpc_cred = ctx->cred,
  253. };
  254. struct rpc_task_setup task_setup_data = {
  255. .rpc_client = NFS_CLIENT(inode),
  256. .rpc_message = &msg,
  257. .callback_ops = &nfs_read_direct_ops,
  258. .workqueue = nfsiod_workqueue,
  259. .flags = RPC_TASK_ASYNC,
  260. };
  261. unsigned int pgbase;
  262. int result;
  263. ssize_t started = 0;
  264. do {
  265. struct nfs_read_data *data;
  266. size_t bytes;
  267. pgbase = user_addr & ~PAGE_MASK;
  268. bytes = min(rsize,count);
  269. result = -ENOMEM;
  270. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  271. if (unlikely(!data))
  272. break;
  273. down_read(&current->mm->mmap_sem);
  274. result = get_user_pages(current, current->mm, user_addr,
  275. data->npages, 1, 0, data->pagevec, NULL);
  276. up_read(&current->mm->mmap_sem);
  277. if (result < 0) {
  278. nfs_readdata_free(data);
  279. break;
  280. }
  281. if ((unsigned)result < data->npages) {
  282. bytes = result * PAGE_SIZE;
  283. if (bytes <= pgbase) {
  284. nfs_direct_release_pages(data->pagevec, result);
  285. nfs_readdata_free(data);
  286. break;
  287. }
  288. bytes -= pgbase;
  289. data->npages = result;
  290. }
  291. get_dreq(dreq);
  292. data->req = (struct nfs_page *) dreq;
  293. data->inode = inode;
  294. data->cred = msg.rpc_cred;
  295. data->args.fh = NFS_FH(inode);
  296. data->args.context = ctx;
  297. data->args.lock_context = dreq->l_ctx;
  298. data->args.offset = pos;
  299. data->args.pgbase = pgbase;
  300. data->args.pages = data->pagevec;
  301. data->args.count = bytes;
  302. data->res.fattr = &data->fattr;
  303. data->res.eof = 0;
  304. data->res.count = bytes;
  305. nfs_fattr_init(&data->fattr);
  306. msg.rpc_argp = &data->args;
  307. msg.rpc_resp = &data->res;
  308. task_setup_data.task = &data->task;
  309. task_setup_data.callback_data = data;
  310. NFS_PROTO(inode)->read_setup(data, &msg);
  311. task = rpc_run_task(&task_setup_data);
  312. if (IS_ERR(task))
  313. break;
  314. rpc_put_task(task);
  315. dprintk("NFS: %5u initiated direct read call "
  316. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  317. data->task.tk_pid,
  318. inode->i_sb->s_id,
  319. (long long)NFS_FILEID(inode),
  320. bytes,
  321. (unsigned long long)data->args.offset);
  322. started += bytes;
  323. user_addr += bytes;
  324. pos += bytes;
  325. /* FIXME: Remove this unnecessary math from final patch */
  326. pgbase += bytes;
  327. pgbase &= ~PAGE_MASK;
  328. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  329. count -= bytes;
  330. } while (count != 0);
  331. if (started)
  332. return started;
  333. return result < 0 ? (ssize_t) result : -EFAULT;
  334. }
  335. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  336. const struct iovec *iov,
  337. unsigned long nr_segs,
  338. loff_t pos)
  339. {
  340. ssize_t result = -EINVAL;
  341. size_t requested_bytes = 0;
  342. unsigned long seg;
  343. get_dreq(dreq);
  344. for (seg = 0; seg < nr_segs; seg++) {
  345. const struct iovec *vec = &iov[seg];
  346. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  347. if (result < 0)
  348. break;
  349. requested_bytes += result;
  350. if ((size_t)result < vec->iov_len)
  351. break;
  352. pos += vec->iov_len;
  353. }
  354. if (put_dreq(dreq))
  355. nfs_direct_complete(dreq);
  356. if (requested_bytes != 0)
  357. return 0;
  358. if (result < 0)
  359. return result;
  360. return -EIO;
  361. }
  362. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  363. unsigned long nr_segs, loff_t pos)
  364. {
  365. ssize_t result = -ENOMEM;
  366. struct inode *inode = iocb->ki_filp->f_mapping->host;
  367. struct nfs_direct_req *dreq;
  368. dreq = nfs_direct_req_alloc();
  369. if (dreq == NULL)
  370. goto out;
  371. dreq->inode = inode;
  372. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  373. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  374. if (dreq->l_ctx == NULL)
  375. goto out_release;
  376. if (!is_sync_kiocb(iocb))
  377. dreq->iocb = iocb;
  378. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  379. if (!result)
  380. result = nfs_direct_wait(dreq);
  381. out_release:
  382. nfs_direct_req_release(dreq);
  383. out:
  384. return result;
  385. }
  386. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  387. {
  388. while (!list_empty(&dreq->rewrite_list)) {
  389. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  390. list_del(&data->pages);
  391. nfs_direct_release_pages(data->pagevec, data->npages);
  392. nfs_writedata_free(data);
  393. }
  394. }
  395. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  396. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  397. {
  398. struct inode *inode = dreq->inode;
  399. struct list_head *p;
  400. struct nfs_write_data *data;
  401. struct rpc_task *task;
  402. struct rpc_message msg = {
  403. .rpc_cred = dreq->ctx->cred,
  404. };
  405. struct rpc_task_setup task_setup_data = {
  406. .rpc_client = NFS_CLIENT(inode),
  407. .rpc_message = &msg,
  408. .callback_ops = &nfs_write_direct_ops,
  409. .workqueue = nfsiod_workqueue,
  410. .flags = RPC_TASK_ASYNC,
  411. };
  412. dreq->count = 0;
  413. get_dreq(dreq);
  414. list_for_each(p, &dreq->rewrite_list) {
  415. data = list_entry(p, struct nfs_write_data, pages);
  416. get_dreq(dreq);
  417. /* Use stable writes */
  418. data->args.stable = NFS_FILE_SYNC;
  419. /*
  420. * Reset data->res.
  421. */
  422. nfs_fattr_init(&data->fattr);
  423. data->res.count = data->args.count;
  424. memset(&data->verf, 0, sizeof(data->verf));
  425. /*
  426. * Reuse data->task; data->args should not have changed
  427. * since the original request was sent.
  428. */
  429. task_setup_data.task = &data->task;
  430. task_setup_data.callback_data = data;
  431. msg.rpc_argp = &data->args;
  432. msg.rpc_resp = &data->res;
  433. NFS_PROTO(inode)->write_setup(data, &msg);
  434. /*
  435. * We're called via an RPC callback, so BKL is already held.
  436. */
  437. task = rpc_run_task(&task_setup_data);
  438. if (!IS_ERR(task))
  439. rpc_put_task(task);
  440. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  441. data->task.tk_pid,
  442. inode->i_sb->s_id,
  443. (long long)NFS_FILEID(inode),
  444. data->args.count,
  445. (unsigned long long)data->args.offset);
  446. }
  447. if (put_dreq(dreq))
  448. nfs_direct_write_complete(dreq, inode);
  449. }
  450. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  451. {
  452. struct nfs_write_data *data = calldata;
  453. /* Call the NFS version-specific code */
  454. NFS_PROTO(data->inode)->commit_done(task, data);
  455. }
  456. static void nfs_direct_commit_release(void *calldata)
  457. {
  458. struct nfs_write_data *data = calldata;
  459. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  460. int status = data->task.tk_status;
  461. if (status < 0) {
  462. dprintk("NFS: %5u commit failed with error %d.\n",
  463. data->task.tk_pid, status);
  464. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  465. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  466. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  467. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  468. }
  469. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  470. nfs_direct_write_complete(dreq, data->inode);
  471. nfs_commit_free(data);
  472. }
  473. static const struct rpc_call_ops nfs_commit_direct_ops = {
  474. #if defined(CONFIG_NFS_V4_1)
  475. .rpc_call_prepare = nfs_write_prepare,
  476. #endif /* CONFIG_NFS_V4_1 */
  477. .rpc_call_done = nfs_direct_commit_result,
  478. .rpc_release = nfs_direct_commit_release,
  479. };
  480. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  481. {
  482. struct nfs_write_data *data = dreq->commit_data;
  483. struct rpc_task *task;
  484. struct rpc_message msg = {
  485. .rpc_argp = &data->args,
  486. .rpc_resp = &data->res,
  487. .rpc_cred = dreq->ctx->cred,
  488. };
  489. struct rpc_task_setup task_setup_data = {
  490. .task = &data->task,
  491. .rpc_client = NFS_CLIENT(dreq->inode),
  492. .rpc_message = &msg,
  493. .callback_ops = &nfs_commit_direct_ops,
  494. .callback_data = data,
  495. .workqueue = nfsiod_workqueue,
  496. .flags = RPC_TASK_ASYNC,
  497. };
  498. data->inode = dreq->inode;
  499. data->cred = msg.rpc_cred;
  500. data->args.fh = NFS_FH(data->inode);
  501. data->args.offset = 0;
  502. data->args.count = 0;
  503. data->args.context = dreq->ctx;
  504. data->args.lock_context = dreq->l_ctx;
  505. data->res.count = 0;
  506. data->res.fattr = &data->fattr;
  507. data->res.verf = &data->verf;
  508. nfs_fattr_init(&data->fattr);
  509. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  510. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  511. dreq->commit_data = NULL;
  512. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  513. task = rpc_run_task(&task_setup_data);
  514. if (!IS_ERR(task))
  515. rpc_put_task(task);
  516. }
  517. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  518. {
  519. int flags = dreq->flags;
  520. dreq->flags = 0;
  521. switch (flags) {
  522. case NFS_ODIRECT_DO_COMMIT:
  523. nfs_direct_commit_schedule(dreq);
  524. break;
  525. case NFS_ODIRECT_RESCHED_WRITES:
  526. nfs_direct_write_reschedule(dreq);
  527. break;
  528. default:
  529. if (dreq->commit_data != NULL)
  530. nfs_commit_free(dreq->commit_data);
  531. nfs_direct_free_writedata(dreq);
  532. nfs_zap_mapping(inode, inode->i_mapping);
  533. nfs_direct_complete(dreq);
  534. }
  535. }
  536. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  537. {
  538. dreq->commit_data = nfs_commitdata_alloc();
  539. if (dreq->commit_data != NULL)
  540. dreq->commit_data->req = (struct nfs_page *) dreq;
  541. }
  542. #else
  543. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  544. {
  545. dreq->commit_data = NULL;
  546. }
  547. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  548. {
  549. nfs_direct_free_writedata(dreq);
  550. nfs_zap_mapping(inode, inode->i_mapping);
  551. nfs_direct_complete(dreq);
  552. }
  553. #endif
  554. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  555. {
  556. struct nfs_write_data *data = calldata;
  557. if (nfs_writeback_done(task, data) != 0)
  558. return;
  559. }
  560. /*
  561. * NB: Return the value of the first error return code. Subsequent
  562. * errors after the first one are ignored.
  563. */
  564. static void nfs_direct_write_release(void *calldata)
  565. {
  566. struct nfs_write_data *data = calldata;
  567. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  568. int status = data->task.tk_status;
  569. spin_lock(&dreq->lock);
  570. if (unlikely(status < 0)) {
  571. /* An error has occurred, so we should not commit */
  572. dreq->flags = 0;
  573. dreq->error = status;
  574. }
  575. if (unlikely(dreq->error != 0))
  576. goto out_unlock;
  577. dreq->count += data->res.count;
  578. if (data->res.verf->committed != NFS_FILE_SYNC) {
  579. switch (dreq->flags) {
  580. case 0:
  581. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  582. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  583. break;
  584. case NFS_ODIRECT_DO_COMMIT:
  585. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  586. dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
  587. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  588. }
  589. }
  590. }
  591. out_unlock:
  592. spin_unlock(&dreq->lock);
  593. if (put_dreq(dreq))
  594. nfs_direct_write_complete(dreq, data->inode);
  595. }
  596. static const struct rpc_call_ops nfs_write_direct_ops = {
  597. #if defined(CONFIG_NFS_V4_1)
  598. .rpc_call_prepare = nfs_write_prepare,
  599. #endif /* CONFIG_NFS_V4_1 */
  600. .rpc_call_done = nfs_direct_write_result,
  601. .rpc_release = nfs_direct_write_release,
  602. };
  603. /*
  604. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  605. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  606. * bail and stop sending more writes. Write length accounting is
  607. * handled automatically by nfs_direct_write_result(). Otherwise, if
  608. * no requests have been sent, just return an error.
  609. */
  610. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  611. const struct iovec *iov,
  612. loff_t pos, int sync)
  613. {
  614. struct nfs_open_context *ctx = dreq->ctx;
  615. struct inode *inode = ctx->path.dentry->d_inode;
  616. unsigned long user_addr = (unsigned long)iov->iov_base;
  617. size_t count = iov->iov_len;
  618. struct rpc_task *task;
  619. struct rpc_message msg = {
  620. .rpc_cred = ctx->cred,
  621. };
  622. struct rpc_task_setup task_setup_data = {
  623. .rpc_client = NFS_CLIENT(inode),
  624. .rpc_message = &msg,
  625. .callback_ops = &nfs_write_direct_ops,
  626. .workqueue = nfsiod_workqueue,
  627. .flags = RPC_TASK_ASYNC,
  628. };
  629. size_t wsize = NFS_SERVER(inode)->wsize;
  630. unsigned int pgbase;
  631. int result;
  632. ssize_t started = 0;
  633. do {
  634. struct nfs_write_data *data;
  635. size_t bytes;
  636. pgbase = user_addr & ~PAGE_MASK;
  637. bytes = min(wsize,count);
  638. result = -ENOMEM;
  639. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  640. if (unlikely(!data))
  641. break;
  642. down_read(&current->mm->mmap_sem);
  643. result = get_user_pages(current, current->mm, user_addr,
  644. data->npages, 0, 0, data->pagevec, NULL);
  645. up_read(&current->mm->mmap_sem);
  646. if (result < 0) {
  647. nfs_writedata_free(data);
  648. break;
  649. }
  650. if ((unsigned)result < data->npages) {
  651. bytes = result * PAGE_SIZE;
  652. if (bytes <= pgbase) {
  653. nfs_direct_release_pages(data->pagevec, result);
  654. nfs_writedata_free(data);
  655. break;
  656. }
  657. bytes -= pgbase;
  658. data->npages = result;
  659. }
  660. get_dreq(dreq);
  661. list_move_tail(&data->pages, &dreq->rewrite_list);
  662. data->req = (struct nfs_page *) dreq;
  663. data->inode = inode;
  664. data->cred = msg.rpc_cred;
  665. data->args.fh = NFS_FH(inode);
  666. data->args.context = ctx;
  667. data->args.lock_context = dreq->l_ctx;
  668. data->args.offset = pos;
  669. data->args.pgbase = pgbase;
  670. data->args.pages = data->pagevec;
  671. data->args.count = bytes;
  672. data->args.stable = sync;
  673. data->res.fattr = &data->fattr;
  674. data->res.count = bytes;
  675. data->res.verf = &data->verf;
  676. nfs_fattr_init(&data->fattr);
  677. task_setup_data.task = &data->task;
  678. task_setup_data.callback_data = data;
  679. msg.rpc_argp = &data->args;
  680. msg.rpc_resp = &data->res;
  681. NFS_PROTO(inode)->write_setup(data, &msg);
  682. task = rpc_run_task(&task_setup_data);
  683. if (IS_ERR(task))
  684. break;
  685. rpc_put_task(task);
  686. dprintk("NFS: %5u initiated direct write call "
  687. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  688. data->task.tk_pid,
  689. inode->i_sb->s_id,
  690. (long long)NFS_FILEID(inode),
  691. bytes,
  692. (unsigned long long)data->args.offset);
  693. started += bytes;
  694. user_addr += bytes;
  695. pos += bytes;
  696. /* FIXME: Remove this useless math from the final patch */
  697. pgbase += bytes;
  698. pgbase &= ~PAGE_MASK;
  699. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  700. count -= bytes;
  701. } while (count != 0);
  702. if (started)
  703. return started;
  704. return result < 0 ? (ssize_t) result : -EFAULT;
  705. }
  706. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  707. const struct iovec *iov,
  708. unsigned long nr_segs,
  709. loff_t pos, int sync)
  710. {
  711. ssize_t result = 0;
  712. size_t requested_bytes = 0;
  713. unsigned long seg;
  714. get_dreq(dreq);
  715. for (seg = 0; seg < nr_segs; seg++) {
  716. const struct iovec *vec = &iov[seg];
  717. result = nfs_direct_write_schedule_segment(dreq, vec,
  718. pos, sync);
  719. if (result < 0)
  720. break;
  721. requested_bytes += result;
  722. if ((size_t)result < vec->iov_len)
  723. break;
  724. pos += vec->iov_len;
  725. }
  726. if (put_dreq(dreq))
  727. nfs_direct_write_complete(dreq, dreq->inode);
  728. if (requested_bytes != 0)
  729. return 0;
  730. if (result < 0)
  731. return result;
  732. return -EIO;
  733. }
  734. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  735. unsigned long nr_segs, loff_t pos,
  736. size_t count)
  737. {
  738. ssize_t result = -ENOMEM;
  739. struct inode *inode = iocb->ki_filp->f_mapping->host;
  740. struct nfs_direct_req *dreq;
  741. size_t wsize = NFS_SERVER(inode)->wsize;
  742. int sync = NFS_UNSTABLE;
  743. dreq = nfs_direct_req_alloc();
  744. if (!dreq)
  745. goto out;
  746. nfs_alloc_commit_data(dreq);
  747. if (dreq->commit_data == NULL || count < wsize)
  748. sync = NFS_FILE_SYNC;
  749. dreq->inode = inode;
  750. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  751. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  752. if (dreq->l_ctx != NULL)
  753. goto out_release;
  754. if (!is_sync_kiocb(iocb))
  755. dreq->iocb = iocb;
  756. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  757. if (!result)
  758. result = nfs_direct_wait(dreq);
  759. out_release:
  760. nfs_direct_req_release(dreq);
  761. out:
  762. return result;
  763. }
  764. /**
  765. * nfs_file_direct_read - file direct read operation for NFS files
  766. * @iocb: target I/O control block
  767. * @iov: vector of user buffers into which to read data
  768. * @nr_segs: size of iov vector
  769. * @pos: byte offset in file where reading starts
  770. *
  771. * We use this function for direct reads instead of calling
  772. * generic_file_aio_read() in order to avoid gfar's check to see if
  773. * the request starts before the end of the file. For that check
  774. * to work, we must generate a GETATTR before each direct read, and
  775. * even then there is a window between the GETATTR and the subsequent
  776. * READ where the file size could change. Our preference is simply
  777. * to do all reads the application wants, and the server will take
  778. * care of managing the end of file boundary.
  779. *
  780. * This function also eliminates unnecessarily updating the file's
  781. * atime locally, as the NFS server sets the file's atime, and this
  782. * client must read the updated atime from the server back into its
  783. * cache.
  784. */
  785. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  786. unsigned long nr_segs, loff_t pos)
  787. {
  788. ssize_t retval = -EINVAL;
  789. struct file *file = iocb->ki_filp;
  790. struct address_space *mapping = file->f_mapping;
  791. size_t count;
  792. count = iov_length(iov, nr_segs);
  793. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  794. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  795. file->f_path.dentry->d_parent->d_name.name,
  796. file->f_path.dentry->d_name.name,
  797. count, (long long) pos);
  798. retval = 0;
  799. if (!count)
  800. goto out;
  801. retval = nfs_sync_mapping(mapping);
  802. if (retval)
  803. goto out;
  804. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  805. if (retval > 0)
  806. iocb->ki_pos = pos + retval;
  807. out:
  808. return retval;
  809. }
  810. /**
  811. * nfs_file_direct_write - file direct write operation for NFS files
  812. * @iocb: target I/O control block
  813. * @iov: vector of user buffers from which to write data
  814. * @nr_segs: size of iov vector
  815. * @pos: byte offset in file where writing starts
  816. *
  817. * We use this function for direct writes instead of calling
  818. * generic_file_aio_write() in order to avoid taking the inode
  819. * semaphore and updating the i_size. The NFS server will set
  820. * the new i_size and this client must read the updated size
  821. * back into its cache. We let the server do generic write
  822. * parameter checking and report problems.
  823. *
  824. * We eliminate local atime updates, see direct read above.
  825. *
  826. * We avoid unnecessary page cache invalidations for normal cached
  827. * readers of this file.
  828. *
  829. * Note that O_APPEND is not supported for NFS direct writes, as there
  830. * is no atomic O_APPEND write facility in the NFS protocol.
  831. */
  832. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  833. unsigned long nr_segs, loff_t pos)
  834. {
  835. ssize_t retval = -EINVAL;
  836. struct file *file = iocb->ki_filp;
  837. struct address_space *mapping = file->f_mapping;
  838. size_t count;
  839. count = iov_length(iov, nr_segs);
  840. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  841. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  842. file->f_path.dentry->d_parent->d_name.name,
  843. file->f_path.dentry->d_name.name,
  844. count, (long long) pos);
  845. retval = generic_write_checks(file, &pos, &count, 0);
  846. if (retval)
  847. goto out;
  848. retval = -EINVAL;
  849. if ((ssize_t) count < 0)
  850. goto out;
  851. retval = 0;
  852. if (!count)
  853. goto out;
  854. retval = nfs_sync_mapping(mapping);
  855. if (retval)
  856. goto out;
  857. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  858. if (retval > 0)
  859. iocb->ki_pos = pos + retval;
  860. out:
  861. return retval;
  862. }
  863. /**
  864. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  865. *
  866. */
  867. int __init nfs_init_directcache(void)
  868. {
  869. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  870. sizeof(struct nfs_direct_req),
  871. 0, (SLAB_RECLAIM_ACCOUNT|
  872. SLAB_MEM_SPREAD),
  873. NULL);
  874. if (nfs_direct_cachep == NULL)
  875. return -ENOMEM;
  876. return 0;
  877. }
  878. /**
  879. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  880. *
  881. */
  882. void nfs_destroy_directcache(void)
  883. {
  884. kmem_cache_destroy(nfs_direct_cachep);
  885. }