libfs.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /*
  2. * fs/libfs.c
  3. * Library for filesystems writers.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/slab.h>
  8. #include <linux/mount.h>
  9. #include <linux/vfs.h>
  10. #include <linux/quotaops.h>
  11. #include <linux/mutex.h>
  12. #include <linux/exportfs.h>
  13. #include <linux/writeback.h>
  14. #include <linux/buffer_head.h>
  15. #include <asm/uaccess.h>
  16. int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  17. struct kstat *stat)
  18. {
  19. struct inode *inode = dentry->d_inode;
  20. generic_fillattr(inode, stat);
  21. stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  22. return 0;
  23. }
  24. int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  25. {
  26. buf->f_type = dentry->d_sb->s_magic;
  27. buf->f_bsize = PAGE_CACHE_SIZE;
  28. buf->f_namelen = NAME_MAX;
  29. return 0;
  30. }
  31. /*
  32. * Retaining negative dentries for an in-memory filesystem just wastes
  33. * memory and lookup time: arrange for them to be deleted immediately.
  34. */
  35. static int simple_delete_dentry(struct dentry *dentry)
  36. {
  37. return 1;
  38. }
  39. /*
  40. * Lookup the data. This is trivial - if the dentry didn't already
  41. * exist, we know it is negative. Set d_op to delete negative dentries.
  42. */
  43. struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  44. {
  45. static const struct dentry_operations simple_dentry_operations = {
  46. .d_delete = simple_delete_dentry,
  47. };
  48. if (dentry->d_name.len > NAME_MAX)
  49. return ERR_PTR(-ENAMETOOLONG);
  50. dentry->d_op = &simple_dentry_operations;
  51. d_add(dentry, NULL);
  52. return NULL;
  53. }
  54. int dcache_dir_open(struct inode *inode, struct file *file)
  55. {
  56. static struct qstr cursor_name = {.len = 1, .name = "."};
  57. file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  58. return file->private_data ? 0 : -ENOMEM;
  59. }
  60. int dcache_dir_close(struct inode *inode, struct file *file)
  61. {
  62. dput(file->private_data);
  63. return 0;
  64. }
  65. loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
  66. {
  67. mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
  68. switch (origin) {
  69. case 1:
  70. offset += file->f_pos;
  71. case 0:
  72. if (offset >= 0)
  73. break;
  74. default:
  75. mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
  76. return -EINVAL;
  77. }
  78. if (offset != file->f_pos) {
  79. file->f_pos = offset;
  80. if (file->f_pos >= 2) {
  81. struct list_head *p;
  82. struct dentry *cursor = file->private_data;
  83. loff_t n = file->f_pos - 2;
  84. spin_lock(&dcache_lock);
  85. list_del(&cursor->d_u.d_child);
  86. p = file->f_path.dentry->d_subdirs.next;
  87. while (n && p != &file->f_path.dentry->d_subdirs) {
  88. struct dentry *next;
  89. next = list_entry(p, struct dentry, d_u.d_child);
  90. if (!d_unhashed(next) && next->d_inode)
  91. n--;
  92. p = p->next;
  93. }
  94. list_add_tail(&cursor->d_u.d_child, p);
  95. spin_unlock(&dcache_lock);
  96. }
  97. }
  98. mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
  99. return offset;
  100. }
  101. /* Relationship between i_mode and the DT_xxx types */
  102. static inline unsigned char dt_type(struct inode *inode)
  103. {
  104. return (inode->i_mode >> 12) & 15;
  105. }
  106. /*
  107. * Directory is locked and all positive dentries in it are safe, since
  108. * for ramfs-type trees they can't go away without unlink() or rmdir(),
  109. * both impossible due to the lock on directory.
  110. */
  111. int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
  112. {
  113. struct dentry *dentry = filp->f_path.dentry;
  114. struct dentry *cursor = filp->private_data;
  115. struct list_head *p, *q = &cursor->d_u.d_child;
  116. ino_t ino;
  117. int i = filp->f_pos;
  118. switch (i) {
  119. case 0:
  120. ino = dentry->d_inode->i_ino;
  121. if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
  122. break;
  123. filp->f_pos++;
  124. i++;
  125. /* fallthrough */
  126. case 1:
  127. ino = parent_ino(dentry);
  128. if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
  129. break;
  130. filp->f_pos++;
  131. i++;
  132. /* fallthrough */
  133. default:
  134. spin_lock(&dcache_lock);
  135. if (filp->f_pos == 2)
  136. list_move(q, &dentry->d_subdirs);
  137. for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
  138. struct dentry *next;
  139. next = list_entry(p, struct dentry, d_u.d_child);
  140. if (d_unhashed(next) || !next->d_inode)
  141. continue;
  142. spin_unlock(&dcache_lock);
  143. if (filldir(dirent, next->d_name.name,
  144. next->d_name.len, filp->f_pos,
  145. next->d_inode->i_ino,
  146. dt_type(next->d_inode)) < 0)
  147. return 0;
  148. spin_lock(&dcache_lock);
  149. /* next is still alive */
  150. list_move(q, p);
  151. p = q;
  152. filp->f_pos++;
  153. }
  154. spin_unlock(&dcache_lock);
  155. }
  156. return 0;
  157. }
  158. ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
  159. {
  160. return -EISDIR;
  161. }
  162. const struct file_operations simple_dir_operations = {
  163. .open = dcache_dir_open,
  164. .release = dcache_dir_close,
  165. .llseek = dcache_dir_lseek,
  166. .read = generic_read_dir,
  167. .readdir = dcache_readdir,
  168. .fsync = noop_fsync,
  169. };
  170. const struct inode_operations simple_dir_inode_operations = {
  171. .lookup = simple_lookup,
  172. };
  173. static const struct super_operations simple_super_operations = {
  174. .statfs = simple_statfs,
  175. };
  176. /*
  177. * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
  178. * will never be mountable)
  179. */
  180. int get_sb_pseudo(struct file_system_type *fs_type, char *name,
  181. const struct super_operations *ops, unsigned long magic,
  182. struct vfsmount *mnt)
  183. {
  184. struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
  185. struct dentry *dentry;
  186. struct inode *root;
  187. struct qstr d_name = {.name = name, .len = strlen(name)};
  188. if (IS_ERR(s))
  189. return PTR_ERR(s);
  190. s->s_flags = MS_NOUSER;
  191. s->s_maxbytes = MAX_LFS_FILESIZE;
  192. s->s_blocksize = PAGE_SIZE;
  193. s->s_blocksize_bits = PAGE_SHIFT;
  194. s->s_magic = magic;
  195. s->s_op = ops ? ops : &simple_super_operations;
  196. s->s_time_gran = 1;
  197. root = new_inode(s);
  198. if (!root)
  199. goto Enomem;
  200. /*
  201. * since this is the first inode, make it number 1. New inodes created
  202. * after this must take care not to collide with it (by passing
  203. * max_reserved of 1 to iunique).
  204. */
  205. root->i_ino = 1;
  206. root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
  207. root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
  208. dentry = d_alloc(NULL, &d_name);
  209. if (!dentry) {
  210. iput(root);
  211. goto Enomem;
  212. }
  213. dentry->d_sb = s;
  214. dentry->d_parent = dentry;
  215. d_instantiate(dentry, root);
  216. s->s_root = dentry;
  217. s->s_flags |= MS_ACTIVE;
  218. simple_set_mnt(mnt, s);
  219. return 0;
  220. Enomem:
  221. deactivate_locked_super(s);
  222. return -ENOMEM;
  223. }
  224. int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
  225. {
  226. struct inode *inode = old_dentry->d_inode;
  227. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  228. inc_nlink(inode);
  229. atomic_inc(&inode->i_count);
  230. dget(dentry);
  231. d_instantiate(dentry, inode);
  232. return 0;
  233. }
  234. static inline int simple_positive(struct dentry *dentry)
  235. {
  236. return dentry->d_inode && !d_unhashed(dentry);
  237. }
  238. int simple_empty(struct dentry *dentry)
  239. {
  240. struct dentry *child;
  241. int ret = 0;
  242. spin_lock(&dcache_lock);
  243. list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
  244. if (simple_positive(child))
  245. goto out;
  246. ret = 1;
  247. out:
  248. spin_unlock(&dcache_lock);
  249. return ret;
  250. }
  251. int simple_unlink(struct inode *dir, struct dentry *dentry)
  252. {
  253. struct inode *inode = dentry->d_inode;
  254. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  255. drop_nlink(inode);
  256. dput(dentry);
  257. return 0;
  258. }
  259. int simple_rmdir(struct inode *dir, struct dentry *dentry)
  260. {
  261. if (!simple_empty(dentry))
  262. return -ENOTEMPTY;
  263. drop_nlink(dentry->d_inode);
  264. simple_unlink(dir, dentry);
  265. drop_nlink(dir);
  266. return 0;
  267. }
  268. int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
  269. struct inode *new_dir, struct dentry *new_dentry)
  270. {
  271. struct inode *inode = old_dentry->d_inode;
  272. int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
  273. if (!simple_empty(new_dentry))
  274. return -ENOTEMPTY;
  275. if (new_dentry->d_inode) {
  276. simple_unlink(new_dir, new_dentry);
  277. if (they_are_dirs)
  278. drop_nlink(old_dir);
  279. } else if (they_are_dirs) {
  280. drop_nlink(old_dir);
  281. inc_nlink(new_dir);
  282. }
  283. old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
  284. new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
  285. return 0;
  286. }
  287. /**
  288. * simple_setattr - setattr for simple filesystem
  289. * @dentry: dentry
  290. * @iattr: iattr structure
  291. *
  292. * Returns 0 on success, -error on failure.
  293. *
  294. * simple_setattr is a simple ->setattr implementation without a proper
  295. * implementation of size changes.
  296. *
  297. * It can either be used for in-memory filesystems or special files
  298. * on simple regular filesystems. Anything that needs to change on-disk
  299. * or wire state on size changes needs its own setattr method.
  300. */
  301. int simple_setattr(struct dentry *dentry, struct iattr *iattr)
  302. {
  303. struct inode *inode = dentry->d_inode;
  304. int error;
  305. WARN_ON_ONCE(inode->i_op->truncate);
  306. error = inode_change_ok(inode, iattr);
  307. if (error)
  308. return error;
  309. if (iattr->ia_valid & ATTR_SIZE)
  310. truncate_setsize(inode, iattr->ia_size);
  311. setattr_copy(inode, iattr);
  312. mark_inode_dirty(inode);
  313. return 0;
  314. }
  315. EXPORT_SYMBOL(simple_setattr);
  316. int simple_readpage(struct file *file, struct page *page)
  317. {
  318. clear_highpage(page);
  319. flush_dcache_page(page);
  320. SetPageUptodate(page);
  321. unlock_page(page);
  322. return 0;
  323. }
  324. int simple_write_begin(struct file *file, struct address_space *mapping,
  325. loff_t pos, unsigned len, unsigned flags,
  326. struct page **pagep, void **fsdata)
  327. {
  328. struct page *page;
  329. pgoff_t index;
  330. index = pos >> PAGE_CACHE_SHIFT;
  331. page = grab_cache_page_write_begin(mapping, index, flags);
  332. if (!page)
  333. return -ENOMEM;
  334. *pagep = page;
  335. if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
  336. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  337. zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
  338. }
  339. return 0;
  340. }
  341. /**
  342. * simple_write_end - .write_end helper for non-block-device FSes
  343. * @available: See .write_end of address_space_operations
  344. * @file: "
  345. * @mapping: "
  346. * @pos: "
  347. * @len: "
  348. * @copied: "
  349. * @page: "
  350. * @fsdata: "
  351. *
  352. * simple_write_end does the minimum needed for updating a page after writing is
  353. * done. It has the same API signature as the .write_end of
  354. * address_space_operations vector. So it can just be set onto .write_end for
  355. * FSes that don't need any other processing. i_mutex is assumed to be held.
  356. * Block based filesystems should use generic_write_end().
  357. * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
  358. * is not called, so a filesystem that actually does store data in .write_inode
  359. * should extend on what's done here with a call to mark_inode_dirty() in the
  360. * case that i_size has changed.
  361. */
  362. int simple_write_end(struct file *file, struct address_space *mapping,
  363. loff_t pos, unsigned len, unsigned copied,
  364. struct page *page, void *fsdata)
  365. {
  366. struct inode *inode = page->mapping->host;
  367. loff_t last_pos = pos + copied;
  368. /* zero the stale part of the page if we did a short copy */
  369. if (copied < len) {
  370. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  371. zero_user(page, from + copied, len - copied);
  372. }
  373. if (!PageUptodate(page))
  374. SetPageUptodate(page);
  375. /*
  376. * No need to use i_size_read() here, the i_size
  377. * cannot change under us because we hold the i_mutex.
  378. */
  379. if (last_pos > inode->i_size)
  380. i_size_write(inode, last_pos);
  381. set_page_dirty(page);
  382. unlock_page(page);
  383. page_cache_release(page);
  384. return copied;
  385. }
  386. /*
  387. * the inodes created here are not hashed. If you use iunique to generate
  388. * unique inode values later for this filesystem, then you must take care
  389. * to pass it an appropriate max_reserved value to avoid collisions.
  390. */
  391. int simple_fill_super(struct super_block *s, unsigned long magic,
  392. struct tree_descr *files)
  393. {
  394. struct inode *inode;
  395. struct dentry *root;
  396. struct dentry *dentry;
  397. int i;
  398. s->s_blocksize = PAGE_CACHE_SIZE;
  399. s->s_blocksize_bits = PAGE_CACHE_SHIFT;
  400. s->s_magic = magic;
  401. s->s_op = &simple_super_operations;
  402. s->s_time_gran = 1;
  403. inode = new_inode(s);
  404. if (!inode)
  405. return -ENOMEM;
  406. /*
  407. * because the root inode is 1, the files array must not contain an
  408. * entry at index 1
  409. */
  410. inode->i_ino = 1;
  411. inode->i_mode = S_IFDIR | 0755;
  412. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  413. inode->i_op = &simple_dir_inode_operations;
  414. inode->i_fop = &simple_dir_operations;
  415. inode->i_nlink = 2;
  416. root = d_alloc_root(inode);
  417. if (!root) {
  418. iput(inode);
  419. return -ENOMEM;
  420. }
  421. for (i = 0; !files->name || files->name[0]; i++, files++) {
  422. if (!files->name)
  423. continue;
  424. /* warn if it tries to conflict with the root inode */
  425. if (unlikely(i == 1))
  426. printk(KERN_WARNING "%s: %s passed in a files array"
  427. "with an index of 1!\n", __func__,
  428. s->s_type->name);
  429. dentry = d_alloc_name(root, files->name);
  430. if (!dentry)
  431. goto out;
  432. inode = new_inode(s);
  433. if (!inode)
  434. goto out;
  435. inode->i_mode = S_IFREG | files->mode;
  436. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  437. inode->i_fop = files->ops;
  438. inode->i_ino = i;
  439. d_add(dentry, inode);
  440. }
  441. s->s_root = root;
  442. return 0;
  443. out:
  444. d_genocide(root);
  445. dput(root);
  446. return -ENOMEM;
  447. }
  448. static DEFINE_SPINLOCK(pin_fs_lock);
  449. int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
  450. {
  451. struct vfsmount *mnt = NULL;
  452. spin_lock(&pin_fs_lock);
  453. if (unlikely(!*mount)) {
  454. spin_unlock(&pin_fs_lock);
  455. mnt = vfs_kern_mount(type, 0, type->name, NULL);
  456. if (IS_ERR(mnt))
  457. return PTR_ERR(mnt);
  458. spin_lock(&pin_fs_lock);
  459. if (!*mount)
  460. *mount = mnt;
  461. }
  462. mntget(*mount);
  463. ++*count;
  464. spin_unlock(&pin_fs_lock);
  465. mntput(mnt);
  466. return 0;
  467. }
  468. void simple_release_fs(struct vfsmount **mount, int *count)
  469. {
  470. struct vfsmount *mnt;
  471. spin_lock(&pin_fs_lock);
  472. mnt = *mount;
  473. if (!--*count)
  474. *mount = NULL;
  475. spin_unlock(&pin_fs_lock);
  476. mntput(mnt);
  477. }
  478. /**
  479. * simple_read_from_buffer - copy data from the buffer to user space
  480. * @to: the user space buffer to read to
  481. * @count: the maximum number of bytes to read
  482. * @ppos: the current position in the buffer
  483. * @from: the buffer to read from
  484. * @available: the size of the buffer
  485. *
  486. * The simple_read_from_buffer() function reads up to @count bytes from the
  487. * buffer @from at offset @ppos into the user space address starting at @to.
  488. *
  489. * On success, the number of bytes read is returned and the offset @ppos is
  490. * advanced by this number, or negative value is returned on error.
  491. **/
  492. ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
  493. const void *from, size_t available)
  494. {
  495. loff_t pos = *ppos;
  496. size_t ret;
  497. if (pos < 0)
  498. return -EINVAL;
  499. if (pos >= available || !count)
  500. return 0;
  501. if (count > available - pos)
  502. count = available - pos;
  503. ret = copy_to_user(to, from + pos, count);
  504. if (ret == count)
  505. return -EFAULT;
  506. count -= ret;
  507. *ppos = pos + count;
  508. return count;
  509. }
  510. /**
  511. * simple_write_to_buffer - copy data from user space to the buffer
  512. * @to: the buffer to write to
  513. * @available: the size of the buffer
  514. * @ppos: the current position in the buffer
  515. * @from: the user space buffer to read from
  516. * @count: the maximum number of bytes to read
  517. *
  518. * The simple_write_to_buffer() function reads up to @count bytes from the user
  519. * space address starting at @from into the buffer @to at offset @ppos.
  520. *
  521. * On success, the number of bytes written is returned and the offset @ppos is
  522. * advanced by this number, or negative value is returned on error.
  523. **/
  524. ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
  525. const void __user *from, size_t count)
  526. {
  527. loff_t pos = *ppos;
  528. size_t res;
  529. if (pos < 0)
  530. return -EINVAL;
  531. if (pos >= available || !count)
  532. return 0;
  533. if (count > available - pos)
  534. count = available - pos;
  535. res = copy_from_user(to + pos, from, count);
  536. if (res == count)
  537. return -EFAULT;
  538. count -= res;
  539. *ppos = pos + count;
  540. return count;
  541. }
  542. /**
  543. * memory_read_from_buffer - copy data from the buffer
  544. * @to: the kernel space buffer to read to
  545. * @count: the maximum number of bytes to read
  546. * @ppos: the current position in the buffer
  547. * @from: the buffer to read from
  548. * @available: the size of the buffer
  549. *
  550. * The memory_read_from_buffer() function reads up to @count bytes from the
  551. * buffer @from at offset @ppos into the kernel space address starting at @to.
  552. *
  553. * On success, the number of bytes read is returned and the offset @ppos is
  554. * advanced by this number, or negative value is returned on error.
  555. **/
  556. ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
  557. const void *from, size_t available)
  558. {
  559. loff_t pos = *ppos;
  560. if (pos < 0)
  561. return -EINVAL;
  562. if (pos >= available)
  563. return 0;
  564. if (count > available - pos)
  565. count = available - pos;
  566. memcpy(to, from + pos, count);
  567. *ppos = pos + count;
  568. return count;
  569. }
  570. /*
  571. * Transaction based IO.
  572. * The file expects a single write which triggers the transaction, and then
  573. * possibly a read which collects the result - which is stored in a
  574. * file-local buffer.
  575. */
  576. void simple_transaction_set(struct file *file, size_t n)
  577. {
  578. struct simple_transaction_argresp *ar = file->private_data;
  579. BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
  580. /*
  581. * The barrier ensures that ar->size will really remain zero until
  582. * ar->data is ready for reading.
  583. */
  584. smp_mb();
  585. ar->size = n;
  586. }
  587. char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
  588. {
  589. struct simple_transaction_argresp *ar;
  590. static DEFINE_SPINLOCK(simple_transaction_lock);
  591. if (size > SIMPLE_TRANSACTION_LIMIT - 1)
  592. return ERR_PTR(-EFBIG);
  593. ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
  594. if (!ar)
  595. return ERR_PTR(-ENOMEM);
  596. spin_lock(&simple_transaction_lock);
  597. /* only one write allowed per open */
  598. if (file->private_data) {
  599. spin_unlock(&simple_transaction_lock);
  600. free_page((unsigned long)ar);
  601. return ERR_PTR(-EBUSY);
  602. }
  603. file->private_data = ar;
  604. spin_unlock(&simple_transaction_lock);
  605. if (copy_from_user(ar->data, buf, size))
  606. return ERR_PTR(-EFAULT);
  607. return ar->data;
  608. }
  609. ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
  610. {
  611. struct simple_transaction_argresp *ar = file->private_data;
  612. if (!ar)
  613. return 0;
  614. return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
  615. }
  616. int simple_transaction_release(struct inode *inode, struct file *file)
  617. {
  618. free_page((unsigned long)file->private_data);
  619. return 0;
  620. }
  621. /* Simple attribute files */
  622. struct simple_attr {
  623. int (*get)(void *, u64 *);
  624. int (*set)(void *, u64);
  625. char get_buf[24]; /* enough to store a u64 and "\n\0" */
  626. char set_buf[24];
  627. void *data;
  628. const char *fmt; /* format for read operation */
  629. struct mutex mutex; /* protects access to these buffers */
  630. };
  631. /* simple_attr_open is called by an actual attribute open file operation
  632. * to set the attribute specific access operations. */
  633. int simple_attr_open(struct inode *inode, struct file *file,
  634. int (*get)(void *, u64 *), int (*set)(void *, u64),
  635. const char *fmt)
  636. {
  637. struct simple_attr *attr;
  638. attr = kmalloc(sizeof(*attr), GFP_KERNEL);
  639. if (!attr)
  640. return -ENOMEM;
  641. attr->get = get;
  642. attr->set = set;
  643. attr->data = inode->i_private;
  644. attr->fmt = fmt;
  645. mutex_init(&attr->mutex);
  646. file->private_data = attr;
  647. return nonseekable_open(inode, file);
  648. }
  649. int simple_attr_release(struct inode *inode, struct file *file)
  650. {
  651. kfree(file->private_data);
  652. return 0;
  653. }
  654. /* read from the buffer that is filled with the get function */
  655. ssize_t simple_attr_read(struct file *file, char __user *buf,
  656. size_t len, loff_t *ppos)
  657. {
  658. struct simple_attr *attr;
  659. size_t size;
  660. ssize_t ret;
  661. attr = file->private_data;
  662. if (!attr->get)
  663. return -EACCES;
  664. ret = mutex_lock_interruptible(&attr->mutex);
  665. if (ret)
  666. return ret;
  667. if (*ppos) { /* continued read */
  668. size = strlen(attr->get_buf);
  669. } else { /* first read */
  670. u64 val;
  671. ret = attr->get(attr->data, &val);
  672. if (ret)
  673. goto out;
  674. size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
  675. attr->fmt, (unsigned long long)val);
  676. }
  677. ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
  678. out:
  679. mutex_unlock(&attr->mutex);
  680. return ret;
  681. }
  682. /* interpret the buffer as a number to call the set function with */
  683. ssize_t simple_attr_write(struct file *file, const char __user *buf,
  684. size_t len, loff_t *ppos)
  685. {
  686. struct simple_attr *attr;
  687. u64 val;
  688. size_t size;
  689. ssize_t ret;
  690. attr = file->private_data;
  691. if (!attr->set)
  692. return -EACCES;
  693. ret = mutex_lock_interruptible(&attr->mutex);
  694. if (ret)
  695. return ret;
  696. ret = -EFAULT;
  697. size = min(sizeof(attr->set_buf) - 1, len);
  698. if (copy_from_user(attr->set_buf, buf, size))
  699. goto out;
  700. attr->set_buf[size] = '\0';
  701. val = simple_strtol(attr->set_buf, NULL, 0);
  702. ret = attr->set(attr->data, val);
  703. if (ret == 0)
  704. ret = len; /* on success, claim we got the whole input */
  705. out:
  706. mutex_unlock(&attr->mutex);
  707. return ret;
  708. }
  709. /**
  710. * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
  711. * @sb: filesystem to do the file handle conversion on
  712. * @fid: file handle to convert
  713. * @fh_len: length of the file handle in bytes
  714. * @fh_type: type of file handle
  715. * @get_inode: filesystem callback to retrieve inode
  716. *
  717. * This function decodes @fid as long as it has one of the well-known
  718. * Linux filehandle types and calls @get_inode on it to retrieve the
  719. * inode for the object specified in the file handle.
  720. */
  721. struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
  722. int fh_len, int fh_type, struct inode *(*get_inode)
  723. (struct super_block *sb, u64 ino, u32 gen))
  724. {
  725. struct inode *inode = NULL;
  726. if (fh_len < 2)
  727. return NULL;
  728. switch (fh_type) {
  729. case FILEID_INO32_GEN:
  730. case FILEID_INO32_GEN_PARENT:
  731. inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
  732. break;
  733. }
  734. return d_obtain_alias(inode);
  735. }
  736. EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
  737. /**
  738. * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
  739. * @sb: filesystem to do the file handle conversion on
  740. * @fid: file handle to convert
  741. * @fh_len: length of the file handle in bytes
  742. * @fh_type: type of file handle
  743. * @get_inode: filesystem callback to retrieve inode
  744. *
  745. * This function decodes @fid as long as it has one of the well-known
  746. * Linux filehandle types and calls @get_inode on it to retrieve the
  747. * inode for the _parent_ object specified in the file handle if it
  748. * is specified in the file handle, or NULL otherwise.
  749. */
  750. struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
  751. int fh_len, int fh_type, struct inode *(*get_inode)
  752. (struct super_block *sb, u64 ino, u32 gen))
  753. {
  754. struct inode *inode = NULL;
  755. if (fh_len <= 2)
  756. return NULL;
  757. switch (fh_type) {
  758. case FILEID_INO32_GEN_PARENT:
  759. inode = get_inode(sb, fid->i32.parent_ino,
  760. (fh_len > 3 ? fid->i32.parent_gen : 0));
  761. break;
  762. }
  763. return d_obtain_alias(inode);
  764. }
  765. EXPORT_SYMBOL_GPL(generic_fh_to_parent);
  766. /**
  767. * generic_file_fsync - generic fsync implementation for simple filesystems
  768. * @file: file to synchronize
  769. * @datasync: only synchronize essential metadata if true
  770. *
  771. * This is a generic implementation of the fsync method for simple
  772. * filesystems which track all non-inode metadata in the buffers list
  773. * hanging off the address_space structure.
  774. */
  775. int generic_file_fsync(struct file *file, int datasync)
  776. {
  777. struct writeback_control wbc = {
  778. .sync_mode = WB_SYNC_ALL,
  779. .nr_to_write = 0, /* metadata-only; caller takes care of data */
  780. };
  781. struct inode *inode = file->f_mapping->host;
  782. int err;
  783. int ret;
  784. ret = sync_mapping_buffers(inode->i_mapping);
  785. if (!(inode->i_state & I_DIRTY))
  786. return ret;
  787. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  788. return ret;
  789. err = sync_inode(inode, &wbc);
  790. if (ret == 0)
  791. ret = err;
  792. return ret;
  793. }
  794. EXPORT_SYMBOL(generic_file_fsync);
  795. /*
  796. * No-op implementation of ->fsync for in-memory filesystems.
  797. */
  798. int noop_fsync(struct file *file, int datasync)
  799. {
  800. return 0;
  801. }
  802. EXPORT_SYMBOL(dcache_dir_close);
  803. EXPORT_SYMBOL(dcache_dir_lseek);
  804. EXPORT_SYMBOL(dcache_dir_open);
  805. EXPORT_SYMBOL(dcache_readdir);
  806. EXPORT_SYMBOL(generic_read_dir);
  807. EXPORT_SYMBOL(get_sb_pseudo);
  808. EXPORT_SYMBOL(simple_write_begin);
  809. EXPORT_SYMBOL(simple_write_end);
  810. EXPORT_SYMBOL(simple_dir_inode_operations);
  811. EXPORT_SYMBOL(simple_dir_operations);
  812. EXPORT_SYMBOL(simple_empty);
  813. EXPORT_SYMBOL(simple_fill_super);
  814. EXPORT_SYMBOL(simple_getattr);
  815. EXPORT_SYMBOL(simple_link);
  816. EXPORT_SYMBOL(simple_lookup);
  817. EXPORT_SYMBOL(simple_pin_fs);
  818. EXPORT_SYMBOL(simple_readpage);
  819. EXPORT_SYMBOL(simple_release_fs);
  820. EXPORT_SYMBOL(simple_rename);
  821. EXPORT_SYMBOL(simple_rmdir);
  822. EXPORT_SYMBOL(simple_statfs);
  823. EXPORT_SYMBOL(noop_fsync);
  824. EXPORT_SYMBOL(simple_unlink);
  825. EXPORT_SYMBOL(simple_read_from_buffer);
  826. EXPORT_SYMBOL(simple_write_to_buffer);
  827. EXPORT_SYMBOL(memory_read_from_buffer);
  828. EXPORT_SYMBOL(simple_transaction_set);
  829. EXPORT_SYMBOL(simple_transaction_get);
  830. EXPORT_SYMBOL(simple_transaction_read);
  831. EXPORT_SYMBOL(simple_transaction_release);
  832. EXPORT_SYMBOL_GPL(simple_attr_open);
  833. EXPORT_SYMBOL_GPL(simple_attr_release);
  834. EXPORT_SYMBOL_GPL(simple_attr_read);
  835. EXPORT_SYMBOL_GPL(simple_attr_write);