btree.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * linux/fs/hfs/btree.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle opening/closing btree
  9. */
  10. #include <linux/pagemap.h>
  11. #include <linux/slab.h>
  12. #include <linux/log2.h>
  13. #include "btree.h"
  14. /* Get a reference to a B*Tree and do some initial checks */
  15. struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id, btree_keycmp keycmp)
  16. {
  17. struct hfs_btree *tree;
  18. struct hfs_btree_header_rec *head;
  19. struct address_space *mapping;
  20. struct page *page;
  21. unsigned int size;
  22. tree = kzalloc(sizeof(*tree), GFP_KERNEL);
  23. if (!tree)
  24. return NULL;
  25. init_MUTEX(&tree->tree_lock);
  26. spin_lock_init(&tree->hash_lock);
  27. /* Set the correct compare function */
  28. tree->sb = sb;
  29. tree->cnid = id;
  30. tree->keycmp = keycmp;
  31. tree->inode = iget_locked(sb, id);
  32. if (!tree->inode)
  33. goto free_tree;
  34. BUG_ON(!(tree->inode->i_state & I_NEW));
  35. {
  36. struct hfs_mdb *mdb = HFS_SB(sb)->mdb;
  37. HFS_I(tree->inode)->flags = 0;
  38. mutex_init(&HFS_I(tree->inode)->extents_lock);
  39. switch (id) {
  40. case HFS_EXT_CNID:
  41. hfs_inode_read_fork(tree->inode, mdb->drXTExtRec, mdb->drXTFlSize,
  42. mdb->drXTFlSize, be32_to_cpu(mdb->drXTClpSiz));
  43. tree->inode->i_mapping->a_ops = &hfs_btree_aops;
  44. break;
  45. case HFS_CAT_CNID:
  46. hfs_inode_read_fork(tree->inode, mdb->drCTExtRec, mdb->drCTFlSize,
  47. mdb->drCTFlSize, be32_to_cpu(mdb->drCTClpSiz));
  48. tree->inode->i_mapping->a_ops = &hfs_btree_aops;
  49. break;
  50. default:
  51. BUG();
  52. }
  53. }
  54. unlock_new_inode(tree->inode);
  55. if (!HFS_I(tree->inode)->first_blocks) {
  56. printk(KERN_ERR "hfs: invalid btree extent records (0 size).\n");
  57. goto free_inode;
  58. }
  59. mapping = tree->inode->i_mapping;
  60. page = read_mapping_page(mapping, 0, NULL);
  61. if (IS_ERR(page))
  62. goto free_inode;
  63. /* Load the header */
  64. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  65. tree->root = be32_to_cpu(head->root);
  66. tree->leaf_count = be32_to_cpu(head->leaf_count);
  67. tree->leaf_head = be32_to_cpu(head->leaf_head);
  68. tree->leaf_tail = be32_to_cpu(head->leaf_tail);
  69. tree->node_count = be32_to_cpu(head->node_count);
  70. tree->free_nodes = be32_to_cpu(head->free_nodes);
  71. tree->attributes = be32_to_cpu(head->attributes);
  72. tree->node_size = be16_to_cpu(head->node_size);
  73. tree->max_key_len = be16_to_cpu(head->max_key_len);
  74. tree->depth = be16_to_cpu(head->depth);
  75. size = tree->node_size;
  76. if (!is_power_of_2(size))
  77. goto fail_page;
  78. if (!tree->node_count)
  79. goto fail_page;
  80. switch (id) {
  81. case HFS_EXT_CNID:
  82. if (tree->max_key_len != HFS_MAX_EXT_KEYLEN) {
  83. printk(KERN_ERR "hfs: invalid extent max_key_len %d\n",
  84. tree->max_key_len);
  85. goto fail_page;
  86. }
  87. break;
  88. case HFS_CAT_CNID:
  89. if (tree->max_key_len != HFS_MAX_CAT_KEYLEN) {
  90. printk(KERN_ERR "hfs: invalid catalog max_key_len %d\n",
  91. tree->max_key_len);
  92. goto fail_page;
  93. }
  94. break;
  95. default:
  96. BUG();
  97. }
  98. tree->node_size_shift = ffs(size) - 1;
  99. tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  100. kunmap(page);
  101. page_cache_release(page);
  102. return tree;
  103. fail_page:
  104. page_cache_release(page);
  105. free_inode:
  106. tree->inode->i_mapping->a_ops = &hfs_aops;
  107. iput(tree->inode);
  108. free_tree:
  109. kfree(tree);
  110. return NULL;
  111. }
  112. /* Release resources used by a btree */
  113. void hfs_btree_close(struct hfs_btree *tree)
  114. {
  115. struct hfs_bnode *node;
  116. int i;
  117. if (!tree)
  118. return;
  119. for (i = 0; i < NODE_HASH_SIZE; i++) {
  120. while ((node = tree->node_hash[i])) {
  121. tree->node_hash[i] = node->next_hash;
  122. if (atomic_read(&node->refcnt))
  123. printk(KERN_ERR "hfs: node %d:%d still has %d user(s)!\n",
  124. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  125. hfs_bnode_free(node);
  126. tree->node_hash_cnt--;
  127. }
  128. }
  129. iput(tree->inode);
  130. kfree(tree);
  131. }
  132. void hfs_btree_write(struct hfs_btree *tree)
  133. {
  134. struct hfs_btree_header_rec *head;
  135. struct hfs_bnode *node;
  136. struct page *page;
  137. node = hfs_bnode_find(tree, 0);
  138. if (IS_ERR(node))
  139. /* panic? */
  140. return;
  141. /* Load the header */
  142. page = node->page[0];
  143. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  144. head->root = cpu_to_be32(tree->root);
  145. head->leaf_count = cpu_to_be32(tree->leaf_count);
  146. head->leaf_head = cpu_to_be32(tree->leaf_head);
  147. head->leaf_tail = cpu_to_be32(tree->leaf_tail);
  148. head->node_count = cpu_to_be32(tree->node_count);
  149. head->free_nodes = cpu_to_be32(tree->free_nodes);
  150. head->attributes = cpu_to_be32(tree->attributes);
  151. head->depth = cpu_to_be16(tree->depth);
  152. kunmap(page);
  153. set_page_dirty(page);
  154. hfs_bnode_put(node);
  155. }
  156. static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
  157. {
  158. struct hfs_btree *tree = prev->tree;
  159. struct hfs_bnode *node;
  160. struct hfs_bnode_desc desc;
  161. __be32 cnid;
  162. node = hfs_bnode_create(tree, idx);
  163. if (IS_ERR(node))
  164. return node;
  165. if (!tree->free_nodes)
  166. panic("FIXME!!!");
  167. tree->free_nodes--;
  168. prev->next = idx;
  169. cnid = cpu_to_be32(idx);
  170. hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  171. node->type = HFS_NODE_MAP;
  172. node->num_recs = 1;
  173. hfs_bnode_clear(node, 0, tree->node_size);
  174. desc.next = 0;
  175. desc.prev = 0;
  176. desc.type = HFS_NODE_MAP;
  177. desc.height = 0;
  178. desc.num_recs = cpu_to_be16(1);
  179. desc.reserved = 0;
  180. hfs_bnode_write(node, &desc, 0, sizeof(desc));
  181. hfs_bnode_write_u16(node, 14, 0x8000);
  182. hfs_bnode_write_u16(node, tree->node_size - 2, 14);
  183. hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
  184. return node;
  185. }
  186. struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
  187. {
  188. struct hfs_bnode *node, *next_node;
  189. struct page **pagep;
  190. u32 nidx, idx;
  191. unsigned off;
  192. u16 off16;
  193. u16 len;
  194. u8 *data, byte, m;
  195. int i;
  196. while (!tree->free_nodes) {
  197. struct inode *inode = tree->inode;
  198. u32 count;
  199. int res;
  200. res = hfs_extend_file(inode);
  201. if (res)
  202. return ERR_PTR(res);
  203. HFS_I(inode)->phys_size = inode->i_size =
  204. (loff_t)HFS_I(inode)->alloc_blocks *
  205. HFS_SB(tree->sb)->alloc_blksz;
  206. HFS_I(inode)->fs_blocks = inode->i_size >>
  207. tree->sb->s_blocksize_bits;
  208. inode_set_bytes(inode, inode->i_size);
  209. count = inode->i_size >> tree->node_size_shift;
  210. tree->free_nodes = count - tree->node_count;
  211. tree->node_count = count;
  212. }
  213. nidx = 0;
  214. node = hfs_bnode_find(tree, nidx);
  215. if (IS_ERR(node))
  216. return node;
  217. len = hfs_brec_lenoff(node, 2, &off16);
  218. off = off16;
  219. off += node->page_offset;
  220. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  221. data = kmap(*pagep);
  222. off &= ~PAGE_CACHE_MASK;
  223. idx = 0;
  224. for (;;) {
  225. while (len) {
  226. byte = data[off];
  227. if (byte != 0xff) {
  228. for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
  229. if (!(byte & m)) {
  230. idx += i;
  231. data[off] |= m;
  232. set_page_dirty(*pagep);
  233. kunmap(*pagep);
  234. tree->free_nodes--;
  235. mark_inode_dirty(tree->inode);
  236. hfs_bnode_put(node);
  237. return hfs_bnode_create(tree, idx);
  238. }
  239. }
  240. }
  241. if (++off >= PAGE_CACHE_SIZE) {
  242. kunmap(*pagep);
  243. data = kmap(*++pagep);
  244. off = 0;
  245. }
  246. idx += 8;
  247. len--;
  248. }
  249. kunmap(*pagep);
  250. nidx = node->next;
  251. if (!nidx) {
  252. printk(KERN_DEBUG "hfs: create new bmap node...\n");
  253. next_node = hfs_bmap_new_bmap(node, idx);
  254. } else
  255. next_node = hfs_bnode_find(tree, nidx);
  256. hfs_bnode_put(node);
  257. if (IS_ERR(next_node))
  258. return next_node;
  259. node = next_node;
  260. len = hfs_brec_lenoff(node, 0, &off16);
  261. off = off16;
  262. off += node->page_offset;
  263. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  264. data = kmap(*pagep);
  265. off &= ~PAGE_CACHE_MASK;
  266. }
  267. }
  268. void hfs_bmap_free(struct hfs_bnode *node)
  269. {
  270. struct hfs_btree *tree;
  271. struct page *page;
  272. u16 off, len;
  273. u32 nidx;
  274. u8 *data, byte, m;
  275. dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
  276. tree = node->tree;
  277. nidx = node->this;
  278. node = hfs_bnode_find(tree, 0);
  279. if (IS_ERR(node))
  280. return;
  281. len = hfs_brec_lenoff(node, 2, &off);
  282. while (nidx >= len * 8) {
  283. u32 i;
  284. nidx -= len * 8;
  285. i = node->next;
  286. hfs_bnode_put(node);
  287. if (!i) {
  288. /* panic */;
  289. printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
  290. return;
  291. }
  292. node = hfs_bnode_find(tree, i);
  293. if (IS_ERR(node))
  294. return;
  295. if (node->type != HFS_NODE_MAP) {
  296. /* panic */;
  297. printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
  298. hfs_bnode_put(node);
  299. return;
  300. }
  301. len = hfs_brec_lenoff(node, 0, &off);
  302. }
  303. off += node->page_offset + nidx / 8;
  304. page = node->page[off >> PAGE_CACHE_SHIFT];
  305. data = kmap(page);
  306. off &= ~PAGE_CACHE_MASK;
  307. m = 1 << (~nidx & 7);
  308. byte = data[off];
  309. if (!(byte & m)) {
  310. printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
  311. kunmap(page);
  312. hfs_bnode_put(node);
  313. return;
  314. }
  315. data[off] = byte & ~m;
  316. set_page_dirty(page);
  317. kunmap(page);
  318. hfs_bnode_put(node);
  319. tree->free_nodes++;
  320. mark_inode_dirty(tree->inode);
  321. }