inode.c 102 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include "xattr.h"
  41. #include "acl.h"
  42. static int ext3_writepage_trans_blocks(struct inode *inode);
  43. /*
  44. * Test whether an inode is a fast symlink.
  45. */
  46. static int ext3_inode_is_fast_symlink(struct inode *inode)
  47. {
  48. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  49. (inode->i_sb->s_blocksize >> 9) : 0;
  50. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  51. }
  52. /*
  53. * The ext3 forget function must perform a revoke if we are freeing data
  54. * which has been journaled. Metadata (eg. indirect blocks) must be
  55. * revoked in all cases.
  56. *
  57. * "bh" may be NULL: a metadata block may have been freed from memory
  58. * but there may still be a record of it in the journal, and that record
  59. * still needs to be revoked.
  60. */
  61. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  62. struct buffer_head *bh, ext3_fsblk_t blocknr)
  63. {
  64. int err;
  65. might_sleep();
  66. BUFFER_TRACE(bh, "enter");
  67. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  68. "data mode %lx\n",
  69. bh, is_metadata, inode->i_mode,
  70. test_opt(inode->i_sb, DATA_FLAGS));
  71. /* Never use the revoke function if we are doing full data
  72. * journaling: there is no need to, and a V1 superblock won't
  73. * support it. Otherwise, only skip the revoke on un-journaled
  74. * data blocks. */
  75. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  76. (!is_metadata && !ext3_should_journal_data(inode))) {
  77. if (bh) {
  78. BUFFER_TRACE(bh, "call journal_forget");
  79. return ext3_journal_forget(handle, bh);
  80. }
  81. return 0;
  82. }
  83. /*
  84. * data!=journal && (is_metadata || should_journal_data(inode))
  85. */
  86. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  87. err = ext3_journal_revoke(handle, blocknr, bh);
  88. if (err)
  89. ext3_abort(inode->i_sb, __func__,
  90. "error %d when attempting revoke", err);
  91. BUFFER_TRACE(bh, "exit");
  92. return err;
  93. }
  94. /*
  95. * Work out how many blocks we need to proceed with the next chunk of a
  96. * truncate transaction.
  97. */
  98. static unsigned long blocks_for_truncate(struct inode *inode)
  99. {
  100. unsigned long needed;
  101. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  102. /* Give ourselves just enough room to cope with inodes in which
  103. * i_blocks is corrupt: we've seen disk corruptions in the past
  104. * which resulted in random data in an inode which looked enough
  105. * like a regular file for ext3 to try to delete it. Things
  106. * will go a bit crazy if that happens, but at least we should
  107. * try not to panic the whole kernel. */
  108. if (needed < 2)
  109. needed = 2;
  110. /* But we need to bound the transaction so we don't overflow the
  111. * journal. */
  112. if (needed > EXT3_MAX_TRANS_DATA)
  113. needed = EXT3_MAX_TRANS_DATA;
  114. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  115. }
  116. /*
  117. * Truncate transactions can be complex and absolutely huge. So we need to
  118. * be able to restart the transaction at a conventient checkpoint to make
  119. * sure we don't overflow the journal.
  120. *
  121. * start_transaction gets us a new handle for a truncate transaction,
  122. * and extend_transaction tries to extend the existing one a bit. If
  123. * extend fails, we need to propagate the failure up and restart the
  124. * transaction in the top-level truncate loop. --sct
  125. */
  126. static handle_t *start_transaction(struct inode *inode)
  127. {
  128. handle_t *result;
  129. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  130. if (!IS_ERR(result))
  131. return result;
  132. ext3_std_error(inode->i_sb, PTR_ERR(result));
  133. return result;
  134. }
  135. /*
  136. * Try to extend this transaction for the purposes of truncation.
  137. *
  138. * Returns 0 if we managed to create more room. If we can't create more
  139. * room, and the transaction must be restarted we return 1.
  140. */
  141. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  142. {
  143. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  144. return 0;
  145. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  146. return 0;
  147. return 1;
  148. }
  149. /*
  150. * Restart the transaction associated with *handle. This does a commit,
  151. * so before we call here everything must be consistently dirtied against
  152. * this transaction.
  153. */
  154. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  155. {
  156. int ret;
  157. jbd_debug(2, "restarting handle %p\n", handle);
  158. /*
  159. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  160. * At this moment, get_block can be called only for blocks inside
  161. * i_size since page cache has been already dropped and writes are
  162. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  163. */
  164. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  165. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  166. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  167. return ret;
  168. }
  169. /*
  170. * Called at inode eviction from icache
  171. */
  172. void ext3_evict_inode (struct inode *inode)
  173. {
  174. struct ext3_block_alloc_info *rsv;
  175. handle_t *handle;
  176. int want_delete = 0;
  177. if (!inode->i_nlink && !is_bad_inode(inode)) {
  178. dquot_initialize(inode);
  179. want_delete = 1;
  180. }
  181. truncate_inode_pages(&inode->i_data, 0);
  182. ext3_discard_reservation(inode);
  183. rsv = EXT3_I(inode)->i_block_alloc_info;
  184. EXT3_I(inode)->i_block_alloc_info = NULL;
  185. if (unlikely(rsv))
  186. kfree(rsv);
  187. if (!want_delete)
  188. goto no_delete;
  189. handle = start_transaction(inode);
  190. if (IS_ERR(handle)) {
  191. /*
  192. * If we're going to skip the normal cleanup, we still need to
  193. * make sure that the in-core orphan linked list is properly
  194. * cleaned up.
  195. */
  196. ext3_orphan_del(NULL, inode);
  197. goto no_delete;
  198. }
  199. if (IS_SYNC(inode))
  200. handle->h_sync = 1;
  201. inode->i_size = 0;
  202. if (inode->i_blocks)
  203. ext3_truncate(inode);
  204. /*
  205. * Kill off the orphan record which ext3_truncate created.
  206. * AKPM: I think this can be inside the above `if'.
  207. * Note that ext3_orphan_del() has to be able to cope with the
  208. * deletion of a non-existent orphan - this is because we don't
  209. * know if ext3_truncate() actually created an orphan record.
  210. * (Well, we could do this if we need to, but heck - it works)
  211. */
  212. ext3_orphan_del(handle, inode);
  213. EXT3_I(inode)->i_dtime = get_seconds();
  214. /*
  215. * One subtle ordering requirement: if anything has gone wrong
  216. * (transaction abort, IO errors, whatever), then we can still
  217. * do these next steps (the fs will already have been marked as
  218. * having errors), but we can't free the inode if the mark_dirty
  219. * fails.
  220. */
  221. if (ext3_mark_inode_dirty(handle, inode)) {
  222. /* If that failed, just dquot_drop() and be done with that */
  223. dquot_drop(inode);
  224. end_writeback(inode);
  225. } else {
  226. ext3_xattr_delete_inode(handle, inode);
  227. dquot_free_inode(inode);
  228. dquot_drop(inode);
  229. end_writeback(inode);
  230. ext3_free_inode(handle, inode);
  231. }
  232. ext3_journal_stop(handle);
  233. return;
  234. no_delete:
  235. end_writeback(inode);
  236. dquot_drop(inode);
  237. }
  238. typedef struct {
  239. __le32 *p;
  240. __le32 key;
  241. struct buffer_head *bh;
  242. } Indirect;
  243. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  244. {
  245. p->key = *(p->p = v);
  246. p->bh = bh;
  247. }
  248. static int verify_chain(Indirect *from, Indirect *to)
  249. {
  250. while (from <= to && from->key == *from->p)
  251. from++;
  252. return (from > to);
  253. }
  254. /**
  255. * ext3_block_to_path - parse the block number into array of offsets
  256. * @inode: inode in question (we are only interested in its superblock)
  257. * @i_block: block number to be parsed
  258. * @offsets: array to store the offsets in
  259. * @boundary: set this non-zero if the referred-to block is likely to be
  260. * followed (on disk) by an indirect block.
  261. *
  262. * To store the locations of file's data ext3 uses a data structure common
  263. * for UNIX filesystems - tree of pointers anchored in the inode, with
  264. * data blocks at leaves and indirect blocks in intermediate nodes.
  265. * This function translates the block number into path in that tree -
  266. * return value is the path length and @offsets[n] is the offset of
  267. * pointer to (n+1)th node in the nth one. If @block is out of range
  268. * (negative or too large) warning is printed and zero returned.
  269. *
  270. * Note: function doesn't find node addresses, so no IO is needed. All
  271. * we need to know is the capacity of indirect blocks (taken from the
  272. * inode->i_sb).
  273. */
  274. /*
  275. * Portability note: the last comparison (check that we fit into triple
  276. * indirect block) is spelled differently, because otherwise on an
  277. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  278. * if our filesystem had 8Kb blocks. We might use long long, but that would
  279. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  280. * i_block would have to be negative in the very beginning, so we would not
  281. * get there at all.
  282. */
  283. static int ext3_block_to_path(struct inode *inode,
  284. long i_block, int offsets[4], int *boundary)
  285. {
  286. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  287. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  288. const long direct_blocks = EXT3_NDIR_BLOCKS,
  289. indirect_blocks = ptrs,
  290. double_blocks = (1 << (ptrs_bits * 2));
  291. int n = 0;
  292. int final = 0;
  293. if (i_block < 0) {
  294. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  295. } else if (i_block < direct_blocks) {
  296. offsets[n++] = i_block;
  297. final = direct_blocks;
  298. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  299. offsets[n++] = EXT3_IND_BLOCK;
  300. offsets[n++] = i_block;
  301. final = ptrs;
  302. } else if ((i_block -= indirect_blocks) < double_blocks) {
  303. offsets[n++] = EXT3_DIND_BLOCK;
  304. offsets[n++] = i_block >> ptrs_bits;
  305. offsets[n++] = i_block & (ptrs - 1);
  306. final = ptrs;
  307. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  308. offsets[n++] = EXT3_TIND_BLOCK;
  309. offsets[n++] = i_block >> (ptrs_bits * 2);
  310. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  311. offsets[n++] = i_block & (ptrs - 1);
  312. final = ptrs;
  313. } else {
  314. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  315. }
  316. if (boundary)
  317. *boundary = final - 1 - (i_block & (ptrs - 1));
  318. return n;
  319. }
  320. /**
  321. * ext3_get_branch - read the chain of indirect blocks leading to data
  322. * @inode: inode in question
  323. * @depth: depth of the chain (1 - direct pointer, etc.)
  324. * @offsets: offsets of pointers in inode/indirect blocks
  325. * @chain: place to store the result
  326. * @err: here we store the error value
  327. *
  328. * Function fills the array of triples <key, p, bh> and returns %NULL
  329. * if everything went OK or the pointer to the last filled triple
  330. * (incomplete one) otherwise. Upon the return chain[i].key contains
  331. * the number of (i+1)-th block in the chain (as it is stored in memory,
  332. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  333. * number (it points into struct inode for i==0 and into the bh->b_data
  334. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  335. * block for i>0 and NULL for i==0. In other words, it holds the block
  336. * numbers of the chain, addresses they were taken from (and where we can
  337. * verify that chain did not change) and buffer_heads hosting these
  338. * numbers.
  339. *
  340. * Function stops when it stumbles upon zero pointer (absent block)
  341. * (pointer to last triple returned, *@err == 0)
  342. * or when it gets an IO error reading an indirect block
  343. * (ditto, *@err == -EIO)
  344. * or when it notices that chain had been changed while it was reading
  345. * (ditto, *@err == -EAGAIN)
  346. * or when it reads all @depth-1 indirect blocks successfully and finds
  347. * the whole chain, all way to the data (returns %NULL, *err == 0).
  348. */
  349. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  350. Indirect chain[4], int *err)
  351. {
  352. struct super_block *sb = inode->i_sb;
  353. Indirect *p = chain;
  354. struct buffer_head *bh;
  355. *err = 0;
  356. /* i_data is not going away, no lock needed */
  357. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  358. if (!p->key)
  359. goto no_block;
  360. while (--depth) {
  361. bh = sb_bread(sb, le32_to_cpu(p->key));
  362. if (!bh)
  363. goto failure;
  364. /* Reader: pointers */
  365. if (!verify_chain(chain, p))
  366. goto changed;
  367. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  368. /* Reader: end */
  369. if (!p->key)
  370. goto no_block;
  371. }
  372. return NULL;
  373. changed:
  374. brelse(bh);
  375. *err = -EAGAIN;
  376. goto no_block;
  377. failure:
  378. *err = -EIO;
  379. no_block:
  380. return p;
  381. }
  382. /**
  383. * ext3_find_near - find a place for allocation with sufficient locality
  384. * @inode: owner
  385. * @ind: descriptor of indirect block.
  386. *
  387. * This function returns the preferred place for block allocation.
  388. * It is used when heuristic for sequential allocation fails.
  389. * Rules are:
  390. * + if there is a block to the left of our position - allocate near it.
  391. * + if pointer will live in indirect block - allocate near that block.
  392. * + if pointer will live in inode - allocate in the same
  393. * cylinder group.
  394. *
  395. * In the latter case we colour the starting block by the callers PID to
  396. * prevent it from clashing with concurrent allocations for a different inode
  397. * in the same block group. The PID is used here so that functionally related
  398. * files will be close-by on-disk.
  399. *
  400. * Caller must make sure that @ind is valid and will stay that way.
  401. */
  402. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  403. {
  404. struct ext3_inode_info *ei = EXT3_I(inode);
  405. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  406. __le32 *p;
  407. ext3_fsblk_t bg_start;
  408. ext3_grpblk_t colour;
  409. /* Try to find previous block */
  410. for (p = ind->p - 1; p >= start; p--) {
  411. if (*p)
  412. return le32_to_cpu(*p);
  413. }
  414. /* No such thing, so let's try location of indirect block */
  415. if (ind->bh)
  416. return ind->bh->b_blocknr;
  417. /*
  418. * It is going to be referred to from the inode itself? OK, just put it
  419. * into the same cylinder group then.
  420. */
  421. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  422. colour = (current->pid % 16) *
  423. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  424. return bg_start + colour;
  425. }
  426. /**
  427. * ext3_find_goal - find a preferred place for allocation.
  428. * @inode: owner
  429. * @block: block we want
  430. * @partial: pointer to the last triple within a chain
  431. *
  432. * Normally this function find the preferred place for block allocation,
  433. * returns it.
  434. */
  435. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  436. Indirect *partial)
  437. {
  438. struct ext3_block_alloc_info *block_i;
  439. block_i = EXT3_I(inode)->i_block_alloc_info;
  440. /*
  441. * try the heuristic for sequential allocation,
  442. * failing that at least try to get decent locality.
  443. */
  444. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  445. && (block_i->last_alloc_physical_block != 0)) {
  446. return block_i->last_alloc_physical_block + 1;
  447. }
  448. return ext3_find_near(inode, partial);
  449. }
  450. /**
  451. * ext3_blks_to_allocate: Look up the block map and count the number
  452. * of direct blocks need to be allocated for the given branch.
  453. *
  454. * @branch: chain of indirect blocks
  455. * @k: number of blocks need for indirect blocks
  456. * @blks: number of data blocks to be mapped.
  457. * @blocks_to_boundary: the offset in the indirect block
  458. *
  459. * return the total number of blocks to be allocate, including the
  460. * direct and indirect blocks.
  461. */
  462. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  463. int blocks_to_boundary)
  464. {
  465. unsigned long count = 0;
  466. /*
  467. * Simple case, [t,d]Indirect block(s) has not allocated yet
  468. * then it's clear blocks on that path have not allocated
  469. */
  470. if (k > 0) {
  471. /* right now we don't handle cross boundary allocation */
  472. if (blks < blocks_to_boundary + 1)
  473. count += blks;
  474. else
  475. count += blocks_to_boundary + 1;
  476. return count;
  477. }
  478. count++;
  479. while (count < blks && count <= blocks_to_boundary &&
  480. le32_to_cpu(*(branch[0].p + count)) == 0) {
  481. count++;
  482. }
  483. return count;
  484. }
  485. /**
  486. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  487. * @indirect_blks: the number of blocks need to allocate for indirect
  488. * blocks
  489. *
  490. * @new_blocks: on return it will store the new block numbers for
  491. * the indirect blocks(if needed) and the first direct block,
  492. * @blks: on return it will store the total number of allocated
  493. * direct blocks
  494. */
  495. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  496. ext3_fsblk_t goal, int indirect_blks, int blks,
  497. ext3_fsblk_t new_blocks[4], int *err)
  498. {
  499. int target, i;
  500. unsigned long count = 0;
  501. int index = 0;
  502. ext3_fsblk_t current_block = 0;
  503. int ret = 0;
  504. /*
  505. * Here we try to allocate the requested multiple blocks at once,
  506. * on a best-effort basis.
  507. * To build a branch, we should allocate blocks for
  508. * the indirect blocks(if not allocated yet), and at least
  509. * the first direct block of this branch. That's the
  510. * minimum number of blocks need to allocate(required)
  511. */
  512. target = blks + indirect_blks;
  513. while (1) {
  514. count = target;
  515. /* allocating blocks for indirect blocks and direct blocks */
  516. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  517. if (*err)
  518. goto failed_out;
  519. target -= count;
  520. /* allocate blocks for indirect blocks */
  521. while (index < indirect_blks && count) {
  522. new_blocks[index++] = current_block++;
  523. count--;
  524. }
  525. if (count > 0)
  526. break;
  527. }
  528. /* save the new block number for the first direct block */
  529. new_blocks[index] = current_block;
  530. /* total number of blocks allocated for direct blocks */
  531. ret = count;
  532. *err = 0;
  533. return ret;
  534. failed_out:
  535. for (i = 0; i <index; i++)
  536. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  537. return ret;
  538. }
  539. /**
  540. * ext3_alloc_branch - allocate and set up a chain of blocks.
  541. * @inode: owner
  542. * @indirect_blks: number of allocated indirect blocks
  543. * @blks: number of allocated direct blocks
  544. * @offsets: offsets (in the blocks) to store the pointers to next.
  545. * @branch: place to store the chain in.
  546. *
  547. * This function allocates blocks, zeroes out all but the last one,
  548. * links them into chain and (if we are synchronous) writes them to disk.
  549. * In other words, it prepares a branch that can be spliced onto the
  550. * inode. It stores the information about that chain in the branch[], in
  551. * the same format as ext3_get_branch() would do. We are calling it after
  552. * we had read the existing part of chain and partial points to the last
  553. * triple of that (one with zero ->key). Upon the exit we have the same
  554. * picture as after the successful ext3_get_block(), except that in one
  555. * place chain is disconnected - *branch->p is still zero (we did not
  556. * set the last link), but branch->key contains the number that should
  557. * be placed into *branch->p to fill that gap.
  558. *
  559. * If allocation fails we free all blocks we've allocated (and forget
  560. * their buffer_heads) and return the error value the from failed
  561. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  562. * as described above and return 0.
  563. */
  564. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  565. int indirect_blks, int *blks, ext3_fsblk_t goal,
  566. int *offsets, Indirect *branch)
  567. {
  568. int blocksize = inode->i_sb->s_blocksize;
  569. int i, n = 0;
  570. int err = 0;
  571. struct buffer_head *bh;
  572. int num;
  573. ext3_fsblk_t new_blocks[4];
  574. ext3_fsblk_t current_block;
  575. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  576. *blks, new_blocks, &err);
  577. if (err)
  578. return err;
  579. branch[0].key = cpu_to_le32(new_blocks[0]);
  580. /*
  581. * metadata blocks and data blocks are allocated.
  582. */
  583. for (n = 1; n <= indirect_blks; n++) {
  584. /*
  585. * Get buffer_head for parent block, zero it out
  586. * and set the pointer to new one, then send
  587. * parent to disk.
  588. */
  589. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  590. branch[n].bh = bh;
  591. lock_buffer(bh);
  592. BUFFER_TRACE(bh, "call get_create_access");
  593. err = ext3_journal_get_create_access(handle, bh);
  594. if (err) {
  595. unlock_buffer(bh);
  596. brelse(bh);
  597. goto failed;
  598. }
  599. memset(bh->b_data, 0, blocksize);
  600. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  601. branch[n].key = cpu_to_le32(new_blocks[n]);
  602. *branch[n].p = branch[n].key;
  603. if ( n == indirect_blks) {
  604. current_block = new_blocks[n];
  605. /*
  606. * End of chain, update the last new metablock of
  607. * the chain to point to the new allocated
  608. * data blocks numbers
  609. */
  610. for (i=1; i < num; i++)
  611. *(branch[n].p + i) = cpu_to_le32(++current_block);
  612. }
  613. BUFFER_TRACE(bh, "marking uptodate");
  614. set_buffer_uptodate(bh);
  615. unlock_buffer(bh);
  616. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  617. err = ext3_journal_dirty_metadata(handle, bh);
  618. if (err)
  619. goto failed;
  620. }
  621. *blks = num;
  622. return err;
  623. failed:
  624. /* Allocation failed, free what we already allocated */
  625. for (i = 1; i <= n ; i++) {
  626. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  627. ext3_journal_forget(handle, branch[i].bh);
  628. }
  629. for (i = 0; i <indirect_blks; i++)
  630. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  631. ext3_free_blocks(handle, inode, new_blocks[i], num);
  632. return err;
  633. }
  634. /**
  635. * ext3_splice_branch - splice the allocated branch onto inode.
  636. * @inode: owner
  637. * @block: (logical) number of block we are adding
  638. * @chain: chain of indirect blocks (with a missing link - see
  639. * ext3_alloc_branch)
  640. * @where: location of missing link
  641. * @num: number of indirect blocks we are adding
  642. * @blks: number of direct blocks we are adding
  643. *
  644. * This function fills the missing link and does all housekeeping needed in
  645. * inode (->i_blocks, etc.). In case of success we end up with the full
  646. * chain to new block and return 0.
  647. */
  648. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  649. long block, Indirect *where, int num, int blks)
  650. {
  651. int i;
  652. int err = 0;
  653. struct ext3_block_alloc_info *block_i;
  654. ext3_fsblk_t current_block;
  655. struct ext3_inode_info *ei = EXT3_I(inode);
  656. block_i = ei->i_block_alloc_info;
  657. /*
  658. * If we're splicing into a [td]indirect block (as opposed to the
  659. * inode) then we need to get write access to the [td]indirect block
  660. * before the splice.
  661. */
  662. if (where->bh) {
  663. BUFFER_TRACE(where->bh, "get_write_access");
  664. err = ext3_journal_get_write_access(handle, where->bh);
  665. if (err)
  666. goto err_out;
  667. }
  668. /* That's it */
  669. *where->p = where->key;
  670. /*
  671. * Update the host buffer_head or inode to point to more just allocated
  672. * direct blocks blocks
  673. */
  674. if (num == 0 && blks > 1) {
  675. current_block = le32_to_cpu(where->key) + 1;
  676. for (i = 1; i < blks; i++)
  677. *(where->p + i ) = cpu_to_le32(current_block++);
  678. }
  679. /*
  680. * update the most recently allocated logical & physical block
  681. * in i_block_alloc_info, to assist find the proper goal block for next
  682. * allocation
  683. */
  684. if (block_i) {
  685. block_i->last_alloc_logical_block = block + blks - 1;
  686. block_i->last_alloc_physical_block =
  687. le32_to_cpu(where[num].key) + blks - 1;
  688. }
  689. /* We are done with atomic stuff, now do the rest of housekeeping */
  690. inode->i_ctime = CURRENT_TIME_SEC;
  691. ext3_mark_inode_dirty(handle, inode);
  692. /* ext3_mark_inode_dirty already updated i_sync_tid */
  693. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  694. /* had we spliced it onto indirect block? */
  695. if (where->bh) {
  696. /*
  697. * If we spliced it onto an indirect block, we haven't
  698. * altered the inode. Note however that if it is being spliced
  699. * onto an indirect block at the very end of the file (the
  700. * file is growing) then we *will* alter the inode to reflect
  701. * the new i_size. But that is not done here - it is done in
  702. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  703. */
  704. jbd_debug(5, "splicing indirect only\n");
  705. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  706. err = ext3_journal_dirty_metadata(handle, where->bh);
  707. if (err)
  708. goto err_out;
  709. } else {
  710. /*
  711. * OK, we spliced it into the inode itself on a direct block.
  712. * Inode was dirtied above.
  713. */
  714. jbd_debug(5, "splicing direct\n");
  715. }
  716. return err;
  717. err_out:
  718. for (i = 1; i <= num; i++) {
  719. BUFFER_TRACE(where[i].bh, "call journal_forget");
  720. ext3_journal_forget(handle, where[i].bh);
  721. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  722. }
  723. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  724. return err;
  725. }
  726. /*
  727. * Allocation strategy is simple: if we have to allocate something, we will
  728. * have to go the whole way to leaf. So let's do it before attaching anything
  729. * to tree, set linkage between the newborn blocks, write them if sync is
  730. * required, recheck the path, free and repeat if check fails, otherwise
  731. * set the last missing link (that will protect us from any truncate-generated
  732. * removals - all blocks on the path are immune now) and possibly force the
  733. * write on the parent block.
  734. * That has a nice additional property: no special recovery from the failed
  735. * allocations is needed - we simply release blocks and do not touch anything
  736. * reachable from inode.
  737. *
  738. * `handle' can be NULL if create == 0.
  739. *
  740. * The BKL may not be held on entry here. Be sure to take it early.
  741. * return > 0, # of blocks mapped or allocated.
  742. * return = 0, if plain lookup failed.
  743. * return < 0, error case.
  744. */
  745. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  746. sector_t iblock, unsigned long maxblocks,
  747. struct buffer_head *bh_result,
  748. int create)
  749. {
  750. int err = -EIO;
  751. int offsets[4];
  752. Indirect chain[4];
  753. Indirect *partial;
  754. ext3_fsblk_t goal;
  755. int indirect_blks;
  756. int blocks_to_boundary = 0;
  757. int depth;
  758. struct ext3_inode_info *ei = EXT3_I(inode);
  759. int count = 0;
  760. ext3_fsblk_t first_block = 0;
  761. J_ASSERT(handle != NULL || create == 0);
  762. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  763. if (depth == 0)
  764. goto out;
  765. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  766. /* Simplest case - block found, no allocation needed */
  767. if (!partial) {
  768. first_block = le32_to_cpu(chain[depth - 1].key);
  769. clear_buffer_new(bh_result);
  770. count++;
  771. /*map more blocks*/
  772. while (count < maxblocks && count <= blocks_to_boundary) {
  773. ext3_fsblk_t blk;
  774. if (!verify_chain(chain, chain + depth - 1)) {
  775. /*
  776. * Indirect block might be removed by
  777. * truncate while we were reading it.
  778. * Handling of that case: forget what we've
  779. * got now. Flag the err as EAGAIN, so it
  780. * will reread.
  781. */
  782. err = -EAGAIN;
  783. count = 0;
  784. break;
  785. }
  786. blk = le32_to_cpu(*(chain[depth-1].p + count));
  787. if (blk == first_block + count)
  788. count++;
  789. else
  790. break;
  791. }
  792. if (err != -EAGAIN)
  793. goto got_it;
  794. }
  795. /* Next simple case - plain lookup or failed read of indirect block */
  796. if (!create || err == -EIO)
  797. goto cleanup;
  798. mutex_lock(&ei->truncate_mutex);
  799. /*
  800. * If the indirect block is missing while we are reading
  801. * the chain(ext3_get_branch() returns -EAGAIN err), or
  802. * if the chain has been changed after we grab the semaphore,
  803. * (either because another process truncated this branch, or
  804. * another get_block allocated this branch) re-grab the chain to see if
  805. * the request block has been allocated or not.
  806. *
  807. * Since we already block the truncate/other get_block
  808. * at this point, we will have the current copy of the chain when we
  809. * splice the branch into the tree.
  810. */
  811. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  812. while (partial > chain) {
  813. brelse(partial->bh);
  814. partial--;
  815. }
  816. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  817. if (!partial) {
  818. count++;
  819. mutex_unlock(&ei->truncate_mutex);
  820. if (err)
  821. goto cleanup;
  822. clear_buffer_new(bh_result);
  823. goto got_it;
  824. }
  825. }
  826. /*
  827. * Okay, we need to do block allocation. Lazily initialize the block
  828. * allocation info here if necessary
  829. */
  830. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  831. ext3_init_block_alloc_info(inode);
  832. goal = ext3_find_goal(inode, iblock, partial);
  833. /* the number of blocks need to allocate for [d,t]indirect blocks */
  834. indirect_blks = (chain + depth) - partial - 1;
  835. /*
  836. * Next look up the indirect map to count the totoal number of
  837. * direct blocks to allocate for this branch.
  838. */
  839. count = ext3_blks_to_allocate(partial, indirect_blks,
  840. maxblocks, blocks_to_boundary);
  841. /*
  842. * Block out ext3_truncate while we alter the tree
  843. */
  844. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  845. offsets + (partial - chain), partial);
  846. /*
  847. * The ext3_splice_branch call will free and forget any buffers
  848. * on the new chain if there is a failure, but that risks using
  849. * up transaction credits, especially for bitmaps where the
  850. * credits cannot be returned. Can we handle this somehow? We
  851. * may need to return -EAGAIN upwards in the worst case. --sct
  852. */
  853. if (!err)
  854. err = ext3_splice_branch(handle, inode, iblock,
  855. partial, indirect_blks, count);
  856. mutex_unlock(&ei->truncate_mutex);
  857. if (err)
  858. goto cleanup;
  859. set_buffer_new(bh_result);
  860. got_it:
  861. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  862. if (count > blocks_to_boundary)
  863. set_buffer_boundary(bh_result);
  864. err = count;
  865. /* Clean up and exit */
  866. partial = chain + depth - 1; /* the whole chain */
  867. cleanup:
  868. while (partial > chain) {
  869. BUFFER_TRACE(partial->bh, "call brelse");
  870. brelse(partial->bh);
  871. partial--;
  872. }
  873. BUFFER_TRACE(bh_result, "returned");
  874. out:
  875. return err;
  876. }
  877. /* Maximum number of blocks we map for direct IO at once. */
  878. #define DIO_MAX_BLOCKS 4096
  879. /*
  880. * Number of credits we need for writing DIO_MAX_BLOCKS:
  881. * We need sb + group descriptor + bitmap + inode -> 4
  882. * For B blocks with A block pointers per block we need:
  883. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  884. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  885. */
  886. #define DIO_CREDITS 25
  887. static int ext3_get_block(struct inode *inode, sector_t iblock,
  888. struct buffer_head *bh_result, int create)
  889. {
  890. handle_t *handle = ext3_journal_current_handle();
  891. int ret = 0, started = 0;
  892. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  893. if (create && !handle) { /* Direct IO write... */
  894. if (max_blocks > DIO_MAX_BLOCKS)
  895. max_blocks = DIO_MAX_BLOCKS;
  896. handle = ext3_journal_start(inode, DIO_CREDITS +
  897. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  898. if (IS_ERR(handle)) {
  899. ret = PTR_ERR(handle);
  900. goto out;
  901. }
  902. started = 1;
  903. }
  904. ret = ext3_get_blocks_handle(handle, inode, iblock,
  905. max_blocks, bh_result, create);
  906. if (ret > 0) {
  907. bh_result->b_size = (ret << inode->i_blkbits);
  908. ret = 0;
  909. }
  910. if (started)
  911. ext3_journal_stop(handle);
  912. out:
  913. return ret;
  914. }
  915. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  916. u64 start, u64 len)
  917. {
  918. return generic_block_fiemap(inode, fieinfo, start, len,
  919. ext3_get_block);
  920. }
  921. /*
  922. * `handle' can be NULL if create is zero
  923. */
  924. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  925. long block, int create, int *errp)
  926. {
  927. struct buffer_head dummy;
  928. int fatal = 0, err;
  929. J_ASSERT(handle != NULL || create == 0);
  930. dummy.b_state = 0;
  931. dummy.b_blocknr = -1000;
  932. buffer_trace_init(&dummy.b_history);
  933. err = ext3_get_blocks_handle(handle, inode, block, 1,
  934. &dummy, create);
  935. /*
  936. * ext3_get_blocks_handle() returns number of blocks
  937. * mapped. 0 in case of a HOLE.
  938. */
  939. if (err > 0) {
  940. if (err > 1)
  941. WARN_ON(1);
  942. err = 0;
  943. }
  944. *errp = err;
  945. if (!err && buffer_mapped(&dummy)) {
  946. struct buffer_head *bh;
  947. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  948. if (!bh) {
  949. *errp = -EIO;
  950. goto err;
  951. }
  952. if (buffer_new(&dummy)) {
  953. J_ASSERT(create != 0);
  954. J_ASSERT(handle != NULL);
  955. /*
  956. * Now that we do not always journal data, we should
  957. * keep in mind whether this should always journal the
  958. * new buffer as metadata. For now, regular file
  959. * writes use ext3_get_block instead, so it's not a
  960. * problem.
  961. */
  962. lock_buffer(bh);
  963. BUFFER_TRACE(bh, "call get_create_access");
  964. fatal = ext3_journal_get_create_access(handle, bh);
  965. if (!fatal && !buffer_uptodate(bh)) {
  966. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  967. set_buffer_uptodate(bh);
  968. }
  969. unlock_buffer(bh);
  970. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  971. err = ext3_journal_dirty_metadata(handle, bh);
  972. if (!fatal)
  973. fatal = err;
  974. } else {
  975. BUFFER_TRACE(bh, "not a new buffer");
  976. }
  977. if (fatal) {
  978. *errp = fatal;
  979. brelse(bh);
  980. bh = NULL;
  981. }
  982. return bh;
  983. }
  984. err:
  985. return NULL;
  986. }
  987. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  988. int block, int create, int *err)
  989. {
  990. struct buffer_head * bh;
  991. bh = ext3_getblk(handle, inode, block, create, err);
  992. if (!bh)
  993. return bh;
  994. if (buffer_uptodate(bh))
  995. return bh;
  996. ll_rw_block(READ_META, 1, &bh);
  997. wait_on_buffer(bh);
  998. if (buffer_uptodate(bh))
  999. return bh;
  1000. put_bh(bh);
  1001. *err = -EIO;
  1002. return NULL;
  1003. }
  1004. static int walk_page_buffers( handle_t *handle,
  1005. struct buffer_head *head,
  1006. unsigned from,
  1007. unsigned to,
  1008. int *partial,
  1009. int (*fn)( handle_t *handle,
  1010. struct buffer_head *bh))
  1011. {
  1012. struct buffer_head *bh;
  1013. unsigned block_start, block_end;
  1014. unsigned blocksize = head->b_size;
  1015. int err, ret = 0;
  1016. struct buffer_head *next;
  1017. for ( bh = head, block_start = 0;
  1018. ret == 0 && (bh != head || !block_start);
  1019. block_start = block_end, bh = next)
  1020. {
  1021. next = bh->b_this_page;
  1022. block_end = block_start + blocksize;
  1023. if (block_end <= from || block_start >= to) {
  1024. if (partial && !buffer_uptodate(bh))
  1025. *partial = 1;
  1026. continue;
  1027. }
  1028. err = (*fn)(handle, bh);
  1029. if (!ret)
  1030. ret = err;
  1031. }
  1032. return ret;
  1033. }
  1034. /*
  1035. * To preserve ordering, it is essential that the hole instantiation and
  1036. * the data write be encapsulated in a single transaction. We cannot
  1037. * close off a transaction and start a new one between the ext3_get_block()
  1038. * and the commit_write(). So doing the journal_start at the start of
  1039. * prepare_write() is the right place.
  1040. *
  1041. * Also, this function can nest inside ext3_writepage() ->
  1042. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1043. * has generated enough buffer credits to do the whole page. So we won't
  1044. * block on the journal in that case, which is good, because the caller may
  1045. * be PF_MEMALLOC.
  1046. *
  1047. * By accident, ext3 can be reentered when a transaction is open via
  1048. * quota file writes. If we were to commit the transaction while thus
  1049. * reentered, there can be a deadlock - we would be holding a quota
  1050. * lock, and the commit would never complete if another thread had a
  1051. * transaction open and was blocking on the quota lock - a ranking
  1052. * violation.
  1053. *
  1054. * So what we do is to rely on the fact that journal_stop/journal_start
  1055. * will _not_ run commit under these circumstances because handle->h_ref
  1056. * is elevated. We'll still have enough credits for the tiny quotafile
  1057. * write.
  1058. */
  1059. static int do_journal_get_write_access(handle_t *handle,
  1060. struct buffer_head *bh)
  1061. {
  1062. int dirty = buffer_dirty(bh);
  1063. int ret;
  1064. if (!buffer_mapped(bh) || buffer_freed(bh))
  1065. return 0;
  1066. /*
  1067. * __block_prepare_write() could have dirtied some buffers. Clean
  1068. * the dirty bit as jbd2_journal_get_write_access() could complain
  1069. * otherwise about fs integrity issues. Setting of the dirty bit
  1070. * by __block_prepare_write() isn't a real problem here as we clear
  1071. * the bit before releasing a page lock and thus writeback cannot
  1072. * ever write the buffer.
  1073. */
  1074. if (dirty)
  1075. clear_buffer_dirty(bh);
  1076. ret = ext3_journal_get_write_access(handle, bh);
  1077. if (!ret && dirty)
  1078. ret = ext3_journal_dirty_metadata(handle, bh);
  1079. return ret;
  1080. }
  1081. /*
  1082. * Truncate blocks that were not used by write. We have to truncate the
  1083. * pagecache as well so that corresponding buffers get properly unmapped.
  1084. */
  1085. static void ext3_truncate_failed_write(struct inode *inode)
  1086. {
  1087. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1088. ext3_truncate(inode);
  1089. }
  1090. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1091. loff_t pos, unsigned len, unsigned flags,
  1092. struct page **pagep, void **fsdata)
  1093. {
  1094. struct inode *inode = mapping->host;
  1095. int ret;
  1096. handle_t *handle;
  1097. int retries = 0;
  1098. struct page *page;
  1099. pgoff_t index;
  1100. unsigned from, to;
  1101. /* Reserve one block more for addition to orphan list in case
  1102. * we allocate blocks but write fails for some reason */
  1103. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1104. index = pos >> PAGE_CACHE_SHIFT;
  1105. from = pos & (PAGE_CACHE_SIZE - 1);
  1106. to = from + len;
  1107. retry:
  1108. page = grab_cache_page_write_begin(mapping, index, flags);
  1109. if (!page)
  1110. return -ENOMEM;
  1111. *pagep = page;
  1112. handle = ext3_journal_start(inode, needed_blocks);
  1113. if (IS_ERR(handle)) {
  1114. unlock_page(page);
  1115. page_cache_release(page);
  1116. ret = PTR_ERR(handle);
  1117. goto out;
  1118. }
  1119. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1120. if (ret)
  1121. goto write_begin_failed;
  1122. if (ext3_should_journal_data(inode)) {
  1123. ret = walk_page_buffers(handle, page_buffers(page),
  1124. from, to, NULL, do_journal_get_write_access);
  1125. }
  1126. write_begin_failed:
  1127. if (ret) {
  1128. /*
  1129. * block_write_begin may have instantiated a few blocks
  1130. * outside i_size. Trim these off again. Don't need
  1131. * i_size_read because we hold i_mutex.
  1132. *
  1133. * Add inode to orphan list in case we crash before truncate
  1134. * finishes. Do this only if ext3_can_truncate() agrees so
  1135. * that orphan processing code is happy.
  1136. */
  1137. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1138. ext3_orphan_add(handle, inode);
  1139. ext3_journal_stop(handle);
  1140. unlock_page(page);
  1141. page_cache_release(page);
  1142. if (pos + len > inode->i_size)
  1143. ext3_truncate_failed_write(inode);
  1144. }
  1145. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1146. goto retry;
  1147. out:
  1148. return ret;
  1149. }
  1150. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1151. {
  1152. int err = journal_dirty_data(handle, bh);
  1153. if (err)
  1154. ext3_journal_abort_handle(__func__, __func__,
  1155. bh, handle, err);
  1156. return err;
  1157. }
  1158. /* For ordered writepage and write_end functions */
  1159. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1160. {
  1161. /*
  1162. * Write could have mapped the buffer but it didn't copy the data in
  1163. * yet. So avoid filing such buffer into a transaction.
  1164. */
  1165. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1166. return ext3_journal_dirty_data(handle, bh);
  1167. return 0;
  1168. }
  1169. /* For write_end() in data=journal mode */
  1170. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1171. {
  1172. if (!buffer_mapped(bh) || buffer_freed(bh))
  1173. return 0;
  1174. set_buffer_uptodate(bh);
  1175. return ext3_journal_dirty_metadata(handle, bh);
  1176. }
  1177. /*
  1178. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1179. * for the whole page but later we failed to copy the data in. Update inode
  1180. * size according to what we managed to copy. The rest is going to be
  1181. * truncated in write_end function.
  1182. */
  1183. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1184. {
  1185. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1186. if (pos + copied > inode->i_size)
  1187. i_size_write(inode, pos + copied);
  1188. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1189. EXT3_I(inode)->i_disksize = pos + copied;
  1190. mark_inode_dirty(inode);
  1191. }
  1192. }
  1193. /*
  1194. * We need to pick up the new inode size which generic_commit_write gave us
  1195. * `file' can be NULL - eg, when called from page_symlink().
  1196. *
  1197. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1198. * buffers are managed internally.
  1199. */
  1200. static int ext3_ordered_write_end(struct file *file,
  1201. struct address_space *mapping,
  1202. loff_t pos, unsigned len, unsigned copied,
  1203. struct page *page, void *fsdata)
  1204. {
  1205. handle_t *handle = ext3_journal_current_handle();
  1206. struct inode *inode = file->f_mapping->host;
  1207. unsigned from, to;
  1208. int ret = 0, ret2;
  1209. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1210. from = pos & (PAGE_CACHE_SIZE - 1);
  1211. to = from + copied;
  1212. ret = walk_page_buffers(handle, page_buffers(page),
  1213. from, to, NULL, journal_dirty_data_fn);
  1214. if (ret == 0)
  1215. update_file_sizes(inode, pos, copied);
  1216. /*
  1217. * There may be allocated blocks outside of i_size because
  1218. * we failed to copy some data. Prepare for truncate.
  1219. */
  1220. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1221. ext3_orphan_add(handle, inode);
  1222. ret2 = ext3_journal_stop(handle);
  1223. if (!ret)
  1224. ret = ret2;
  1225. unlock_page(page);
  1226. page_cache_release(page);
  1227. if (pos + len > inode->i_size)
  1228. ext3_truncate_failed_write(inode);
  1229. return ret ? ret : copied;
  1230. }
  1231. static int ext3_writeback_write_end(struct file *file,
  1232. struct address_space *mapping,
  1233. loff_t pos, unsigned len, unsigned copied,
  1234. struct page *page, void *fsdata)
  1235. {
  1236. handle_t *handle = ext3_journal_current_handle();
  1237. struct inode *inode = file->f_mapping->host;
  1238. int ret;
  1239. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1240. update_file_sizes(inode, pos, copied);
  1241. /*
  1242. * There may be allocated blocks outside of i_size because
  1243. * we failed to copy some data. Prepare for truncate.
  1244. */
  1245. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1246. ext3_orphan_add(handle, inode);
  1247. ret = ext3_journal_stop(handle);
  1248. unlock_page(page);
  1249. page_cache_release(page);
  1250. if (pos + len > inode->i_size)
  1251. ext3_truncate_failed_write(inode);
  1252. return ret ? ret : copied;
  1253. }
  1254. static int ext3_journalled_write_end(struct file *file,
  1255. struct address_space *mapping,
  1256. loff_t pos, unsigned len, unsigned copied,
  1257. struct page *page, void *fsdata)
  1258. {
  1259. handle_t *handle = ext3_journal_current_handle();
  1260. struct inode *inode = mapping->host;
  1261. int ret = 0, ret2;
  1262. int partial = 0;
  1263. unsigned from, to;
  1264. from = pos & (PAGE_CACHE_SIZE - 1);
  1265. to = from + len;
  1266. if (copied < len) {
  1267. if (!PageUptodate(page))
  1268. copied = 0;
  1269. page_zero_new_buffers(page, from + copied, to);
  1270. to = from + copied;
  1271. }
  1272. ret = walk_page_buffers(handle, page_buffers(page), from,
  1273. to, &partial, write_end_fn);
  1274. if (!partial)
  1275. SetPageUptodate(page);
  1276. if (pos + copied > inode->i_size)
  1277. i_size_write(inode, pos + copied);
  1278. /*
  1279. * There may be allocated blocks outside of i_size because
  1280. * we failed to copy some data. Prepare for truncate.
  1281. */
  1282. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1283. ext3_orphan_add(handle, inode);
  1284. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1285. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1286. EXT3_I(inode)->i_disksize = inode->i_size;
  1287. ret2 = ext3_mark_inode_dirty(handle, inode);
  1288. if (!ret)
  1289. ret = ret2;
  1290. }
  1291. ret2 = ext3_journal_stop(handle);
  1292. if (!ret)
  1293. ret = ret2;
  1294. unlock_page(page);
  1295. page_cache_release(page);
  1296. if (pos + len > inode->i_size)
  1297. ext3_truncate_failed_write(inode);
  1298. return ret ? ret : copied;
  1299. }
  1300. /*
  1301. * bmap() is special. It gets used by applications such as lilo and by
  1302. * the swapper to find the on-disk block of a specific piece of data.
  1303. *
  1304. * Naturally, this is dangerous if the block concerned is still in the
  1305. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1306. * filesystem and enables swap, then they may get a nasty shock when the
  1307. * data getting swapped to that swapfile suddenly gets overwritten by
  1308. * the original zero's written out previously to the journal and
  1309. * awaiting writeback in the kernel's buffer cache.
  1310. *
  1311. * So, if we see any bmap calls here on a modified, data-journaled file,
  1312. * take extra steps to flush any blocks which might be in the cache.
  1313. */
  1314. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1315. {
  1316. struct inode *inode = mapping->host;
  1317. journal_t *journal;
  1318. int err;
  1319. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1320. /*
  1321. * This is a REALLY heavyweight approach, but the use of
  1322. * bmap on dirty files is expected to be extremely rare:
  1323. * only if we run lilo or swapon on a freshly made file
  1324. * do we expect this to happen.
  1325. *
  1326. * (bmap requires CAP_SYS_RAWIO so this does not
  1327. * represent an unprivileged user DOS attack --- we'd be
  1328. * in trouble if mortal users could trigger this path at
  1329. * will.)
  1330. *
  1331. * NB. EXT3_STATE_JDATA is not set on files other than
  1332. * regular files. If somebody wants to bmap a directory
  1333. * or symlink and gets confused because the buffer
  1334. * hasn't yet been flushed to disk, they deserve
  1335. * everything they get.
  1336. */
  1337. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1338. journal = EXT3_JOURNAL(inode);
  1339. journal_lock_updates(journal);
  1340. err = journal_flush(journal);
  1341. journal_unlock_updates(journal);
  1342. if (err)
  1343. return 0;
  1344. }
  1345. return generic_block_bmap(mapping,block,ext3_get_block);
  1346. }
  1347. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1348. {
  1349. get_bh(bh);
  1350. return 0;
  1351. }
  1352. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1353. {
  1354. put_bh(bh);
  1355. return 0;
  1356. }
  1357. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1358. {
  1359. return !buffer_mapped(bh);
  1360. }
  1361. /*
  1362. * Note that we always start a transaction even if we're not journalling
  1363. * data. This is to preserve ordering: any hole instantiation within
  1364. * __block_write_full_page -> ext3_get_block() should be journalled
  1365. * along with the data so we don't crash and then get metadata which
  1366. * refers to old data.
  1367. *
  1368. * In all journalling modes block_write_full_page() will start the I/O.
  1369. *
  1370. * Problem:
  1371. *
  1372. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1373. * ext3_writepage()
  1374. *
  1375. * Similar for:
  1376. *
  1377. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1378. *
  1379. * Same applies to ext3_get_block(). We will deadlock on various things like
  1380. * lock_journal and i_truncate_mutex.
  1381. *
  1382. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1383. * allocations fail.
  1384. *
  1385. * 16May01: If we're reentered then journal_current_handle() will be
  1386. * non-zero. We simply *return*.
  1387. *
  1388. * 1 July 2001: @@@ FIXME:
  1389. * In journalled data mode, a data buffer may be metadata against the
  1390. * current transaction. But the same file is part of a shared mapping
  1391. * and someone does a writepage() on it.
  1392. *
  1393. * We will move the buffer onto the async_data list, but *after* it has
  1394. * been dirtied. So there's a small window where we have dirty data on
  1395. * BJ_Metadata.
  1396. *
  1397. * Note that this only applies to the last partial page in the file. The
  1398. * bit which block_write_full_page() uses prepare/commit for. (That's
  1399. * broken code anyway: it's wrong for msync()).
  1400. *
  1401. * It's a rare case: affects the final partial page, for journalled data
  1402. * where the file is subject to bith write() and writepage() in the same
  1403. * transction. To fix it we'll need a custom block_write_full_page().
  1404. * We'll probably need that anyway for journalling writepage() output.
  1405. *
  1406. * We don't honour synchronous mounts for writepage(). That would be
  1407. * disastrous. Any write() or metadata operation will sync the fs for
  1408. * us.
  1409. *
  1410. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1411. * we don't need to open a transaction here.
  1412. */
  1413. static int ext3_ordered_writepage(struct page *page,
  1414. struct writeback_control *wbc)
  1415. {
  1416. struct inode *inode = page->mapping->host;
  1417. struct buffer_head *page_bufs;
  1418. handle_t *handle = NULL;
  1419. int ret = 0;
  1420. int err;
  1421. J_ASSERT(PageLocked(page));
  1422. WARN_ON_ONCE(IS_RDONLY(inode));
  1423. /*
  1424. * We give up here if we're reentered, because it might be for a
  1425. * different filesystem.
  1426. */
  1427. if (ext3_journal_current_handle())
  1428. goto out_fail;
  1429. if (!page_has_buffers(page)) {
  1430. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1431. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1432. page_bufs = page_buffers(page);
  1433. } else {
  1434. page_bufs = page_buffers(page);
  1435. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1436. NULL, buffer_unmapped)) {
  1437. /* Provide NULL get_block() to catch bugs if buffers
  1438. * weren't really mapped */
  1439. return block_write_full_page(page, NULL, wbc);
  1440. }
  1441. }
  1442. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1443. if (IS_ERR(handle)) {
  1444. ret = PTR_ERR(handle);
  1445. goto out_fail;
  1446. }
  1447. walk_page_buffers(handle, page_bufs, 0,
  1448. PAGE_CACHE_SIZE, NULL, bget_one);
  1449. ret = block_write_full_page(page, ext3_get_block, wbc);
  1450. /*
  1451. * The page can become unlocked at any point now, and
  1452. * truncate can then come in and change things. So we
  1453. * can't touch *page from now on. But *page_bufs is
  1454. * safe due to elevated refcount.
  1455. */
  1456. /*
  1457. * And attach them to the current transaction. But only if
  1458. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1459. * and generally junk.
  1460. */
  1461. if (ret == 0) {
  1462. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1463. NULL, journal_dirty_data_fn);
  1464. if (!ret)
  1465. ret = err;
  1466. }
  1467. walk_page_buffers(handle, page_bufs, 0,
  1468. PAGE_CACHE_SIZE, NULL, bput_one);
  1469. err = ext3_journal_stop(handle);
  1470. if (!ret)
  1471. ret = err;
  1472. return ret;
  1473. out_fail:
  1474. redirty_page_for_writepage(wbc, page);
  1475. unlock_page(page);
  1476. return ret;
  1477. }
  1478. static int ext3_writeback_writepage(struct page *page,
  1479. struct writeback_control *wbc)
  1480. {
  1481. struct inode *inode = page->mapping->host;
  1482. handle_t *handle = NULL;
  1483. int ret = 0;
  1484. int err;
  1485. J_ASSERT(PageLocked(page));
  1486. WARN_ON_ONCE(IS_RDONLY(inode));
  1487. if (ext3_journal_current_handle())
  1488. goto out_fail;
  1489. if (page_has_buffers(page)) {
  1490. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1491. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1492. /* Provide NULL get_block() to catch bugs if buffers
  1493. * weren't really mapped */
  1494. return block_write_full_page(page, NULL, wbc);
  1495. }
  1496. }
  1497. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1498. if (IS_ERR(handle)) {
  1499. ret = PTR_ERR(handle);
  1500. goto out_fail;
  1501. }
  1502. ret = block_write_full_page(page, ext3_get_block, wbc);
  1503. err = ext3_journal_stop(handle);
  1504. if (!ret)
  1505. ret = err;
  1506. return ret;
  1507. out_fail:
  1508. redirty_page_for_writepage(wbc, page);
  1509. unlock_page(page);
  1510. return ret;
  1511. }
  1512. static int ext3_journalled_writepage(struct page *page,
  1513. struct writeback_control *wbc)
  1514. {
  1515. struct inode *inode = page->mapping->host;
  1516. handle_t *handle = NULL;
  1517. int ret = 0;
  1518. int err;
  1519. J_ASSERT(PageLocked(page));
  1520. WARN_ON_ONCE(IS_RDONLY(inode));
  1521. if (ext3_journal_current_handle())
  1522. goto no_write;
  1523. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1524. if (IS_ERR(handle)) {
  1525. ret = PTR_ERR(handle);
  1526. goto no_write;
  1527. }
  1528. if (!page_has_buffers(page) || PageChecked(page)) {
  1529. /*
  1530. * It's mmapped pagecache. Add buffers and journal it. There
  1531. * doesn't seem much point in redirtying the page here.
  1532. */
  1533. ClearPageChecked(page);
  1534. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1535. ext3_get_block);
  1536. if (ret != 0) {
  1537. ext3_journal_stop(handle);
  1538. goto out_unlock;
  1539. }
  1540. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1541. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1542. err = walk_page_buffers(handle, page_buffers(page), 0,
  1543. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1544. if (ret == 0)
  1545. ret = err;
  1546. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1547. unlock_page(page);
  1548. } else {
  1549. /*
  1550. * It may be a page full of checkpoint-mode buffers. We don't
  1551. * really know unless we go poke around in the buffer_heads.
  1552. * But block_write_full_page will do the right thing.
  1553. */
  1554. ret = block_write_full_page(page, ext3_get_block, wbc);
  1555. }
  1556. err = ext3_journal_stop(handle);
  1557. if (!ret)
  1558. ret = err;
  1559. out:
  1560. return ret;
  1561. no_write:
  1562. redirty_page_for_writepage(wbc, page);
  1563. out_unlock:
  1564. unlock_page(page);
  1565. goto out;
  1566. }
  1567. static int ext3_readpage(struct file *file, struct page *page)
  1568. {
  1569. return mpage_readpage(page, ext3_get_block);
  1570. }
  1571. static int
  1572. ext3_readpages(struct file *file, struct address_space *mapping,
  1573. struct list_head *pages, unsigned nr_pages)
  1574. {
  1575. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1576. }
  1577. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1578. {
  1579. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1580. /*
  1581. * If it's a full truncate we just forget about the pending dirtying
  1582. */
  1583. if (offset == 0)
  1584. ClearPageChecked(page);
  1585. journal_invalidatepage(journal, page, offset);
  1586. }
  1587. static int ext3_releasepage(struct page *page, gfp_t wait)
  1588. {
  1589. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1590. WARN_ON(PageChecked(page));
  1591. if (!page_has_buffers(page))
  1592. return 0;
  1593. return journal_try_to_free_buffers(journal, page, wait);
  1594. }
  1595. /*
  1596. * If the O_DIRECT write will extend the file then add this inode to the
  1597. * orphan list. So recovery will truncate it back to the original size
  1598. * if the machine crashes during the write.
  1599. *
  1600. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1601. * crashes then stale disk data _may_ be exposed inside the file. But current
  1602. * VFS code falls back into buffered path in that case so we are safe.
  1603. */
  1604. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1605. const struct iovec *iov, loff_t offset,
  1606. unsigned long nr_segs)
  1607. {
  1608. struct file *file = iocb->ki_filp;
  1609. struct inode *inode = file->f_mapping->host;
  1610. struct ext3_inode_info *ei = EXT3_I(inode);
  1611. handle_t *handle;
  1612. ssize_t ret;
  1613. int orphan = 0;
  1614. size_t count = iov_length(iov, nr_segs);
  1615. int retries = 0;
  1616. if (rw == WRITE) {
  1617. loff_t final_size = offset + count;
  1618. if (final_size > inode->i_size) {
  1619. /* Credits for sb + inode write */
  1620. handle = ext3_journal_start(inode, 2);
  1621. if (IS_ERR(handle)) {
  1622. ret = PTR_ERR(handle);
  1623. goto out;
  1624. }
  1625. ret = ext3_orphan_add(handle, inode);
  1626. if (ret) {
  1627. ext3_journal_stop(handle);
  1628. goto out;
  1629. }
  1630. orphan = 1;
  1631. ei->i_disksize = inode->i_size;
  1632. ext3_journal_stop(handle);
  1633. }
  1634. }
  1635. retry:
  1636. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1637. offset, nr_segs,
  1638. ext3_get_block, NULL);
  1639. /*
  1640. * In case of error extending write may have instantiated a few
  1641. * blocks outside i_size. Trim these off again.
  1642. */
  1643. if (unlikely((rw & WRITE) && ret < 0)) {
  1644. loff_t isize = i_size_read(inode);
  1645. loff_t end = offset + iov_length(iov, nr_segs);
  1646. if (end > isize)
  1647. vmtruncate(inode, isize);
  1648. }
  1649. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1650. goto retry;
  1651. if (orphan) {
  1652. int err;
  1653. /* Credits for sb + inode write */
  1654. handle = ext3_journal_start(inode, 2);
  1655. if (IS_ERR(handle)) {
  1656. /* This is really bad luck. We've written the data
  1657. * but cannot extend i_size. Truncate allocated blocks
  1658. * and pretend the write failed... */
  1659. ext3_truncate(inode);
  1660. ret = PTR_ERR(handle);
  1661. goto out;
  1662. }
  1663. if (inode->i_nlink)
  1664. ext3_orphan_del(handle, inode);
  1665. if (ret > 0) {
  1666. loff_t end = offset + ret;
  1667. if (end > inode->i_size) {
  1668. ei->i_disksize = end;
  1669. i_size_write(inode, end);
  1670. /*
  1671. * We're going to return a positive `ret'
  1672. * here due to non-zero-length I/O, so there's
  1673. * no way of reporting error returns from
  1674. * ext3_mark_inode_dirty() to userspace. So
  1675. * ignore it.
  1676. */
  1677. ext3_mark_inode_dirty(handle, inode);
  1678. }
  1679. }
  1680. err = ext3_journal_stop(handle);
  1681. if (ret == 0)
  1682. ret = err;
  1683. }
  1684. out:
  1685. return ret;
  1686. }
  1687. /*
  1688. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1689. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1690. * much here because ->set_page_dirty is called under VFS locks. The page is
  1691. * not necessarily locked.
  1692. *
  1693. * We cannot just dirty the page and leave attached buffers clean, because the
  1694. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1695. * or jbddirty because all the journalling code will explode.
  1696. *
  1697. * So what we do is to mark the page "pending dirty" and next time writepage
  1698. * is called, propagate that into the buffers appropriately.
  1699. */
  1700. static int ext3_journalled_set_page_dirty(struct page *page)
  1701. {
  1702. SetPageChecked(page);
  1703. return __set_page_dirty_nobuffers(page);
  1704. }
  1705. static const struct address_space_operations ext3_ordered_aops = {
  1706. .readpage = ext3_readpage,
  1707. .readpages = ext3_readpages,
  1708. .writepage = ext3_ordered_writepage,
  1709. .sync_page = block_sync_page,
  1710. .write_begin = ext3_write_begin,
  1711. .write_end = ext3_ordered_write_end,
  1712. .bmap = ext3_bmap,
  1713. .invalidatepage = ext3_invalidatepage,
  1714. .releasepage = ext3_releasepage,
  1715. .direct_IO = ext3_direct_IO,
  1716. .migratepage = buffer_migrate_page,
  1717. .is_partially_uptodate = block_is_partially_uptodate,
  1718. .error_remove_page = generic_error_remove_page,
  1719. };
  1720. static const struct address_space_operations ext3_writeback_aops = {
  1721. .readpage = ext3_readpage,
  1722. .readpages = ext3_readpages,
  1723. .writepage = ext3_writeback_writepage,
  1724. .sync_page = block_sync_page,
  1725. .write_begin = ext3_write_begin,
  1726. .write_end = ext3_writeback_write_end,
  1727. .bmap = ext3_bmap,
  1728. .invalidatepage = ext3_invalidatepage,
  1729. .releasepage = ext3_releasepage,
  1730. .direct_IO = ext3_direct_IO,
  1731. .migratepage = buffer_migrate_page,
  1732. .is_partially_uptodate = block_is_partially_uptodate,
  1733. .error_remove_page = generic_error_remove_page,
  1734. };
  1735. static const struct address_space_operations ext3_journalled_aops = {
  1736. .readpage = ext3_readpage,
  1737. .readpages = ext3_readpages,
  1738. .writepage = ext3_journalled_writepage,
  1739. .sync_page = block_sync_page,
  1740. .write_begin = ext3_write_begin,
  1741. .write_end = ext3_journalled_write_end,
  1742. .set_page_dirty = ext3_journalled_set_page_dirty,
  1743. .bmap = ext3_bmap,
  1744. .invalidatepage = ext3_invalidatepage,
  1745. .releasepage = ext3_releasepage,
  1746. .is_partially_uptodate = block_is_partially_uptodate,
  1747. .error_remove_page = generic_error_remove_page,
  1748. };
  1749. void ext3_set_aops(struct inode *inode)
  1750. {
  1751. if (ext3_should_order_data(inode))
  1752. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1753. else if (ext3_should_writeback_data(inode))
  1754. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1755. else
  1756. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1757. }
  1758. /*
  1759. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1760. * up to the end of the block which corresponds to `from'.
  1761. * This required during truncate. We need to physically zero the tail end
  1762. * of that block so it doesn't yield old data if the file is later grown.
  1763. */
  1764. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1765. struct address_space *mapping, loff_t from)
  1766. {
  1767. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1768. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1769. unsigned blocksize, iblock, length, pos;
  1770. struct inode *inode = mapping->host;
  1771. struct buffer_head *bh;
  1772. int err = 0;
  1773. blocksize = inode->i_sb->s_blocksize;
  1774. length = blocksize - (offset & (blocksize - 1));
  1775. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1776. if (!page_has_buffers(page))
  1777. create_empty_buffers(page, blocksize, 0);
  1778. /* Find the buffer that contains "offset" */
  1779. bh = page_buffers(page);
  1780. pos = blocksize;
  1781. while (offset >= pos) {
  1782. bh = bh->b_this_page;
  1783. iblock++;
  1784. pos += blocksize;
  1785. }
  1786. err = 0;
  1787. if (buffer_freed(bh)) {
  1788. BUFFER_TRACE(bh, "freed: skip");
  1789. goto unlock;
  1790. }
  1791. if (!buffer_mapped(bh)) {
  1792. BUFFER_TRACE(bh, "unmapped");
  1793. ext3_get_block(inode, iblock, bh, 0);
  1794. /* unmapped? It's a hole - nothing to do */
  1795. if (!buffer_mapped(bh)) {
  1796. BUFFER_TRACE(bh, "still unmapped");
  1797. goto unlock;
  1798. }
  1799. }
  1800. /* Ok, it's mapped. Make sure it's up-to-date */
  1801. if (PageUptodate(page))
  1802. set_buffer_uptodate(bh);
  1803. if (!buffer_uptodate(bh)) {
  1804. err = -EIO;
  1805. ll_rw_block(READ, 1, &bh);
  1806. wait_on_buffer(bh);
  1807. /* Uhhuh. Read error. Complain and punt. */
  1808. if (!buffer_uptodate(bh))
  1809. goto unlock;
  1810. }
  1811. if (ext3_should_journal_data(inode)) {
  1812. BUFFER_TRACE(bh, "get write access");
  1813. err = ext3_journal_get_write_access(handle, bh);
  1814. if (err)
  1815. goto unlock;
  1816. }
  1817. zero_user(page, offset, length);
  1818. BUFFER_TRACE(bh, "zeroed end of block");
  1819. err = 0;
  1820. if (ext3_should_journal_data(inode)) {
  1821. err = ext3_journal_dirty_metadata(handle, bh);
  1822. } else {
  1823. if (ext3_should_order_data(inode))
  1824. err = ext3_journal_dirty_data(handle, bh);
  1825. mark_buffer_dirty(bh);
  1826. }
  1827. unlock:
  1828. unlock_page(page);
  1829. page_cache_release(page);
  1830. return err;
  1831. }
  1832. /*
  1833. * Probably it should be a library function... search for first non-zero word
  1834. * or memcmp with zero_page, whatever is better for particular architecture.
  1835. * Linus?
  1836. */
  1837. static inline int all_zeroes(__le32 *p, __le32 *q)
  1838. {
  1839. while (p < q)
  1840. if (*p++)
  1841. return 0;
  1842. return 1;
  1843. }
  1844. /**
  1845. * ext3_find_shared - find the indirect blocks for partial truncation.
  1846. * @inode: inode in question
  1847. * @depth: depth of the affected branch
  1848. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1849. * @chain: place to store the pointers to partial indirect blocks
  1850. * @top: place to the (detached) top of branch
  1851. *
  1852. * This is a helper function used by ext3_truncate().
  1853. *
  1854. * When we do truncate() we may have to clean the ends of several
  1855. * indirect blocks but leave the blocks themselves alive. Block is
  1856. * partially truncated if some data below the new i_size is refered
  1857. * from it (and it is on the path to the first completely truncated
  1858. * data block, indeed). We have to free the top of that path along
  1859. * with everything to the right of the path. Since no allocation
  1860. * past the truncation point is possible until ext3_truncate()
  1861. * finishes, we may safely do the latter, but top of branch may
  1862. * require special attention - pageout below the truncation point
  1863. * might try to populate it.
  1864. *
  1865. * We atomically detach the top of branch from the tree, store the
  1866. * block number of its root in *@top, pointers to buffer_heads of
  1867. * partially truncated blocks - in @chain[].bh and pointers to
  1868. * their last elements that should not be removed - in
  1869. * @chain[].p. Return value is the pointer to last filled element
  1870. * of @chain.
  1871. *
  1872. * The work left to caller to do the actual freeing of subtrees:
  1873. * a) free the subtree starting from *@top
  1874. * b) free the subtrees whose roots are stored in
  1875. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1876. * c) free the subtrees growing from the inode past the @chain[0].
  1877. * (no partially truncated stuff there). */
  1878. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1879. int offsets[4], Indirect chain[4], __le32 *top)
  1880. {
  1881. Indirect *partial, *p;
  1882. int k, err;
  1883. *top = 0;
  1884. /* Make k index the deepest non-null offset + 1 */
  1885. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1886. ;
  1887. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1888. /* Writer: pointers */
  1889. if (!partial)
  1890. partial = chain + k-1;
  1891. /*
  1892. * If the branch acquired continuation since we've looked at it -
  1893. * fine, it should all survive and (new) top doesn't belong to us.
  1894. */
  1895. if (!partial->key && *partial->p)
  1896. /* Writer: end */
  1897. goto no_top;
  1898. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1899. ;
  1900. /*
  1901. * OK, we've found the last block that must survive. The rest of our
  1902. * branch should be detached before unlocking. However, if that rest
  1903. * of branch is all ours and does not grow immediately from the inode
  1904. * it's easier to cheat and just decrement partial->p.
  1905. */
  1906. if (p == chain + k - 1 && p > chain) {
  1907. p->p--;
  1908. } else {
  1909. *top = *p->p;
  1910. /* Nope, don't do this in ext3. Must leave the tree intact */
  1911. #if 0
  1912. *p->p = 0;
  1913. #endif
  1914. }
  1915. /* Writer: end */
  1916. while(partial > p) {
  1917. brelse(partial->bh);
  1918. partial--;
  1919. }
  1920. no_top:
  1921. return partial;
  1922. }
  1923. /*
  1924. * Zero a number of block pointers in either an inode or an indirect block.
  1925. * If we restart the transaction we must again get write access to the
  1926. * indirect block for further modification.
  1927. *
  1928. * We release `count' blocks on disk, but (last - first) may be greater
  1929. * than `count' because there can be holes in there.
  1930. */
  1931. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1932. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1933. unsigned long count, __le32 *first, __le32 *last)
  1934. {
  1935. __le32 *p;
  1936. if (try_to_extend_transaction(handle, inode)) {
  1937. if (bh) {
  1938. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1939. ext3_journal_dirty_metadata(handle, bh);
  1940. }
  1941. ext3_mark_inode_dirty(handle, inode);
  1942. truncate_restart_transaction(handle, inode);
  1943. if (bh) {
  1944. BUFFER_TRACE(bh, "retaking write access");
  1945. ext3_journal_get_write_access(handle, bh);
  1946. }
  1947. }
  1948. /*
  1949. * Any buffers which are on the journal will be in memory. We find
  1950. * them on the hash table so journal_revoke() will run journal_forget()
  1951. * on them. We've already detached each block from the file, so
  1952. * bforget() in journal_forget() should be safe.
  1953. *
  1954. * AKPM: turn on bforget in journal_forget()!!!
  1955. */
  1956. for (p = first; p < last; p++) {
  1957. u32 nr = le32_to_cpu(*p);
  1958. if (nr) {
  1959. struct buffer_head *bh;
  1960. *p = 0;
  1961. bh = sb_find_get_block(inode->i_sb, nr);
  1962. ext3_forget(handle, 0, inode, bh, nr);
  1963. }
  1964. }
  1965. ext3_free_blocks(handle, inode, block_to_free, count);
  1966. }
  1967. /**
  1968. * ext3_free_data - free a list of data blocks
  1969. * @handle: handle for this transaction
  1970. * @inode: inode we are dealing with
  1971. * @this_bh: indirect buffer_head which contains *@first and *@last
  1972. * @first: array of block numbers
  1973. * @last: points immediately past the end of array
  1974. *
  1975. * We are freeing all blocks refered from that array (numbers are stored as
  1976. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1977. *
  1978. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1979. * blocks are contiguous then releasing them at one time will only affect one
  1980. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1981. * actually use a lot of journal space.
  1982. *
  1983. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1984. * block pointers.
  1985. */
  1986. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1987. struct buffer_head *this_bh,
  1988. __le32 *first, __le32 *last)
  1989. {
  1990. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1991. unsigned long count = 0; /* Number of blocks in the run */
  1992. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1993. corresponding to
  1994. block_to_free */
  1995. ext3_fsblk_t nr; /* Current block # */
  1996. __le32 *p; /* Pointer into inode/ind
  1997. for current block */
  1998. int err;
  1999. if (this_bh) { /* For indirect block */
  2000. BUFFER_TRACE(this_bh, "get_write_access");
  2001. err = ext3_journal_get_write_access(handle, this_bh);
  2002. /* Important: if we can't update the indirect pointers
  2003. * to the blocks, we can't free them. */
  2004. if (err)
  2005. return;
  2006. }
  2007. for (p = first; p < last; p++) {
  2008. nr = le32_to_cpu(*p);
  2009. if (nr) {
  2010. /* accumulate blocks to free if they're contiguous */
  2011. if (count == 0) {
  2012. block_to_free = nr;
  2013. block_to_free_p = p;
  2014. count = 1;
  2015. } else if (nr == block_to_free + count) {
  2016. count++;
  2017. } else {
  2018. ext3_clear_blocks(handle, inode, this_bh,
  2019. block_to_free,
  2020. count, block_to_free_p, p);
  2021. block_to_free = nr;
  2022. block_to_free_p = p;
  2023. count = 1;
  2024. }
  2025. }
  2026. }
  2027. if (count > 0)
  2028. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2029. count, block_to_free_p, p);
  2030. if (this_bh) {
  2031. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2032. /*
  2033. * The buffer head should have an attached journal head at this
  2034. * point. However, if the data is corrupted and an indirect
  2035. * block pointed to itself, it would have been detached when
  2036. * the block was cleared. Check for this instead of OOPSing.
  2037. */
  2038. if (bh2jh(this_bh))
  2039. ext3_journal_dirty_metadata(handle, this_bh);
  2040. else
  2041. ext3_error(inode->i_sb, "ext3_free_data",
  2042. "circular indirect block detected, "
  2043. "inode=%lu, block=%llu",
  2044. inode->i_ino,
  2045. (unsigned long long)this_bh->b_blocknr);
  2046. }
  2047. }
  2048. /**
  2049. * ext3_free_branches - free an array of branches
  2050. * @handle: JBD handle for this transaction
  2051. * @inode: inode we are dealing with
  2052. * @parent_bh: the buffer_head which contains *@first and *@last
  2053. * @first: array of block numbers
  2054. * @last: pointer immediately past the end of array
  2055. * @depth: depth of the branches to free
  2056. *
  2057. * We are freeing all blocks refered from these branches (numbers are
  2058. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2059. * appropriately.
  2060. */
  2061. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2062. struct buffer_head *parent_bh,
  2063. __le32 *first, __le32 *last, int depth)
  2064. {
  2065. ext3_fsblk_t nr;
  2066. __le32 *p;
  2067. if (is_handle_aborted(handle))
  2068. return;
  2069. if (depth--) {
  2070. struct buffer_head *bh;
  2071. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2072. p = last;
  2073. while (--p >= first) {
  2074. nr = le32_to_cpu(*p);
  2075. if (!nr)
  2076. continue; /* A hole */
  2077. /* Go read the buffer for the next level down */
  2078. bh = sb_bread(inode->i_sb, nr);
  2079. /*
  2080. * A read failure? Report error and clear slot
  2081. * (should be rare).
  2082. */
  2083. if (!bh) {
  2084. ext3_error(inode->i_sb, "ext3_free_branches",
  2085. "Read failure, inode=%lu, block="E3FSBLK,
  2086. inode->i_ino, nr);
  2087. continue;
  2088. }
  2089. /* This zaps the entire block. Bottom up. */
  2090. BUFFER_TRACE(bh, "free child branches");
  2091. ext3_free_branches(handle, inode, bh,
  2092. (__le32*)bh->b_data,
  2093. (__le32*)bh->b_data + addr_per_block,
  2094. depth);
  2095. /*
  2096. * Everything below this this pointer has been
  2097. * released. Now let this top-of-subtree go.
  2098. *
  2099. * We want the freeing of this indirect block to be
  2100. * atomic in the journal with the updating of the
  2101. * bitmap block which owns it. So make some room in
  2102. * the journal.
  2103. *
  2104. * We zero the parent pointer *after* freeing its
  2105. * pointee in the bitmaps, so if extend_transaction()
  2106. * for some reason fails to put the bitmap changes and
  2107. * the release into the same transaction, recovery
  2108. * will merely complain about releasing a free block,
  2109. * rather than leaking blocks.
  2110. */
  2111. if (is_handle_aborted(handle))
  2112. return;
  2113. if (try_to_extend_transaction(handle, inode)) {
  2114. ext3_mark_inode_dirty(handle, inode);
  2115. truncate_restart_transaction(handle, inode);
  2116. }
  2117. /*
  2118. * We've probably journalled the indirect block several
  2119. * times during the truncate. But it's no longer
  2120. * needed and we now drop it from the transaction via
  2121. * journal_revoke().
  2122. *
  2123. * That's easy if it's exclusively part of this
  2124. * transaction. But if it's part of the committing
  2125. * transaction then journal_forget() will simply
  2126. * brelse() it. That means that if the underlying
  2127. * block is reallocated in ext3_get_block(),
  2128. * unmap_underlying_metadata() will find this block
  2129. * and will try to get rid of it. damn, damn. Thus
  2130. * we don't allow a block to be reallocated until
  2131. * a transaction freeing it has fully committed.
  2132. *
  2133. * We also have to make sure journal replay after a
  2134. * crash does not overwrite non-journaled data blocks
  2135. * with old metadata when the block got reallocated for
  2136. * data. Thus we have to store a revoke record for a
  2137. * block in the same transaction in which we free the
  2138. * block.
  2139. */
  2140. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2141. ext3_free_blocks(handle, inode, nr, 1);
  2142. if (parent_bh) {
  2143. /*
  2144. * The block which we have just freed is
  2145. * pointed to by an indirect block: journal it
  2146. */
  2147. BUFFER_TRACE(parent_bh, "get_write_access");
  2148. if (!ext3_journal_get_write_access(handle,
  2149. parent_bh)){
  2150. *p = 0;
  2151. BUFFER_TRACE(parent_bh,
  2152. "call ext3_journal_dirty_metadata");
  2153. ext3_journal_dirty_metadata(handle,
  2154. parent_bh);
  2155. }
  2156. }
  2157. }
  2158. } else {
  2159. /* We have reached the bottom of the tree. */
  2160. BUFFER_TRACE(parent_bh, "free data blocks");
  2161. ext3_free_data(handle, inode, parent_bh, first, last);
  2162. }
  2163. }
  2164. int ext3_can_truncate(struct inode *inode)
  2165. {
  2166. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2167. return 0;
  2168. if (S_ISREG(inode->i_mode))
  2169. return 1;
  2170. if (S_ISDIR(inode->i_mode))
  2171. return 1;
  2172. if (S_ISLNK(inode->i_mode))
  2173. return !ext3_inode_is_fast_symlink(inode);
  2174. return 0;
  2175. }
  2176. /*
  2177. * ext3_truncate()
  2178. *
  2179. * We block out ext3_get_block() block instantiations across the entire
  2180. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2181. * simultaneously on behalf of the same inode.
  2182. *
  2183. * As we work through the truncate and commmit bits of it to the journal there
  2184. * is one core, guiding principle: the file's tree must always be consistent on
  2185. * disk. We must be able to restart the truncate after a crash.
  2186. *
  2187. * The file's tree may be transiently inconsistent in memory (although it
  2188. * probably isn't), but whenever we close off and commit a journal transaction,
  2189. * the contents of (the filesystem + the journal) must be consistent and
  2190. * restartable. It's pretty simple, really: bottom up, right to left (although
  2191. * left-to-right works OK too).
  2192. *
  2193. * Note that at recovery time, journal replay occurs *before* the restart of
  2194. * truncate against the orphan inode list.
  2195. *
  2196. * The committed inode has the new, desired i_size (which is the same as
  2197. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2198. * that this inode's truncate did not complete and it will again call
  2199. * ext3_truncate() to have another go. So there will be instantiated blocks
  2200. * to the right of the truncation point in a crashed ext3 filesystem. But
  2201. * that's fine - as long as they are linked from the inode, the post-crash
  2202. * ext3_truncate() run will find them and release them.
  2203. */
  2204. void ext3_truncate(struct inode *inode)
  2205. {
  2206. handle_t *handle;
  2207. struct ext3_inode_info *ei = EXT3_I(inode);
  2208. __le32 *i_data = ei->i_data;
  2209. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2210. struct address_space *mapping = inode->i_mapping;
  2211. int offsets[4];
  2212. Indirect chain[4];
  2213. Indirect *partial;
  2214. __le32 nr = 0;
  2215. int n;
  2216. long last_block;
  2217. unsigned blocksize = inode->i_sb->s_blocksize;
  2218. struct page *page;
  2219. if (!ext3_can_truncate(inode))
  2220. goto out_notrans;
  2221. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2222. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2223. /*
  2224. * We have to lock the EOF page here, because lock_page() nests
  2225. * outside journal_start().
  2226. */
  2227. if ((inode->i_size & (blocksize - 1)) == 0) {
  2228. /* Block boundary? Nothing to do */
  2229. page = NULL;
  2230. } else {
  2231. page = grab_cache_page(mapping,
  2232. inode->i_size >> PAGE_CACHE_SHIFT);
  2233. if (!page)
  2234. goto out_notrans;
  2235. }
  2236. handle = start_transaction(inode);
  2237. if (IS_ERR(handle)) {
  2238. if (page) {
  2239. clear_highpage(page);
  2240. flush_dcache_page(page);
  2241. unlock_page(page);
  2242. page_cache_release(page);
  2243. }
  2244. goto out_notrans;
  2245. }
  2246. last_block = (inode->i_size + blocksize-1)
  2247. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2248. if (page)
  2249. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2250. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2251. if (n == 0)
  2252. goto out_stop; /* error */
  2253. /*
  2254. * OK. This truncate is going to happen. We add the inode to the
  2255. * orphan list, so that if this truncate spans multiple transactions,
  2256. * and we crash, we will resume the truncate when the filesystem
  2257. * recovers. It also marks the inode dirty, to catch the new size.
  2258. *
  2259. * Implication: the file must always be in a sane, consistent
  2260. * truncatable state while each transaction commits.
  2261. */
  2262. if (ext3_orphan_add(handle, inode))
  2263. goto out_stop;
  2264. /*
  2265. * The orphan list entry will now protect us from any crash which
  2266. * occurs before the truncate completes, so it is now safe to propagate
  2267. * the new, shorter inode size (held for now in i_size) into the
  2268. * on-disk inode. We do this via i_disksize, which is the value which
  2269. * ext3 *really* writes onto the disk inode.
  2270. */
  2271. ei->i_disksize = inode->i_size;
  2272. /*
  2273. * From here we block out all ext3_get_block() callers who want to
  2274. * modify the block allocation tree.
  2275. */
  2276. mutex_lock(&ei->truncate_mutex);
  2277. if (n == 1) { /* direct blocks */
  2278. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2279. i_data + EXT3_NDIR_BLOCKS);
  2280. goto do_indirects;
  2281. }
  2282. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2283. /* Kill the top of shared branch (not detached) */
  2284. if (nr) {
  2285. if (partial == chain) {
  2286. /* Shared branch grows from the inode */
  2287. ext3_free_branches(handle, inode, NULL,
  2288. &nr, &nr+1, (chain+n-1) - partial);
  2289. *partial->p = 0;
  2290. /*
  2291. * We mark the inode dirty prior to restart,
  2292. * and prior to stop. No need for it here.
  2293. */
  2294. } else {
  2295. /* Shared branch grows from an indirect block */
  2296. BUFFER_TRACE(partial->bh, "get_write_access");
  2297. ext3_free_branches(handle, inode, partial->bh,
  2298. partial->p,
  2299. partial->p+1, (chain+n-1) - partial);
  2300. }
  2301. }
  2302. /* Clear the ends of indirect blocks on the shared branch */
  2303. while (partial > chain) {
  2304. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2305. (__le32*)partial->bh->b_data+addr_per_block,
  2306. (chain+n-1) - partial);
  2307. BUFFER_TRACE(partial->bh, "call brelse");
  2308. brelse (partial->bh);
  2309. partial--;
  2310. }
  2311. do_indirects:
  2312. /* Kill the remaining (whole) subtrees */
  2313. switch (offsets[0]) {
  2314. default:
  2315. nr = i_data[EXT3_IND_BLOCK];
  2316. if (nr) {
  2317. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2318. i_data[EXT3_IND_BLOCK] = 0;
  2319. }
  2320. case EXT3_IND_BLOCK:
  2321. nr = i_data[EXT3_DIND_BLOCK];
  2322. if (nr) {
  2323. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2324. i_data[EXT3_DIND_BLOCK] = 0;
  2325. }
  2326. case EXT3_DIND_BLOCK:
  2327. nr = i_data[EXT3_TIND_BLOCK];
  2328. if (nr) {
  2329. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2330. i_data[EXT3_TIND_BLOCK] = 0;
  2331. }
  2332. case EXT3_TIND_BLOCK:
  2333. ;
  2334. }
  2335. ext3_discard_reservation(inode);
  2336. mutex_unlock(&ei->truncate_mutex);
  2337. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2338. ext3_mark_inode_dirty(handle, inode);
  2339. /*
  2340. * In a multi-transaction truncate, we only make the final transaction
  2341. * synchronous
  2342. */
  2343. if (IS_SYNC(inode))
  2344. handle->h_sync = 1;
  2345. out_stop:
  2346. /*
  2347. * If this was a simple ftruncate(), and the file will remain alive
  2348. * then we need to clear up the orphan record which we created above.
  2349. * However, if this was a real unlink then we were called by
  2350. * ext3_evict_inode(), and we allow that function to clean up the
  2351. * orphan info for us.
  2352. */
  2353. if (inode->i_nlink)
  2354. ext3_orphan_del(handle, inode);
  2355. ext3_journal_stop(handle);
  2356. return;
  2357. out_notrans:
  2358. /*
  2359. * Delete the inode from orphan list so that it doesn't stay there
  2360. * forever and trigger assertion on umount.
  2361. */
  2362. if (inode->i_nlink)
  2363. ext3_orphan_del(NULL, inode);
  2364. }
  2365. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2366. unsigned long ino, struct ext3_iloc *iloc)
  2367. {
  2368. unsigned long block_group;
  2369. unsigned long offset;
  2370. ext3_fsblk_t block;
  2371. struct ext3_group_desc *gdp;
  2372. if (!ext3_valid_inum(sb, ino)) {
  2373. /*
  2374. * This error is already checked for in namei.c unless we are
  2375. * looking at an NFS filehandle, in which case no error
  2376. * report is needed
  2377. */
  2378. return 0;
  2379. }
  2380. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2381. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2382. if (!gdp)
  2383. return 0;
  2384. /*
  2385. * Figure out the offset within the block group inode table
  2386. */
  2387. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2388. EXT3_INODE_SIZE(sb);
  2389. block = le32_to_cpu(gdp->bg_inode_table) +
  2390. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2391. iloc->block_group = block_group;
  2392. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2393. return block;
  2394. }
  2395. /*
  2396. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2397. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2398. * data in memory that is needed to recreate the on-disk version of this
  2399. * inode.
  2400. */
  2401. static int __ext3_get_inode_loc(struct inode *inode,
  2402. struct ext3_iloc *iloc, int in_mem)
  2403. {
  2404. ext3_fsblk_t block;
  2405. struct buffer_head *bh;
  2406. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2407. if (!block)
  2408. return -EIO;
  2409. bh = sb_getblk(inode->i_sb, block);
  2410. if (!bh) {
  2411. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2412. "unable to read inode block - "
  2413. "inode=%lu, block="E3FSBLK,
  2414. inode->i_ino, block);
  2415. return -EIO;
  2416. }
  2417. if (!buffer_uptodate(bh)) {
  2418. lock_buffer(bh);
  2419. /*
  2420. * If the buffer has the write error flag, we have failed
  2421. * to write out another inode in the same block. In this
  2422. * case, we don't have to read the block because we may
  2423. * read the old inode data successfully.
  2424. */
  2425. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2426. set_buffer_uptodate(bh);
  2427. if (buffer_uptodate(bh)) {
  2428. /* someone brought it uptodate while we waited */
  2429. unlock_buffer(bh);
  2430. goto has_buffer;
  2431. }
  2432. /*
  2433. * If we have all information of the inode in memory and this
  2434. * is the only valid inode in the block, we need not read the
  2435. * block.
  2436. */
  2437. if (in_mem) {
  2438. struct buffer_head *bitmap_bh;
  2439. struct ext3_group_desc *desc;
  2440. int inodes_per_buffer;
  2441. int inode_offset, i;
  2442. int block_group;
  2443. int start;
  2444. block_group = (inode->i_ino - 1) /
  2445. EXT3_INODES_PER_GROUP(inode->i_sb);
  2446. inodes_per_buffer = bh->b_size /
  2447. EXT3_INODE_SIZE(inode->i_sb);
  2448. inode_offset = ((inode->i_ino - 1) %
  2449. EXT3_INODES_PER_GROUP(inode->i_sb));
  2450. start = inode_offset & ~(inodes_per_buffer - 1);
  2451. /* Is the inode bitmap in cache? */
  2452. desc = ext3_get_group_desc(inode->i_sb,
  2453. block_group, NULL);
  2454. if (!desc)
  2455. goto make_io;
  2456. bitmap_bh = sb_getblk(inode->i_sb,
  2457. le32_to_cpu(desc->bg_inode_bitmap));
  2458. if (!bitmap_bh)
  2459. goto make_io;
  2460. /*
  2461. * If the inode bitmap isn't in cache then the
  2462. * optimisation may end up performing two reads instead
  2463. * of one, so skip it.
  2464. */
  2465. if (!buffer_uptodate(bitmap_bh)) {
  2466. brelse(bitmap_bh);
  2467. goto make_io;
  2468. }
  2469. for (i = start; i < start + inodes_per_buffer; i++) {
  2470. if (i == inode_offset)
  2471. continue;
  2472. if (ext3_test_bit(i, bitmap_bh->b_data))
  2473. break;
  2474. }
  2475. brelse(bitmap_bh);
  2476. if (i == start + inodes_per_buffer) {
  2477. /* all other inodes are free, so skip I/O */
  2478. memset(bh->b_data, 0, bh->b_size);
  2479. set_buffer_uptodate(bh);
  2480. unlock_buffer(bh);
  2481. goto has_buffer;
  2482. }
  2483. }
  2484. make_io:
  2485. /*
  2486. * There are other valid inodes in the buffer, this inode
  2487. * has in-inode xattrs, or we don't have this inode in memory.
  2488. * Read the block from disk.
  2489. */
  2490. get_bh(bh);
  2491. bh->b_end_io = end_buffer_read_sync;
  2492. submit_bh(READ_META, bh);
  2493. wait_on_buffer(bh);
  2494. if (!buffer_uptodate(bh)) {
  2495. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2496. "unable to read inode block - "
  2497. "inode=%lu, block="E3FSBLK,
  2498. inode->i_ino, block);
  2499. brelse(bh);
  2500. return -EIO;
  2501. }
  2502. }
  2503. has_buffer:
  2504. iloc->bh = bh;
  2505. return 0;
  2506. }
  2507. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2508. {
  2509. /* We have all inode data except xattrs in memory here. */
  2510. return __ext3_get_inode_loc(inode, iloc,
  2511. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2512. }
  2513. void ext3_set_inode_flags(struct inode *inode)
  2514. {
  2515. unsigned int flags = EXT3_I(inode)->i_flags;
  2516. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2517. if (flags & EXT3_SYNC_FL)
  2518. inode->i_flags |= S_SYNC;
  2519. if (flags & EXT3_APPEND_FL)
  2520. inode->i_flags |= S_APPEND;
  2521. if (flags & EXT3_IMMUTABLE_FL)
  2522. inode->i_flags |= S_IMMUTABLE;
  2523. if (flags & EXT3_NOATIME_FL)
  2524. inode->i_flags |= S_NOATIME;
  2525. if (flags & EXT3_DIRSYNC_FL)
  2526. inode->i_flags |= S_DIRSYNC;
  2527. }
  2528. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2529. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2530. {
  2531. unsigned int flags = ei->vfs_inode.i_flags;
  2532. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2533. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2534. if (flags & S_SYNC)
  2535. ei->i_flags |= EXT3_SYNC_FL;
  2536. if (flags & S_APPEND)
  2537. ei->i_flags |= EXT3_APPEND_FL;
  2538. if (flags & S_IMMUTABLE)
  2539. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2540. if (flags & S_NOATIME)
  2541. ei->i_flags |= EXT3_NOATIME_FL;
  2542. if (flags & S_DIRSYNC)
  2543. ei->i_flags |= EXT3_DIRSYNC_FL;
  2544. }
  2545. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2546. {
  2547. struct ext3_iloc iloc;
  2548. struct ext3_inode *raw_inode;
  2549. struct ext3_inode_info *ei;
  2550. struct buffer_head *bh;
  2551. struct inode *inode;
  2552. journal_t *journal = EXT3_SB(sb)->s_journal;
  2553. transaction_t *transaction;
  2554. long ret;
  2555. int block;
  2556. inode = iget_locked(sb, ino);
  2557. if (!inode)
  2558. return ERR_PTR(-ENOMEM);
  2559. if (!(inode->i_state & I_NEW))
  2560. return inode;
  2561. ei = EXT3_I(inode);
  2562. ei->i_block_alloc_info = NULL;
  2563. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2564. if (ret < 0)
  2565. goto bad_inode;
  2566. bh = iloc.bh;
  2567. raw_inode = ext3_raw_inode(&iloc);
  2568. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2569. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2570. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2571. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2572. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2573. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2574. }
  2575. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2576. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2577. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2578. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2579. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2580. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2581. ei->i_state_flags = 0;
  2582. ei->i_dir_start_lookup = 0;
  2583. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2584. /* We now have enough fields to check if the inode was active or not.
  2585. * This is needed because nfsd might try to access dead inodes
  2586. * the test is that same one that e2fsck uses
  2587. * NeilBrown 1999oct15
  2588. */
  2589. if (inode->i_nlink == 0) {
  2590. if (inode->i_mode == 0 ||
  2591. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2592. /* this inode is deleted */
  2593. brelse (bh);
  2594. ret = -ESTALE;
  2595. goto bad_inode;
  2596. }
  2597. /* The only unlinked inodes we let through here have
  2598. * valid i_mode and are being read by the orphan
  2599. * recovery code: that's fine, we're about to complete
  2600. * the process of deleting those. */
  2601. }
  2602. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2603. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2604. #ifdef EXT3_FRAGMENTS
  2605. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2606. ei->i_frag_no = raw_inode->i_frag;
  2607. ei->i_frag_size = raw_inode->i_fsize;
  2608. #endif
  2609. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2610. if (!S_ISREG(inode->i_mode)) {
  2611. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2612. } else {
  2613. inode->i_size |=
  2614. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2615. }
  2616. ei->i_disksize = inode->i_size;
  2617. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2618. ei->i_block_group = iloc.block_group;
  2619. /*
  2620. * NOTE! The in-memory inode i_data array is in little-endian order
  2621. * even on big-endian machines: we do NOT byteswap the block numbers!
  2622. */
  2623. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2624. ei->i_data[block] = raw_inode->i_block[block];
  2625. INIT_LIST_HEAD(&ei->i_orphan);
  2626. /*
  2627. * Set transaction id's of transactions that have to be committed
  2628. * to finish f[data]sync. We set them to currently running transaction
  2629. * as we cannot be sure that the inode or some of its metadata isn't
  2630. * part of the transaction - the inode could have been reclaimed and
  2631. * now it is reread from disk.
  2632. */
  2633. if (journal) {
  2634. tid_t tid;
  2635. spin_lock(&journal->j_state_lock);
  2636. if (journal->j_running_transaction)
  2637. transaction = journal->j_running_transaction;
  2638. else
  2639. transaction = journal->j_committing_transaction;
  2640. if (transaction)
  2641. tid = transaction->t_tid;
  2642. else
  2643. tid = journal->j_commit_sequence;
  2644. spin_unlock(&journal->j_state_lock);
  2645. atomic_set(&ei->i_sync_tid, tid);
  2646. atomic_set(&ei->i_datasync_tid, tid);
  2647. }
  2648. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2649. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2650. /*
  2651. * When mke2fs creates big inodes it does not zero out
  2652. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2653. * so ignore those first few inodes.
  2654. */
  2655. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2656. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2657. EXT3_INODE_SIZE(inode->i_sb)) {
  2658. brelse (bh);
  2659. ret = -EIO;
  2660. goto bad_inode;
  2661. }
  2662. if (ei->i_extra_isize == 0) {
  2663. /* The extra space is currently unused. Use it. */
  2664. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2665. EXT3_GOOD_OLD_INODE_SIZE;
  2666. } else {
  2667. __le32 *magic = (void *)raw_inode +
  2668. EXT3_GOOD_OLD_INODE_SIZE +
  2669. ei->i_extra_isize;
  2670. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2671. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2672. }
  2673. } else
  2674. ei->i_extra_isize = 0;
  2675. if (S_ISREG(inode->i_mode)) {
  2676. inode->i_op = &ext3_file_inode_operations;
  2677. inode->i_fop = &ext3_file_operations;
  2678. ext3_set_aops(inode);
  2679. } else if (S_ISDIR(inode->i_mode)) {
  2680. inode->i_op = &ext3_dir_inode_operations;
  2681. inode->i_fop = &ext3_dir_operations;
  2682. } else if (S_ISLNK(inode->i_mode)) {
  2683. if (ext3_inode_is_fast_symlink(inode)) {
  2684. inode->i_op = &ext3_fast_symlink_inode_operations;
  2685. nd_terminate_link(ei->i_data, inode->i_size,
  2686. sizeof(ei->i_data) - 1);
  2687. } else {
  2688. inode->i_op = &ext3_symlink_inode_operations;
  2689. ext3_set_aops(inode);
  2690. }
  2691. } else {
  2692. inode->i_op = &ext3_special_inode_operations;
  2693. if (raw_inode->i_block[0])
  2694. init_special_inode(inode, inode->i_mode,
  2695. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2696. else
  2697. init_special_inode(inode, inode->i_mode,
  2698. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2699. }
  2700. brelse (iloc.bh);
  2701. ext3_set_inode_flags(inode);
  2702. unlock_new_inode(inode);
  2703. return inode;
  2704. bad_inode:
  2705. iget_failed(inode);
  2706. return ERR_PTR(ret);
  2707. }
  2708. /*
  2709. * Post the struct inode info into an on-disk inode location in the
  2710. * buffer-cache. This gobbles the caller's reference to the
  2711. * buffer_head in the inode location struct.
  2712. *
  2713. * The caller must have write access to iloc->bh.
  2714. */
  2715. static int ext3_do_update_inode(handle_t *handle,
  2716. struct inode *inode,
  2717. struct ext3_iloc *iloc)
  2718. {
  2719. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2720. struct ext3_inode_info *ei = EXT3_I(inode);
  2721. struct buffer_head *bh = iloc->bh;
  2722. int err = 0, rc, block;
  2723. again:
  2724. /* we can't allow multiple procs in here at once, its a bit racey */
  2725. lock_buffer(bh);
  2726. /* For fields not not tracking in the in-memory inode,
  2727. * initialise them to zero for new inodes. */
  2728. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2729. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2730. ext3_get_inode_flags(ei);
  2731. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2732. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2733. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2734. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2735. /*
  2736. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2737. * re-used with the upper 16 bits of the uid/gid intact
  2738. */
  2739. if(!ei->i_dtime) {
  2740. raw_inode->i_uid_high =
  2741. cpu_to_le16(high_16_bits(inode->i_uid));
  2742. raw_inode->i_gid_high =
  2743. cpu_to_le16(high_16_bits(inode->i_gid));
  2744. } else {
  2745. raw_inode->i_uid_high = 0;
  2746. raw_inode->i_gid_high = 0;
  2747. }
  2748. } else {
  2749. raw_inode->i_uid_low =
  2750. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2751. raw_inode->i_gid_low =
  2752. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2753. raw_inode->i_uid_high = 0;
  2754. raw_inode->i_gid_high = 0;
  2755. }
  2756. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2757. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2758. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2759. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2760. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2761. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2762. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2763. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2764. #ifdef EXT3_FRAGMENTS
  2765. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2766. raw_inode->i_frag = ei->i_frag_no;
  2767. raw_inode->i_fsize = ei->i_frag_size;
  2768. #endif
  2769. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2770. if (!S_ISREG(inode->i_mode)) {
  2771. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2772. } else {
  2773. raw_inode->i_size_high =
  2774. cpu_to_le32(ei->i_disksize >> 32);
  2775. if (ei->i_disksize > 0x7fffffffULL) {
  2776. struct super_block *sb = inode->i_sb;
  2777. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2778. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2779. EXT3_SB(sb)->s_es->s_rev_level ==
  2780. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2781. /* If this is the first large file
  2782. * created, add a flag to the superblock.
  2783. */
  2784. unlock_buffer(bh);
  2785. err = ext3_journal_get_write_access(handle,
  2786. EXT3_SB(sb)->s_sbh);
  2787. if (err)
  2788. goto out_brelse;
  2789. ext3_update_dynamic_rev(sb);
  2790. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2791. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2792. handle->h_sync = 1;
  2793. err = ext3_journal_dirty_metadata(handle,
  2794. EXT3_SB(sb)->s_sbh);
  2795. /* get our lock and start over */
  2796. goto again;
  2797. }
  2798. }
  2799. }
  2800. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2801. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2802. if (old_valid_dev(inode->i_rdev)) {
  2803. raw_inode->i_block[0] =
  2804. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2805. raw_inode->i_block[1] = 0;
  2806. } else {
  2807. raw_inode->i_block[0] = 0;
  2808. raw_inode->i_block[1] =
  2809. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2810. raw_inode->i_block[2] = 0;
  2811. }
  2812. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2813. raw_inode->i_block[block] = ei->i_data[block];
  2814. if (ei->i_extra_isize)
  2815. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2816. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2817. unlock_buffer(bh);
  2818. rc = ext3_journal_dirty_metadata(handle, bh);
  2819. if (!err)
  2820. err = rc;
  2821. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2822. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2823. out_brelse:
  2824. brelse (bh);
  2825. ext3_std_error(inode->i_sb, err);
  2826. return err;
  2827. }
  2828. /*
  2829. * ext3_write_inode()
  2830. *
  2831. * We are called from a few places:
  2832. *
  2833. * - Within generic_file_write() for O_SYNC files.
  2834. * Here, there will be no transaction running. We wait for any running
  2835. * trasnaction to commit.
  2836. *
  2837. * - Within sys_sync(), kupdate and such.
  2838. * We wait on commit, if tol to.
  2839. *
  2840. * - Within prune_icache() (PF_MEMALLOC == true)
  2841. * Here we simply return. We can't afford to block kswapd on the
  2842. * journal commit.
  2843. *
  2844. * In all cases it is actually safe for us to return without doing anything,
  2845. * because the inode has been copied into a raw inode buffer in
  2846. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2847. * knfsd.
  2848. *
  2849. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2850. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2851. * which we are interested.
  2852. *
  2853. * It would be a bug for them to not do this. The code:
  2854. *
  2855. * mark_inode_dirty(inode)
  2856. * stuff();
  2857. * inode->i_size = expr;
  2858. *
  2859. * is in error because a kswapd-driven write_inode() could occur while
  2860. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2861. * will no longer be on the superblock's dirty inode list.
  2862. */
  2863. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2864. {
  2865. if (current->flags & PF_MEMALLOC)
  2866. return 0;
  2867. if (ext3_journal_current_handle()) {
  2868. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2869. dump_stack();
  2870. return -EIO;
  2871. }
  2872. if (wbc->sync_mode != WB_SYNC_ALL)
  2873. return 0;
  2874. return ext3_force_commit(inode->i_sb);
  2875. }
  2876. /*
  2877. * ext3_setattr()
  2878. *
  2879. * Called from notify_change.
  2880. *
  2881. * We want to trap VFS attempts to truncate the file as soon as
  2882. * possible. In particular, we want to make sure that when the VFS
  2883. * shrinks i_size, we put the inode on the orphan list and modify
  2884. * i_disksize immediately, so that during the subsequent flushing of
  2885. * dirty pages and freeing of disk blocks, we can guarantee that any
  2886. * commit will leave the blocks being flushed in an unused state on
  2887. * disk. (On recovery, the inode will get truncated and the blocks will
  2888. * be freed, so we have a strong guarantee that no future commit will
  2889. * leave these blocks visible to the user.)
  2890. *
  2891. * Called with inode->sem down.
  2892. */
  2893. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2894. {
  2895. struct inode *inode = dentry->d_inode;
  2896. int error, rc = 0;
  2897. const unsigned int ia_valid = attr->ia_valid;
  2898. error = inode_change_ok(inode, attr);
  2899. if (error)
  2900. return error;
  2901. if (is_quota_modification(inode, attr))
  2902. dquot_initialize(inode);
  2903. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2904. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2905. handle_t *handle;
  2906. /* (user+group)*(old+new) structure, inode write (sb,
  2907. * inode block, ? - but truncate inode update has it) */
  2908. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2909. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2910. if (IS_ERR(handle)) {
  2911. error = PTR_ERR(handle);
  2912. goto err_out;
  2913. }
  2914. error = dquot_transfer(inode, attr);
  2915. if (error) {
  2916. ext3_journal_stop(handle);
  2917. return error;
  2918. }
  2919. /* Update corresponding info in inode so that everything is in
  2920. * one transaction */
  2921. if (attr->ia_valid & ATTR_UID)
  2922. inode->i_uid = attr->ia_uid;
  2923. if (attr->ia_valid & ATTR_GID)
  2924. inode->i_gid = attr->ia_gid;
  2925. error = ext3_mark_inode_dirty(handle, inode);
  2926. ext3_journal_stop(handle);
  2927. }
  2928. if (S_ISREG(inode->i_mode) &&
  2929. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2930. handle_t *handle;
  2931. handle = ext3_journal_start(inode, 3);
  2932. if (IS_ERR(handle)) {
  2933. error = PTR_ERR(handle);
  2934. goto err_out;
  2935. }
  2936. error = ext3_orphan_add(handle, inode);
  2937. EXT3_I(inode)->i_disksize = attr->ia_size;
  2938. rc = ext3_mark_inode_dirty(handle, inode);
  2939. if (!error)
  2940. error = rc;
  2941. ext3_journal_stop(handle);
  2942. }
  2943. if ((attr->ia_valid & ATTR_SIZE) &&
  2944. attr->ia_size != i_size_read(inode)) {
  2945. rc = vmtruncate(inode, attr->ia_size);
  2946. if (rc)
  2947. goto err_out;
  2948. }
  2949. setattr_copy(inode, attr);
  2950. mark_inode_dirty(inode);
  2951. if (ia_valid & ATTR_MODE)
  2952. rc = ext3_acl_chmod(inode);
  2953. err_out:
  2954. ext3_std_error(inode->i_sb, error);
  2955. if (!error)
  2956. error = rc;
  2957. return error;
  2958. }
  2959. /*
  2960. * How many blocks doth make a writepage()?
  2961. *
  2962. * With N blocks per page, it may be:
  2963. * N data blocks
  2964. * 2 indirect block
  2965. * 2 dindirect
  2966. * 1 tindirect
  2967. * N+5 bitmap blocks (from the above)
  2968. * N+5 group descriptor summary blocks
  2969. * 1 inode block
  2970. * 1 superblock.
  2971. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2972. *
  2973. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2974. *
  2975. * With ordered or writeback data it's the same, less the N data blocks.
  2976. *
  2977. * If the inode's direct blocks can hold an integral number of pages then a
  2978. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2979. * and dindirect block, and the "5" above becomes "3".
  2980. *
  2981. * This still overestimates under most circumstances. If we were to pass the
  2982. * start and end offsets in here as well we could do block_to_path() on each
  2983. * block and work out the exact number of indirects which are touched. Pah.
  2984. */
  2985. static int ext3_writepage_trans_blocks(struct inode *inode)
  2986. {
  2987. int bpp = ext3_journal_blocks_per_page(inode);
  2988. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2989. int ret;
  2990. if (ext3_should_journal_data(inode))
  2991. ret = 3 * (bpp + indirects) + 2;
  2992. else
  2993. ret = 2 * (bpp + indirects) + 2;
  2994. #ifdef CONFIG_QUOTA
  2995. /* We know that structure was already allocated during dquot_initialize so
  2996. * we will be updating only the data blocks + inodes */
  2997. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  2998. #endif
  2999. return ret;
  3000. }
  3001. /*
  3002. * The caller must have previously called ext3_reserve_inode_write().
  3003. * Give this, we know that the caller already has write access to iloc->bh.
  3004. */
  3005. int ext3_mark_iloc_dirty(handle_t *handle,
  3006. struct inode *inode, struct ext3_iloc *iloc)
  3007. {
  3008. int err = 0;
  3009. /* the do_update_inode consumes one bh->b_count */
  3010. get_bh(iloc->bh);
  3011. /* ext3_do_update_inode() does journal_dirty_metadata */
  3012. err = ext3_do_update_inode(handle, inode, iloc);
  3013. put_bh(iloc->bh);
  3014. return err;
  3015. }
  3016. /*
  3017. * On success, We end up with an outstanding reference count against
  3018. * iloc->bh. This _must_ be cleaned up later.
  3019. */
  3020. int
  3021. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3022. struct ext3_iloc *iloc)
  3023. {
  3024. int err = 0;
  3025. if (handle) {
  3026. err = ext3_get_inode_loc(inode, iloc);
  3027. if (!err) {
  3028. BUFFER_TRACE(iloc->bh, "get_write_access");
  3029. err = ext3_journal_get_write_access(handle, iloc->bh);
  3030. if (err) {
  3031. brelse(iloc->bh);
  3032. iloc->bh = NULL;
  3033. }
  3034. }
  3035. }
  3036. ext3_std_error(inode->i_sb, err);
  3037. return err;
  3038. }
  3039. /*
  3040. * What we do here is to mark the in-core inode as clean with respect to inode
  3041. * dirtiness (it may still be data-dirty).
  3042. * This means that the in-core inode may be reaped by prune_icache
  3043. * without having to perform any I/O. This is a very good thing,
  3044. * because *any* task may call prune_icache - even ones which
  3045. * have a transaction open against a different journal.
  3046. *
  3047. * Is this cheating? Not really. Sure, we haven't written the
  3048. * inode out, but prune_icache isn't a user-visible syncing function.
  3049. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3050. * we start and wait on commits.
  3051. *
  3052. * Is this efficient/effective? Well, we're being nice to the system
  3053. * by cleaning up our inodes proactively so they can be reaped
  3054. * without I/O. But we are potentially leaving up to five seconds'
  3055. * worth of inodes floating about which prune_icache wants us to
  3056. * write out. One way to fix that would be to get prune_icache()
  3057. * to do a write_super() to free up some memory. It has the desired
  3058. * effect.
  3059. */
  3060. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3061. {
  3062. struct ext3_iloc iloc;
  3063. int err;
  3064. might_sleep();
  3065. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3066. if (!err)
  3067. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3068. return err;
  3069. }
  3070. /*
  3071. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3072. *
  3073. * We're really interested in the case where a file is being extended.
  3074. * i_size has been changed by generic_commit_write() and we thus need
  3075. * to include the updated inode in the current transaction.
  3076. *
  3077. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3078. * are allocated to the file.
  3079. *
  3080. * If the inode is marked synchronous, we don't honour that here - doing
  3081. * so would cause a commit on atime updates, which we don't bother doing.
  3082. * We handle synchronous inodes at the highest possible level.
  3083. */
  3084. void ext3_dirty_inode(struct inode *inode)
  3085. {
  3086. handle_t *current_handle = ext3_journal_current_handle();
  3087. handle_t *handle;
  3088. handle = ext3_journal_start(inode, 2);
  3089. if (IS_ERR(handle))
  3090. goto out;
  3091. if (current_handle &&
  3092. current_handle->h_transaction != handle->h_transaction) {
  3093. /* This task has a transaction open against a different fs */
  3094. printk(KERN_EMERG "%s: transactions do not match!\n",
  3095. __func__);
  3096. } else {
  3097. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3098. current_handle);
  3099. ext3_mark_inode_dirty(handle, inode);
  3100. }
  3101. ext3_journal_stop(handle);
  3102. out:
  3103. return;
  3104. }
  3105. #if 0
  3106. /*
  3107. * Bind an inode's backing buffer_head into this transaction, to prevent
  3108. * it from being flushed to disk early. Unlike
  3109. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3110. * returns no iloc structure, so the caller needs to repeat the iloc
  3111. * lookup to mark the inode dirty later.
  3112. */
  3113. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3114. {
  3115. struct ext3_iloc iloc;
  3116. int err = 0;
  3117. if (handle) {
  3118. err = ext3_get_inode_loc(inode, &iloc);
  3119. if (!err) {
  3120. BUFFER_TRACE(iloc.bh, "get_write_access");
  3121. err = journal_get_write_access(handle, iloc.bh);
  3122. if (!err)
  3123. err = ext3_journal_dirty_metadata(handle,
  3124. iloc.bh);
  3125. brelse(iloc.bh);
  3126. }
  3127. }
  3128. ext3_std_error(inode->i_sb, err);
  3129. return err;
  3130. }
  3131. #endif
  3132. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3133. {
  3134. journal_t *journal;
  3135. handle_t *handle;
  3136. int err;
  3137. /*
  3138. * We have to be very careful here: changing a data block's
  3139. * journaling status dynamically is dangerous. If we write a
  3140. * data block to the journal, change the status and then delete
  3141. * that block, we risk forgetting to revoke the old log record
  3142. * from the journal and so a subsequent replay can corrupt data.
  3143. * So, first we make sure that the journal is empty and that
  3144. * nobody is changing anything.
  3145. */
  3146. journal = EXT3_JOURNAL(inode);
  3147. if (is_journal_aborted(journal))
  3148. return -EROFS;
  3149. journal_lock_updates(journal);
  3150. journal_flush(journal);
  3151. /*
  3152. * OK, there are no updates running now, and all cached data is
  3153. * synced to disk. We are now in a completely consistent state
  3154. * which doesn't have anything in the journal, and we know that
  3155. * no filesystem updates are running, so it is safe to modify
  3156. * the inode's in-core data-journaling state flag now.
  3157. */
  3158. if (val)
  3159. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3160. else
  3161. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3162. ext3_set_aops(inode);
  3163. journal_unlock_updates(journal);
  3164. /* Finally we can mark the inode as dirty. */
  3165. handle = ext3_journal_start(inode, 1);
  3166. if (IS_ERR(handle))
  3167. return PTR_ERR(handle);
  3168. err = ext3_mark_inode_dirty(handle, inode);
  3169. handle->h_sync = 1;
  3170. ext3_journal_stop(handle);
  3171. ext3_std_error(inode->i_sb, err);
  3172. return err;
  3173. }