super.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. /**
  2. * eCryptfs: Linux filesystem encryption layer
  3. *
  4. * Copyright (C) 1997-2003 Erez Zadok
  5. * Copyright (C) 2001-2003 Stony Brook University
  6. * Copyright (C) 2004-2006 International Business Machines Corp.
  7. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
  8. * Michael C. Thompson <mcthomps@us.ibm.com>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23. * 02111-1307, USA.
  24. */
  25. #include <linux/fs.h>
  26. #include <linux/mount.h>
  27. #include <linux/key.h>
  28. #include <linux/slab.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/smp_lock.h>
  31. #include <linux/file.h>
  32. #include <linux/crypto.h>
  33. #include "ecryptfs_kernel.h"
  34. struct kmem_cache *ecryptfs_inode_info_cache;
  35. /**
  36. * ecryptfs_alloc_inode - allocate an ecryptfs inode
  37. * @sb: Pointer to the ecryptfs super block
  38. *
  39. * Called to bring an inode into existence.
  40. *
  41. * Only handle allocation, setting up structures should be done in
  42. * ecryptfs_read_inode. This is because the kernel, between now and
  43. * then, will 0 out the private data pointer.
  44. *
  45. * Returns a pointer to a newly allocated inode, NULL otherwise
  46. */
  47. static struct inode *ecryptfs_alloc_inode(struct super_block *sb)
  48. {
  49. struct ecryptfs_inode_info *inode_info;
  50. struct inode *inode = NULL;
  51. inode_info = kmem_cache_alloc(ecryptfs_inode_info_cache, GFP_KERNEL);
  52. if (unlikely(!inode_info))
  53. goto out;
  54. ecryptfs_init_crypt_stat(&inode_info->crypt_stat);
  55. mutex_init(&inode_info->lower_file_mutex);
  56. inode_info->lower_file = NULL;
  57. inode = &inode_info->vfs_inode;
  58. out:
  59. return inode;
  60. }
  61. /**
  62. * ecryptfs_destroy_inode
  63. * @inode: The ecryptfs inode
  64. *
  65. * This is used during the final destruction of the inode. All
  66. * allocation of memory related to the inode, including allocated
  67. * memory in the crypt_stat struct, will be released here. This
  68. * function also fput()'s the persistent file for the lower inode.
  69. * There should be no chance that this deallocation will be missed.
  70. */
  71. static void ecryptfs_destroy_inode(struct inode *inode)
  72. {
  73. struct ecryptfs_inode_info *inode_info;
  74. inode_info = ecryptfs_inode_to_private(inode);
  75. if (inode_info->lower_file) {
  76. struct dentry *lower_dentry =
  77. inode_info->lower_file->f_dentry;
  78. BUG_ON(!lower_dentry);
  79. if (lower_dentry->d_inode) {
  80. fput(inode_info->lower_file);
  81. inode_info->lower_file = NULL;
  82. }
  83. }
  84. ecryptfs_destroy_crypt_stat(&inode_info->crypt_stat);
  85. kmem_cache_free(ecryptfs_inode_info_cache, inode_info);
  86. }
  87. /**
  88. * ecryptfs_init_inode
  89. * @inode: The ecryptfs inode
  90. *
  91. * Set up the ecryptfs inode.
  92. */
  93. void ecryptfs_init_inode(struct inode *inode, struct inode *lower_inode)
  94. {
  95. ecryptfs_set_inode_lower(inode, lower_inode);
  96. inode->i_ino = lower_inode->i_ino;
  97. inode->i_version++;
  98. inode->i_op = &ecryptfs_main_iops;
  99. inode->i_fop = &ecryptfs_main_fops;
  100. inode->i_mapping->a_ops = &ecryptfs_aops;
  101. }
  102. /**
  103. * ecryptfs_statfs
  104. * @sb: The ecryptfs super block
  105. * @buf: The struct kstatfs to fill in with stats
  106. *
  107. * Get the filesystem statistics. Currently, we let this pass right through
  108. * to the lower filesystem and take no action ourselves.
  109. */
  110. static int ecryptfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  111. {
  112. struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
  113. if (!lower_dentry->d_sb->s_op->statfs)
  114. return -ENOSYS;
  115. return lower_dentry->d_sb->s_op->statfs(lower_dentry, buf);
  116. }
  117. /**
  118. * ecryptfs_evict_inode
  119. * @inode - The ecryptfs inode
  120. *
  121. * Called by iput() when the inode reference count reached zero
  122. * and the inode is not hashed anywhere. Used to clear anything
  123. * that needs to be, before the inode is completely destroyed and put
  124. * on the inode free list. We use this to drop out reference to the
  125. * lower inode.
  126. */
  127. static void ecryptfs_evict_inode(struct inode *inode)
  128. {
  129. truncate_inode_pages(&inode->i_data, 0);
  130. end_writeback(inode);
  131. iput(ecryptfs_inode_to_lower(inode));
  132. }
  133. /**
  134. * ecryptfs_show_options
  135. *
  136. * Prints the mount options for a given superblock.
  137. * Returns zero; does not fail.
  138. */
  139. static int ecryptfs_show_options(struct seq_file *m, struct vfsmount *mnt)
  140. {
  141. struct super_block *sb = mnt->mnt_sb;
  142. struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
  143. &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
  144. struct ecryptfs_global_auth_tok *walker;
  145. mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
  146. list_for_each_entry(walker,
  147. &mount_crypt_stat->global_auth_tok_list,
  148. mount_crypt_stat_list) {
  149. if (walker->flags & ECRYPTFS_AUTH_TOK_FNEK)
  150. seq_printf(m, ",ecryptfs_fnek_sig=%s", walker->sig);
  151. else
  152. seq_printf(m, ",ecryptfs_sig=%s", walker->sig);
  153. }
  154. mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
  155. seq_printf(m, ",ecryptfs_cipher=%s",
  156. mount_crypt_stat->global_default_cipher_name);
  157. if (mount_crypt_stat->global_default_cipher_key_size)
  158. seq_printf(m, ",ecryptfs_key_bytes=%zd",
  159. mount_crypt_stat->global_default_cipher_key_size);
  160. if (mount_crypt_stat->flags & ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED)
  161. seq_printf(m, ",ecryptfs_passthrough");
  162. if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
  163. seq_printf(m, ",ecryptfs_xattr_metadata");
  164. if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
  165. seq_printf(m, ",ecryptfs_encrypted_view");
  166. if (mount_crypt_stat->flags & ECRYPTFS_UNLINK_SIGS)
  167. seq_printf(m, ",ecryptfs_unlink_sigs");
  168. return 0;
  169. }
  170. const struct super_operations ecryptfs_sops = {
  171. .alloc_inode = ecryptfs_alloc_inode,
  172. .destroy_inode = ecryptfs_destroy_inode,
  173. .drop_inode = generic_delete_inode,
  174. .statfs = ecryptfs_statfs,
  175. .remount_fs = NULL,
  176. .evict_inode = ecryptfs_evict_inode,
  177. .show_options = ecryptfs_show_options
  178. };