disk-io.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include "compat.h"
  31. #include "ctree.h"
  32. #include "disk-io.h"
  33. #include "transaction.h"
  34. #include "btrfs_inode.h"
  35. #include "volumes.h"
  36. #include "print-tree.h"
  37. #include "async-thread.h"
  38. #include "locking.h"
  39. #include "tree-log.h"
  40. #include "free-space-cache.h"
  41. static struct extent_io_ops btree_extent_io_ops;
  42. static void end_workqueue_fn(struct btrfs_work *work);
  43. static void free_fs_root(struct btrfs_root *root);
  44. /*
  45. * end_io_wq structs are used to do processing in task context when an IO is
  46. * complete. This is used during reads to verify checksums, and it is used
  47. * by writes to insert metadata for new file extents after IO is complete.
  48. */
  49. struct end_io_wq {
  50. struct bio *bio;
  51. bio_end_io_t *end_io;
  52. void *private;
  53. struct btrfs_fs_info *info;
  54. int error;
  55. int metadata;
  56. struct list_head list;
  57. struct btrfs_work work;
  58. };
  59. /*
  60. * async submit bios are used to offload expensive checksumming
  61. * onto the worker threads. They checksum file and metadata bios
  62. * just before they are sent down the IO stack.
  63. */
  64. struct async_submit_bio {
  65. struct inode *inode;
  66. struct bio *bio;
  67. struct list_head list;
  68. extent_submit_bio_hook_t *submit_bio_start;
  69. extent_submit_bio_hook_t *submit_bio_done;
  70. int rw;
  71. int mirror_num;
  72. unsigned long bio_flags;
  73. /*
  74. * bio_offset is optional, can be used if the pages in the bio
  75. * can't tell us where in the file the bio should go
  76. */
  77. u64 bio_offset;
  78. struct btrfs_work work;
  79. };
  80. /* These are used to set the lockdep class on the extent buffer locks.
  81. * The class is set by the readpage_end_io_hook after the buffer has
  82. * passed csum validation but before the pages are unlocked.
  83. *
  84. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  85. * allocated blocks.
  86. *
  87. * The class is based on the level in the tree block, which allows lockdep
  88. * to know that lower nodes nest inside the locks of higher nodes.
  89. *
  90. * We also add a check to make sure the highest level of the tree is
  91. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  92. * code needs update as well.
  93. */
  94. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  95. # if BTRFS_MAX_LEVEL != 8
  96. # error
  97. # endif
  98. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  99. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  100. /* leaf */
  101. "btrfs-extent-00",
  102. "btrfs-extent-01",
  103. "btrfs-extent-02",
  104. "btrfs-extent-03",
  105. "btrfs-extent-04",
  106. "btrfs-extent-05",
  107. "btrfs-extent-06",
  108. "btrfs-extent-07",
  109. /* highest possible level */
  110. "btrfs-extent-08",
  111. };
  112. #endif
  113. /*
  114. * extents on the btree inode are pretty simple, there's one extent
  115. * that covers the entire device
  116. */
  117. static struct extent_map *btree_get_extent(struct inode *inode,
  118. struct page *page, size_t page_offset, u64 start, u64 len,
  119. int create)
  120. {
  121. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  122. struct extent_map *em;
  123. int ret;
  124. read_lock(&em_tree->lock);
  125. em = lookup_extent_mapping(em_tree, start, len);
  126. if (em) {
  127. em->bdev =
  128. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  129. read_unlock(&em_tree->lock);
  130. goto out;
  131. }
  132. read_unlock(&em_tree->lock);
  133. em = alloc_extent_map(GFP_NOFS);
  134. if (!em) {
  135. em = ERR_PTR(-ENOMEM);
  136. goto out;
  137. }
  138. em->start = 0;
  139. em->len = (u64)-1;
  140. em->block_len = (u64)-1;
  141. em->block_start = 0;
  142. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  143. write_lock(&em_tree->lock);
  144. ret = add_extent_mapping(em_tree, em);
  145. if (ret == -EEXIST) {
  146. u64 failed_start = em->start;
  147. u64 failed_len = em->len;
  148. free_extent_map(em);
  149. em = lookup_extent_mapping(em_tree, start, len);
  150. if (em) {
  151. ret = 0;
  152. } else {
  153. em = lookup_extent_mapping(em_tree, failed_start,
  154. failed_len);
  155. ret = -EIO;
  156. }
  157. } else if (ret) {
  158. free_extent_map(em);
  159. em = NULL;
  160. }
  161. write_unlock(&em_tree->lock);
  162. if (ret)
  163. em = ERR_PTR(ret);
  164. out:
  165. return em;
  166. }
  167. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  168. {
  169. return crc32c(seed, data, len);
  170. }
  171. void btrfs_csum_final(u32 crc, char *result)
  172. {
  173. *(__le32 *)result = ~cpu_to_le32(crc);
  174. }
  175. /*
  176. * compute the csum for a btree block, and either verify it or write it
  177. * into the csum field of the block.
  178. */
  179. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  180. int verify)
  181. {
  182. u16 csum_size =
  183. btrfs_super_csum_size(&root->fs_info->super_copy);
  184. char *result = NULL;
  185. unsigned long len;
  186. unsigned long cur_len;
  187. unsigned long offset = BTRFS_CSUM_SIZE;
  188. char *map_token = NULL;
  189. char *kaddr;
  190. unsigned long map_start;
  191. unsigned long map_len;
  192. int err;
  193. u32 crc = ~(u32)0;
  194. unsigned long inline_result;
  195. len = buf->len - offset;
  196. while (len > 0) {
  197. err = map_private_extent_buffer(buf, offset, 32,
  198. &map_token, &kaddr,
  199. &map_start, &map_len, KM_USER0);
  200. if (err)
  201. return 1;
  202. cur_len = min(len, map_len - (offset - map_start));
  203. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  204. crc, cur_len);
  205. len -= cur_len;
  206. offset += cur_len;
  207. unmap_extent_buffer(buf, map_token, KM_USER0);
  208. }
  209. if (csum_size > sizeof(inline_result)) {
  210. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  211. if (!result)
  212. return 1;
  213. } else {
  214. result = (char *)&inline_result;
  215. }
  216. btrfs_csum_final(crc, result);
  217. if (verify) {
  218. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  219. u32 val;
  220. u32 found = 0;
  221. memcpy(&found, result, csum_size);
  222. read_extent_buffer(buf, &val, 0, csum_size);
  223. if (printk_ratelimit()) {
  224. printk(KERN_INFO "btrfs: %s checksum verify "
  225. "failed on %llu wanted %X found %X "
  226. "level %d\n",
  227. root->fs_info->sb->s_id,
  228. (unsigned long long)buf->start, val, found,
  229. btrfs_header_level(buf));
  230. }
  231. if (result != (char *)&inline_result)
  232. kfree(result);
  233. return 1;
  234. }
  235. } else {
  236. write_extent_buffer(buf, result, 0, csum_size);
  237. }
  238. if (result != (char *)&inline_result)
  239. kfree(result);
  240. return 0;
  241. }
  242. /*
  243. * we can't consider a given block up to date unless the transid of the
  244. * block matches the transid in the parent node's pointer. This is how we
  245. * detect blocks that either didn't get written at all or got written
  246. * in the wrong place.
  247. */
  248. static int verify_parent_transid(struct extent_io_tree *io_tree,
  249. struct extent_buffer *eb, u64 parent_transid)
  250. {
  251. struct extent_state *cached_state = NULL;
  252. int ret;
  253. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  254. return 0;
  255. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  256. 0, &cached_state, GFP_NOFS);
  257. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  258. btrfs_header_generation(eb) == parent_transid) {
  259. ret = 0;
  260. goto out;
  261. }
  262. if (printk_ratelimit()) {
  263. printk("parent transid verify failed on %llu wanted %llu "
  264. "found %llu\n",
  265. (unsigned long long)eb->start,
  266. (unsigned long long)parent_transid,
  267. (unsigned long long)btrfs_header_generation(eb));
  268. }
  269. ret = 1;
  270. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  271. out:
  272. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  273. &cached_state, GFP_NOFS);
  274. return ret;
  275. }
  276. /*
  277. * helper to read a given tree block, doing retries as required when
  278. * the checksums don't match and we have alternate mirrors to try.
  279. */
  280. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  281. struct extent_buffer *eb,
  282. u64 start, u64 parent_transid)
  283. {
  284. struct extent_io_tree *io_tree;
  285. int ret;
  286. int num_copies = 0;
  287. int mirror_num = 0;
  288. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  289. while (1) {
  290. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  291. btree_get_extent, mirror_num);
  292. if (!ret &&
  293. !verify_parent_transid(io_tree, eb, parent_transid))
  294. return ret;
  295. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  296. eb->start, eb->len);
  297. if (num_copies == 1)
  298. return ret;
  299. mirror_num++;
  300. if (mirror_num > num_copies)
  301. return ret;
  302. }
  303. return -EIO;
  304. }
  305. /*
  306. * checksum a dirty tree block before IO. This has extra checks to make sure
  307. * we only fill in the checksum field in the first page of a multi-page block
  308. */
  309. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  310. {
  311. struct extent_io_tree *tree;
  312. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  313. u64 found_start;
  314. int found_level;
  315. unsigned long len;
  316. struct extent_buffer *eb;
  317. int ret;
  318. tree = &BTRFS_I(page->mapping->host)->io_tree;
  319. if (page->private == EXTENT_PAGE_PRIVATE)
  320. goto out;
  321. if (!page->private)
  322. goto out;
  323. len = page->private >> 2;
  324. WARN_ON(len == 0);
  325. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  326. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  327. btrfs_header_generation(eb));
  328. BUG_ON(ret);
  329. found_start = btrfs_header_bytenr(eb);
  330. if (found_start != start) {
  331. WARN_ON(1);
  332. goto err;
  333. }
  334. if (eb->first_page != page) {
  335. WARN_ON(1);
  336. goto err;
  337. }
  338. if (!PageUptodate(page)) {
  339. WARN_ON(1);
  340. goto err;
  341. }
  342. found_level = btrfs_header_level(eb);
  343. csum_tree_block(root, eb, 0);
  344. err:
  345. free_extent_buffer(eb);
  346. out:
  347. return 0;
  348. }
  349. static int check_tree_block_fsid(struct btrfs_root *root,
  350. struct extent_buffer *eb)
  351. {
  352. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  353. u8 fsid[BTRFS_UUID_SIZE];
  354. int ret = 1;
  355. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  356. BTRFS_FSID_SIZE);
  357. while (fs_devices) {
  358. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  359. ret = 0;
  360. break;
  361. }
  362. fs_devices = fs_devices->seed;
  363. }
  364. return ret;
  365. }
  366. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  367. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  368. {
  369. lockdep_set_class_and_name(&eb->lock,
  370. &btrfs_eb_class[level],
  371. btrfs_eb_name[level]);
  372. }
  373. #endif
  374. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  375. struct extent_state *state)
  376. {
  377. struct extent_io_tree *tree;
  378. u64 found_start;
  379. int found_level;
  380. unsigned long len;
  381. struct extent_buffer *eb;
  382. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  383. int ret = 0;
  384. tree = &BTRFS_I(page->mapping->host)->io_tree;
  385. if (page->private == EXTENT_PAGE_PRIVATE)
  386. goto out;
  387. if (!page->private)
  388. goto out;
  389. len = page->private >> 2;
  390. WARN_ON(len == 0);
  391. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  392. found_start = btrfs_header_bytenr(eb);
  393. if (found_start != start) {
  394. if (printk_ratelimit()) {
  395. printk(KERN_INFO "btrfs bad tree block start "
  396. "%llu %llu\n",
  397. (unsigned long long)found_start,
  398. (unsigned long long)eb->start);
  399. }
  400. ret = -EIO;
  401. goto err;
  402. }
  403. if (eb->first_page != page) {
  404. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  405. eb->first_page->index, page->index);
  406. WARN_ON(1);
  407. ret = -EIO;
  408. goto err;
  409. }
  410. if (check_tree_block_fsid(root, eb)) {
  411. if (printk_ratelimit()) {
  412. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  413. (unsigned long long)eb->start);
  414. }
  415. ret = -EIO;
  416. goto err;
  417. }
  418. found_level = btrfs_header_level(eb);
  419. btrfs_set_buffer_lockdep_class(eb, found_level);
  420. ret = csum_tree_block(root, eb, 1);
  421. if (ret)
  422. ret = -EIO;
  423. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  424. end = eb->start + end - 1;
  425. err:
  426. free_extent_buffer(eb);
  427. out:
  428. return ret;
  429. }
  430. static void end_workqueue_bio(struct bio *bio, int err)
  431. {
  432. struct end_io_wq *end_io_wq = bio->bi_private;
  433. struct btrfs_fs_info *fs_info;
  434. fs_info = end_io_wq->info;
  435. end_io_wq->error = err;
  436. end_io_wq->work.func = end_workqueue_fn;
  437. end_io_wq->work.flags = 0;
  438. if (bio->bi_rw & REQ_WRITE) {
  439. if (end_io_wq->metadata)
  440. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  441. &end_io_wq->work);
  442. else
  443. btrfs_queue_worker(&fs_info->endio_write_workers,
  444. &end_io_wq->work);
  445. } else {
  446. if (end_io_wq->metadata)
  447. btrfs_queue_worker(&fs_info->endio_meta_workers,
  448. &end_io_wq->work);
  449. else
  450. btrfs_queue_worker(&fs_info->endio_workers,
  451. &end_io_wq->work);
  452. }
  453. }
  454. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  455. int metadata)
  456. {
  457. struct end_io_wq *end_io_wq;
  458. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  459. if (!end_io_wq)
  460. return -ENOMEM;
  461. end_io_wq->private = bio->bi_private;
  462. end_io_wq->end_io = bio->bi_end_io;
  463. end_io_wq->info = info;
  464. end_io_wq->error = 0;
  465. end_io_wq->bio = bio;
  466. end_io_wq->metadata = metadata;
  467. bio->bi_private = end_io_wq;
  468. bio->bi_end_io = end_workqueue_bio;
  469. return 0;
  470. }
  471. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  472. {
  473. unsigned long limit = min_t(unsigned long,
  474. info->workers.max_workers,
  475. info->fs_devices->open_devices);
  476. return 256 * limit;
  477. }
  478. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  479. {
  480. return atomic_read(&info->nr_async_bios) >
  481. btrfs_async_submit_limit(info);
  482. }
  483. static void run_one_async_start(struct btrfs_work *work)
  484. {
  485. struct btrfs_fs_info *fs_info;
  486. struct async_submit_bio *async;
  487. async = container_of(work, struct async_submit_bio, work);
  488. fs_info = BTRFS_I(async->inode)->root->fs_info;
  489. async->submit_bio_start(async->inode, async->rw, async->bio,
  490. async->mirror_num, async->bio_flags,
  491. async->bio_offset);
  492. }
  493. static void run_one_async_done(struct btrfs_work *work)
  494. {
  495. struct btrfs_fs_info *fs_info;
  496. struct async_submit_bio *async;
  497. int limit;
  498. async = container_of(work, struct async_submit_bio, work);
  499. fs_info = BTRFS_I(async->inode)->root->fs_info;
  500. limit = btrfs_async_submit_limit(fs_info);
  501. limit = limit * 2 / 3;
  502. atomic_dec(&fs_info->nr_async_submits);
  503. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  504. waitqueue_active(&fs_info->async_submit_wait))
  505. wake_up(&fs_info->async_submit_wait);
  506. async->submit_bio_done(async->inode, async->rw, async->bio,
  507. async->mirror_num, async->bio_flags,
  508. async->bio_offset);
  509. }
  510. static void run_one_async_free(struct btrfs_work *work)
  511. {
  512. struct async_submit_bio *async;
  513. async = container_of(work, struct async_submit_bio, work);
  514. kfree(async);
  515. }
  516. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  517. int rw, struct bio *bio, int mirror_num,
  518. unsigned long bio_flags,
  519. u64 bio_offset,
  520. extent_submit_bio_hook_t *submit_bio_start,
  521. extent_submit_bio_hook_t *submit_bio_done)
  522. {
  523. struct async_submit_bio *async;
  524. async = kmalloc(sizeof(*async), GFP_NOFS);
  525. if (!async)
  526. return -ENOMEM;
  527. async->inode = inode;
  528. async->rw = rw;
  529. async->bio = bio;
  530. async->mirror_num = mirror_num;
  531. async->submit_bio_start = submit_bio_start;
  532. async->submit_bio_done = submit_bio_done;
  533. async->work.func = run_one_async_start;
  534. async->work.ordered_func = run_one_async_done;
  535. async->work.ordered_free = run_one_async_free;
  536. async->work.flags = 0;
  537. async->bio_flags = bio_flags;
  538. async->bio_offset = bio_offset;
  539. atomic_inc(&fs_info->nr_async_submits);
  540. if (rw & REQ_SYNC)
  541. btrfs_set_work_high_prio(&async->work);
  542. btrfs_queue_worker(&fs_info->workers, &async->work);
  543. while (atomic_read(&fs_info->async_submit_draining) &&
  544. atomic_read(&fs_info->nr_async_submits)) {
  545. wait_event(fs_info->async_submit_wait,
  546. (atomic_read(&fs_info->nr_async_submits) == 0));
  547. }
  548. return 0;
  549. }
  550. static int btree_csum_one_bio(struct bio *bio)
  551. {
  552. struct bio_vec *bvec = bio->bi_io_vec;
  553. int bio_index = 0;
  554. struct btrfs_root *root;
  555. WARN_ON(bio->bi_vcnt <= 0);
  556. while (bio_index < bio->bi_vcnt) {
  557. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  558. csum_dirty_buffer(root, bvec->bv_page);
  559. bio_index++;
  560. bvec++;
  561. }
  562. return 0;
  563. }
  564. static int __btree_submit_bio_start(struct inode *inode, int rw,
  565. struct bio *bio, int mirror_num,
  566. unsigned long bio_flags,
  567. u64 bio_offset)
  568. {
  569. /*
  570. * when we're called for a write, we're already in the async
  571. * submission context. Just jump into btrfs_map_bio
  572. */
  573. btree_csum_one_bio(bio);
  574. return 0;
  575. }
  576. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  577. int mirror_num, unsigned long bio_flags,
  578. u64 bio_offset)
  579. {
  580. /*
  581. * when we're called for a write, we're already in the async
  582. * submission context. Just jump into btrfs_map_bio
  583. */
  584. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  585. }
  586. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  587. int mirror_num, unsigned long bio_flags,
  588. u64 bio_offset)
  589. {
  590. int ret;
  591. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  592. bio, 1);
  593. BUG_ON(ret);
  594. if (!(rw & REQ_WRITE)) {
  595. /*
  596. * called for a read, do the setup so that checksum validation
  597. * can happen in the async kernel threads
  598. */
  599. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  600. mirror_num, 0);
  601. }
  602. /*
  603. * kthread helpers are used to submit writes so that checksumming
  604. * can happen in parallel across all CPUs
  605. */
  606. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  607. inode, rw, bio, mirror_num, 0,
  608. bio_offset,
  609. __btree_submit_bio_start,
  610. __btree_submit_bio_done);
  611. }
  612. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  613. {
  614. struct extent_io_tree *tree;
  615. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  616. struct extent_buffer *eb;
  617. int was_dirty;
  618. tree = &BTRFS_I(page->mapping->host)->io_tree;
  619. if (!(current->flags & PF_MEMALLOC)) {
  620. return extent_write_full_page(tree, page,
  621. btree_get_extent, wbc);
  622. }
  623. redirty_page_for_writepage(wbc, page);
  624. eb = btrfs_find_tree_block(root, page_offset(page),
  625. PAGE_CACHE_SIZE);
  626. WARN_ON(!eb);
  627. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  628. if (!was_dirty) {
  629. spin_lock(&root->fs_info->delalloc_lock);
  630. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  631. spin_unlock(&root->fs_info->delalloc_lock);
  632. }
  633. free_extent_buffer(eb);
  634. unlock_page(page);
  635. return 0;
  636. }
  637. static int btree_writepages(struct address_space *mapping,
  638. struct writeback_control *wbc)
  639. {
  640. struct extent_io_tree *tree;
  641. tree = &BTRFS_I(mapping->host)->io_tree;
  642. if (wbc->sync_mode == WB_SYNC_NONE) {
  643. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  644. u64 num_dirty;
  645. unsigned long thresh = 32 * 1024 * 1024;
  646. if (wbc->for_kupdate)
  647. return 0;
  648. /* this is a bit racy, but that's ok */
  649. num_dirty = root->fs_info->dirty_metadata_bytes;
  650. if (num_dirty < thresh)
  651. return 0;
  652. }
  653. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  654. }
  655. static int btree_readpage(struct file *file, struct page *page)
  656. {
  657. struct extent_io_tree *tree;
  658. tree = &BTRFS_I(page->mapping->host)->io_tree;
  659. return extent_read_full_page(tree, page, btree_get_extent);
  660. }
  661. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  662. {
  663. struct extent_io_tree *tree;
  664. struct extent_map_tree *map;
  665. int ret;
  666. if (PageWriteback(page) || PageDirty(page))
  667. return 0;
  668. tree = &BTRFS_I(page->mapping->host)->io_tree;
  669. map = &BTRFS_I(page->mapping->host)->extent_tree;
  670. ret = try_release_extent_state(map, tree, page, gfp_flags);
  671. if (!ret)
  672. return 0;
  673. ret = try_release_extent_buffer(tree, page);
  674. if (ret == 1) {
  675. ClearPagePrivate(page);
  676. set_page_private(page, 0);
  677. page_cache_release(page);
  678. }
  679. return ret;
  680. }
  681. static void btree_invalidatepage(struct page *page, unsigned long offset)
  682. {
  683. struct extent_io_tree *tree;
  684. tree = &BTRFS_I(page->mapping->host)->io_tree;
  685. extent_invalidatepage(tree, page, offset);
  686. btree_releasepage(page, GFP_NOFS);
  687. if (PagePrivate(page)) {
  688. printk(KERN_WARNING "btrfs warning page private not zero "
  689. "on page %llu\n", (unsigned long long)page_offset(page));
  690. ClearPagePrivate(page);
  691. set_page_private(page, 0);
  692. page_cache_release(page);
  693. }
  694. }
  695. static const struct address_space_operations btree_aops = {
  696. .readpage = btree_readpage,
  697. .writepage = btree_writepage,
  698. .writepages = btree_writepages,
  699. .releasepage = btree_releasepage,
  700. .invalidatepage = btree_invalidatepage,
  701. .sync_page = block_sync_page,
  702. };
  703. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  704. u64 parent_transid)
  705. {
  706. struct extent_buffer *buf = NULL;
  707. struct inode *btree_inode = root->fs_info->btree_inode;
  708. int ret = 0;
  709. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  710. if (!buf)
  711. return 0;
  712. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  713. buf, 0, 0, btree_get_extent, 0);
  714. free_extent_buffer(buf);
  715. return ret;
  716. }
  717. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  718. u64 bytenr, u32 blocksize)
  719. {
  720. struct inode *btree_inode = root->fs_info->btree_inode;
  721. struct extent_buffer *eb;
  722. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  723. bytenr, blocksize, GFP_NOFS);
  724. return eb;
  725. }
  726. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  727. u64 bytenr, u32 blocksize)
  728. {
  729. struct inode *btree_inode = root->fs_info->btree_inode;
  730. struct extent_buffer *eb;
  731. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  732. bytenr, blocksize, NULL, GFP_NOFS);
  733. return eb;
  734. }
  735. int btrfs_write_tree_block(struct extent_buffer *buf)
  736. {
  737. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  738. buf->start + buf->len - 1);
  739. }
  740. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  741. {
  742. return filemap_fdatawait_range(buf->first_page->mapping,
  743. buf->start, buf->start + buf->len - 1);
  744. }
  745. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  746. u32 blocksize, u64 parent_transid)
  747. {
  748. struct extent_buffer *buf = NULL;
  749. struct inode *btree_inode = root->fs_info->btree_inode;
  750. struct extent_io_tree *io_tree;
  751. int ret;
  752. io_tree = &BTRFS_I(btree_inode)->io_tree;
  753. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  754. if (!buf)
  755. return NULL;
  756. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  757. if (ret == 0)
  758. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  759. return buf;
  760. }
  761. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  762. struct extent_buffer *buf)
  763. {
  764. struct inode *btree_inode = root->fs_info->btree_inode;
  765. if (btrfs_header_generation(buf) ==
  766. root->fs_info->running_transaction->transid) {
  767. btrfs_assert_tree_locked(buf);
  768. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  769. spin_lock(&root->fs_info->delalloc_lock);
  770. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  771. root->fs_info->dirty_metadata_bytes -= buf->len;
  772. else
  773. WARN_ON(1);
  774. spin_unlock(&root->fs_info->delalloc_lock);
  775. }
  776. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  777. btrfs_set_lock_blocking(buf);
  778. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  779. buf);
  780. }
  781. return 0;
  782. }
  783. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  784. u32 stripesize, struct btrfs_root *root,
  785. struct btrfs_fs_info *fs_info,
  786. u64 objectid)
  787. {
  788. root->node = NULL;
  789. root->commit_root = NULL;
  790. root->sectorsize = sectorsize;
  791. root->nodesize = nodesize;
  792. root->leafsize = leafsize;
  793. root->stripesize = stripesize;
  794. root->ref_cows = 0;
  795. root->track_dirty = 0;
  796. root->in_radix = 0;
  797. root->orphan_item_inserted = 0;
  798. root->orphan_cleanup_state = 0;
  799. root->fs_info = fs_info;
  800. root->objectid = objectid;
  801. root->last_trans = 0;
  802. root->highest_objectid = 0;
  803. root->name = NULL;
  804. root->in_sysfs = 0;
  805. root->inode_tree = RB_ROOT;
  806. root->block_rsv = NULL;
  807. root->orphan_block_rsv = NULL;
  808. INIT_LIST_HEAD(&root->dirty_list);
  809. INIT_LIST_HEAD(&root->orphan_list);
  810. INIT_LIST_HEAD(&root->root_list);
  811. spin_lock_init(&root->node_lock);
  812. spin_lock_init(&root->orphan_lock);
  813. spin_lock_init(&root->inode_lock);
  814. spin_lock_init(&root->accounting_lock);
  815. mutex_init(&root->objectid_mutex);
  816. mutex_init(&root->log_mutex);
  817. init_waitqueue_head(&root->log_writer_wait);
  818. init_waitqueue_head(&root->log_commit_wait[0]);
  819. init_waitqueue_head(&root->log_commit_wait[1]);
  820. atomic_set(&root->log_commit[0], 0);
  821. atomic_set(&root->log_commit[1], 0);
  822. atomic_set(&root->log_writers, 0);
  823. root->log_batch = 0;
  824. root->log_transid = 0;
  825. root->last_log_commit = 0;
  826. extent_io_tree_init(&root->dirty_log_pages,
  827. fs_info->btree_inode->i_mapping, GFP_NOFS);
  828. memset(&root->root_key, 0, sizeof(root->root_key));
  829. memset(&root->root_item, 0, sizeof(root->root_item));
  830. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  831. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  832. root->defrag_trans_start = fs_info->generation;
  833. init_completion(&root->kobj_unregister);
  834. root->defrag_running = 0;
  835. root->root_key.objectid = objectid;
  836. root->anon_super.s_root = NULL;
  837. root->anon_super.s_dev = 0;
  838. INIT_LIST_HEAD(&root->anon_super.s_list);
  839. INIT_LIST_HEAD(&root->anon_super.s_instances);
  840. init_rwsem(&root->anon_super.s_umount);
  841. return 0;
  842. }
  843. static int find_and_setup_root(struct btrfs_root *tree_root,
  844. struct btrfs_fs_info *fs_info,
  845. u64 objectid,
  846. struct btrfs_root *root)
  847. {
  848. int ret;
  849. u32 blocksize;
  850. u64 generation;
  851. __setup_root(tree_root->nodesize, tree_root->leafsize,
  852. tree_root->sectorsize, tree_root->stripesize,
  853. root, fs_info, objectid);
  854. ret = btrfs_find_last_root(tree_root, objectid,
  855. &root->root_item, &root->root_key);
  856. if (ret > 0)
  857. return -ENOENT;
  858. BUG_ON(ret);
  859. generation = btrfs_root_generation(&root->root_item);
  860. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  861. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  862. blocksize, generation);
  863. BUG_ON(!root->node);
  864. root->commit_root = btrfs_root_node(root);
  865. return 0;
  866. }
  867. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  868. struct btrfs_fs_info *fs_info)
  869. {
  870. struct btrfs_root *root;
  871. struct btrfs_root *tree_root = fs_info->tree_root;
  872. struct extent_buffer *leaf;
  873. root = kzalloc(sizeof(*root), GFP_NOFS);
  874. if (!root)
  875. return ERR_PTR(-ENOMEM);
  876. __setup_root(tree_root->nodesize, tree_root->leafsize,
  877. tree_root->sectorsize, tree_root->stripesize,
  878. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  879. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  880. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  881. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  882. /*
  883. * log trees do not get reference counted because they go away
  884. * before a real commit is actually done. They do store pointers
  885. * to file data extents, and those reference counts still get
  886. * updated (along with back refs to the log tree).
  887. */
  888. root->ref_cows = 0;
  889. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  890. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  891. if (IS_ERR(leaf)) {
  892. kfree(root);
  893. return ERR_CAST(leaf);
  894. }
  895. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  896. btrfs_set_header_bytenr(leaf, leaf->start);
  897. btrfs_set_header_generation(leaf, trans->transid);
  898. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  899. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  900. root->node = leaf;
  901. write_extent_buffer(root->node, root->fs_info->fsid,
  902. (unsigned long)btrfs_header_fsid(root->node),
  903. BTRFS_FSID_SIZE);
  904. btrfs_mark_buffer_dirty(root->node);
  905. btrfs_tree_unlock(root->node);
  906. return root;
  907. }
  908. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  909. struct btrfs_fs_info *fs_info)
  910. {
  911. struct btrfs_root *log_root;
  912. log_root = alloc_log_tree(trans, fs_info);
  913. if (IS_ERR(log_root))
  914. return PTR_ERR(log_root);
  915. WARN_ON(fs_info->log_root_tree);
  916. fs_info->log_root_tree = log_root;
  917. return 0;
  918. }
  919. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  920. struct btrfs_root *root)
  921. {
  922. struct btrfs_root *log_root;
  923. struct btrfs_inode_item *inode_item;
  924. log_root = alloc_log_tree(trans, root->fs_info);
  925. if (IS_ERR(log_root))
  926. return PTR_ERR(log_root);
  927. log_root->last_trans = trans->transid;
  928. log_root->root_key.offset = root->root_key.objectid;
  929. inode_item = &log_root->root_item.inode;
  930. inode_item->generation = cpu_to_le64(1);
  931. inode_item->size = cpu_to_le64(3);
  932. inode_item->nlink = cpu_to_le32(1);
  933. inode_item->nbytes = cpu_to_le64(root->leafsize);
  934. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  935. btrfs_set_root_node(&log_root->root_item, log_root->node);
  936. WARN_ON(root->log_root);
  937. root->log_root = log_root;
  938. root->log_transid = 0;
  939. root->last_log_commit = 0;
  940. return 0;
  941. }
  942. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  943. struct btrfs_key *location)
  944. {
  945. struct btrfs_root *root;
  946. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  947. struct btrfs_path *path;
  948. struct extent_buffer *l;
  949. u64 generation;
  950. u32 blocksize;
  951. int ret = 0;
  952. root = kzalloc(sizeof(*root), GFP_NOFS);
  953. if (!root)
  954. return ERR_PTR(-ENOMEM);
  955. if (location->offset == (u64)-1) {
  956. ret = find_and_setup_root(tree_root, fs_info,
  957. location->objectid, root);
  958. if (ret) {
  959. kfree(root);
  960. return ERR_PTR(ret);
  961. }
  962. goto out;
  963. }
  964. __setup_root(tree_root->nodesize, tree_root->leafsize,
  965. tree_root->sectorsize, tree_root->stripesize,
  966. root, fs_info, location->objectid);
  967. path = btrfs_alloc_path();
  968. BUG_ON(!path);
  969. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  970. if (ret == 0) {
  971. l = path->nodes[0];
  972. read_extent_buffer(l, &root->root_item,
  973. btrfs_item_ptr_offset(l, path->slots[0]),
  974. sizeof(root->root_item));
  975. memcpy(&root->root_key, location, sizeof(*location));
  976. }
  977. btrfs_free_path(path);
  978. if (ret) {
  979. if (ret > 0)
  980. ret = -ENOENT;
  981. return ERR_PTR(ret);
  982. }
  983. generation = btrfs_root_generation(&root->root_item);
  984. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  985. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  986. blocksize, generation);
  987. root->commit_root = btrfs_root_node(root);
  988. BUG_ON(!root->node);
  989. out:
  990. if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
  991. root->ref_cows = 1;
  992. return root;
  993. }
  994. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  995. u64 root_objectid)
  996. {
  997. struct btrfs_root *root;
  998. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  999. return fs_info->tree_root;
  1000. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1001. return fs_info->extent_root;
  1002. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1003. (unsigned long)root_objectid);
  1004. return root;
  1005. }
  1006. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1007. struct btrfs_key *location)
  1008. {
  1009. struct btrfs_root *root;
  1010. int ret;
  1011. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1012. return fs_info->tree_root;
  1013. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1014. return fs_info->extent_root;
  1015. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1016. return fs_info->chunk_root;
  1017. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1018. return fs_info->dev_root;
  1019. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1020. return fs_info->csum_root;
  1021. again:
  1022. spin_lock(&fs_info->fs_roots_radix_lock);
  1023. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1024. (unsigned long)location->objectid);
  1025. spin_unlock(&fs_info->fs_roots_radix_lock);
  1026. if (root)
  1027. return root;
  1028. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1029. if (IS_ERR(root))
  1030. return root;
  1031. set_anon_super(&root->anon_super, NULL);
  1032. if (btrfs_root_refs(&root->root_item) == 0) {
  1033. ret = -ENOENT;
  1034. goto fail;
  1035. }
  1036. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1037. if (ret < 0)
  1038. goto fail;
  1039. if (ret == 0)
  1040. root->orphan_item_inserted = 1;
  1041. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1042. if (ret)
  1043. goto fail;
  1044. spin_lock(&fs_info->fs_roots_radix_lock);
  1045. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1046. (unsigned long)root->root_key.objectid,
  1047. root);
  1048. if (ret == 0)
  1049. root->in_radix = 1;
  1050. spin_unlock(&fs_info->fs_roots_radix_lock);
  1051. radix_tree_preload_end();
  1052. if (ret) {
  1053. if (ret == -EEXIST) {
  1054. free_fs_root(root);
  1055. goto again;
  1056. }
  1057. goto fail;
  1058. }
  1059. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1060. root->root_key.objectid);
  1061. WARN_ON(ret);
  1062. return root;
  1063. fail:
  1064. free_fs_root(root);
  1065. return ERR_PTR(ret);
  1066. }
  1067. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1068. struct btrfs_key *location,
  1069. const char *name, int namelen)
  1070. {
  1071. return btrfs_read_fs_root_no_name(fs_info, location);
  1072. #if 0
  1073. struct btrfs_root *root;
  1074. int ret;
  1075. root = btrfs_read_fs_root_no_name(fs_info, location);
  1076. if (!root)
  1077. return NULL;
  1078. if (root->in_sysfs)
  1079. return root;
  1080. ret = btrfs_set_root_name(root, name, namelen);
  1081. if (ret) {
  1082. free_extent_buffer(root->node);
  1083. kfree(root);
  1084. return ERR_PTR(ret);
  1085. }
  1086. ret = btrfs_sysfs_add_root(root);
  1087. if (ret) {
  1088. free_extent_buffer(root->node);
  1089. kfree(root->name);
  1090. kfree(root);
  1091. return ERR_PTR(ret);
  1092. }
  1093. root->in_sysfs = 1;
  1094. return root;
  1095. #endif
  1096. }
  1097. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1098. {
  1099. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1100. int ret = 0;
  1101. struct btrfs_device *device;
  1102. struct backing_dev_info *bdi;
  1103. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1104. if (!device->bdev)
  1105. continue;
  1106. bdi = blk_get_backing_dev_info(device->bdev);
  1107. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1108. ret = 1;
  1109. break;
  1110. }
  1111. }
  1112. return ret;
  1113. }
  1114. /*
  1115. * this unplugs every device on the box, and it is only used when page
  1116. * is null
  1117. */
  1118. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1119. {
  1120. struct btrfs_device *device;
  1121. struct btrfs_fs_info *info;
  1122. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1123. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1124. if (!device->bdev)
  1125. continue;
  1126. bdi = blk_get_backing_dev_info(device->bdev);
  1127. if (bdi->unplug_io_fn)
  1128. bdi->unplug_io_fn(bdi, page);
  1129. }
  1130. }
  1131. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1132. {
  1133. struct inode *inode;
  1134. struct extent_map_tree *em_tree;
  1135. struct extent_map *em;
  1136. struct address_space *mapping;
  1137. u64 offset;
  1138. /* the generic O_DIRECT read code does this */
  1139. if (1 || !page) {
  1140. __unplug_io_fn(bdi, page);
  1141. return;
  1142. }
  1143. /*
  1144. * page->mapping may change at any time. Get a consistent copy
  1145. * and use that for everything below
  1146. */
  1147. smp_mb();
  1148. mapping = page->mapping;
  1149. if (!mapping)
  1150. return;
  1151. inode = mapping->host;
  1152. /*
  1153. * don't do the expensive searching for a small number of
  1154. * devices
  1155. */
  1156. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1157. __unplug_io_fn(bdi, page);
  1158. return;
  1159. }
  1160. offset = page_offset(page);
  1161. em_tree = &BTRFS_I(inode)->extent_tree;
  1162. read_lock(&em_tree->lock);
  1163. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1164. read_unlock(&em_tree->lock);
  1165. if (!em) {
  1166. __unplug_io_fn(bdi, page);
  1167. return;
  1168. }
  1169. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1170. free_extent_map(em);
  1171. __unplug_io_fn(bdi, page);
  1172. return;
  1173. }
  1174. offset = offset - em->start;
  1175. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1176. em->block_start + offset, page);
  1177. free_extent_map(em);
  1178. }
  1179. /*
  1180. * If this fails, caller must call bdi_destroy() to get rid of the
  1181. * bdi again.
  1182. */
  1183. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1184. {
  1185. int err;
  1186. bdi->capabilities = BDI_CAP_MAP_COPY;
  1187. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1188. if (err)
  1189. return err;
  1190. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1191. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1192. bdi->unplug_io_data = info;
  1193. bdi->congested_fn = btrfs_congested_fn;
  1194. bdi->congested_data = info;
  1195. return 0;
  1196. }
  1197. static int bio_ready_for_csum(struct bio *bio)
  1198. {
  1199. u64 length = 0;
  1200. u64 buf_len = 0;
  1201. u64 start = 0;
  1202. struct page *page;
  1203. struct extent_io_tree *io_tree = NULL;
  1204. struct btrfs_fs_info *info = NULL;
  1205. struct bio_vec *bvec;
  1206. int i;
  1207. int ret;
  1208. bio_for_each_segment(bvec, bio, i) {
  1209. page = bvec->bv_page;
  1210. if (page->private == EXTENT_PAGE_PRIVATE) {
  1211. length += bvec->bv_len;
  1212. continue;
  1213. }
  1214. if (!page->private) {
  1215. length += bvec->bv_len;
  1216. continue;
  1217. }
  1218. length = bvec->bv_len;
  1219. buf_len = page->private >> 2;
  1220. start = page_offset(page) + bvec->bv_offset;
  1221. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1222. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1223. }
  1224. /* are we fully contained in this bio? */
  1225. if (buf_len <= length)
  1226. return 1;
  1227. ret = extent_range_uptodate(io_tree, start + length,
  1228. start + buf_len - 1);
  1229. return ret;
  1230. }
  1231. /*
  1232. * called by the kthread helper functions to finally call the bio end_io
  1233. * functions. This is where read checksum verification actually happens
  1234. */
  1235. static void end_workqueue_fn(struct btrfs_work *work)
  1236. {
  1237. struct bio *bio;
  1238. struct end_io_wq *end_io_wq;
  1239. struct btrfs_fs_info *fs_info;
  1240. int error;
  1241. end_io_wq = container_of(work, struct end_io_wq, work);
  1242. bio = end_io_wq->bio;
  1243. fs_info = end_io_wq->info;
  1244. /* metadata bio reads are special because the whole tree block must
  1245. * be checksummed at once. This makes sure the entire block is in
  1246. * ram and up to date before trying to verify things. For
  1247. * blocksize <= pagesize, it is basically a noop
  1248. */
  1249. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1250. !bio_ready_for_csum(bio)) {
  1251. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1252. &end_io_wq->work);
  1253. return;
  1254. }
  1255. error = end_io_wq->error;
  1256. bio->bi_private = end_io_wq->private;
  1257. bio->bi_end_io = end_io_wq->end_io;
  1258. kfree(end_io_wq);
  1259. bio_endio(bio, error);
  1260. }
  1261. static int cleaner_kthread(void *arg)
  1262. {
  1263. struct btrfs_root *root = arg;
  1264. do {
  1265. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1266. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1267. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1268. btrfs_run_delayed_iputs(root);
  1269. btrfs_clean_old_snapshots(root);
  1270. mutex_unlock(&root->fs_info->cleaner_mutex);
  1271. }
  1272. if (freezing(current)) {
  1273. refrigerator();
  1274. } else {
  1275. set_current_state(TASK_INTERRUPTIBLE);
  1276. if (!kthread_should_stop())
  1277. schedule();
  1278. __set_current_state(TASK_RUNNING);
  1279. }
  1280. } while (!kthread_should_stop());
  1281. return 0;
  1282. }
  1283. static int transaction_kthread(void *arg)
  1284. {
  1285. struct btrfs_root *root = arg;
  1286. struct btrfs_trans_handle *trans;
  1287. struct btrfs_transaction *cur;
  1288. u64 transid;
  1289. unsigned long now;
  1290. unsigned long delay;
  1291. int ret;
  1292. do {
  1293. delay = HZ * 30;
  1294. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1295. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1296. spin_lock(&root->fs_info->new_trans_lock);
  1297. cur = root->fs_info->running_transaction;
  1298. if (!cur) {
  1299. spin_unlock(&root->fs_info->new_trans_lock);
  1300. goto sleep;
  1301. }
  1302. now = get_seconds();
  1303. if (!cur->blocked &&
  1304. (now < cur->start_time || now - cur->start_time < 30)) {
  1305. spin_unlock(&root->fs_info->new_trans_lock);
  1306. delay = HZ * 5;
  1307. goto sleep;
  1308. }
  1309. transid = cur->transid;
  1310. spin_unlock(&root->fs_info->new_trans_lock);
  1311. trans = btrfs_join_transaction(root, 1);
  1312. if (transid == trans->transid) {
  1313. ret = btrfs_commit_transaction(trans, root);
  1314. BUG_ON(ret);
  1315. } else {
  1316. btrfs_end_transaction(trans, root);
  1317. }
  1318. sleep:
  1319. wake_up_process(root->fs_info->cleaner_kthread);
  1320. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1321. if (freezing(current)) {
  1322. refrigerator();
  1323. } else {
  1324. set_current_state(TASK_INTERRUPTIBLE);
  1325. if (!kthread_should_stop() &&
  1326. !btrfs_transaction_blocked(root->fs_info))
  1327. schedule_timeout(delay);
  1328. __set_current_state(TASK_RUNNING);
  1329. }
  1330. } while (!kthread_should_stop());
  1331. return 0;
  1332. }
  1333. struct btrfs_root *open_ctree(struct super_block *sb,
  1334. struct btrfs_fs_devices *fs_devices,
  1335. char *options)
  1336. {
  1337. u32 sectorsize;
  1338. u32 nodesize;
  1339. u32 leafsize;
  1340. u32 blocksize;
  1341. u32 stripesize;
  1342. u64 generation;
  1343. u64 features;
  1344. struct btrfs_key location;
  1345. struct buffer_head *bh;
  1346. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1347. GFP_NOFS);
  1348. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1349. GFP_NOFS);
  1350. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1351. GFP_NOFS);
  1352. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1353. GFP_NOFS);
  1354. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1355. GFP_NOFS);
  1356. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1357. GFP_NOFS);
  1358. struct btrfs_root *log_tree_root;
  1359. int ret;
  1360. int err = -EINVAL;
  1361. struct btrfs_super_block *disk_super;
  1362. if (!extent_root || !tree_root || !fs_info ||
  1363. !chunk_root || !dev_root || !csum_root) {
  1364. err = -ENOMEM;
  1365. goto fail;
  1366. }
  1367. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1368. if (ret) {
  1369. err = ret;
  1370. goto fail;
  1371. }
  1372. ret = setup_bdi(fs_info, &fs_info->bdi);
  1373. if (ret) {
  1374. err = ret;
  1375. goto fail_srcu;
  1376. }
  1377. fs_info->btree_inode = new_inode(sb);
  1378. if (!fs_info->btree_inode) {
  1379. err = -ENOMEM;
  1380. goto fail_bdi;
  1381. }
  1382. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1383. INIT_LIST_HEAD(&fs_info->trans_list);
  1384. INIT_LIST_HEAD(&fs_info->dead_roots);
  1385. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1386. INIT_LIST_HEAD(&fs_info->hashers);
  1387. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1388. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1389. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1390. spin_lock_init(&fs_info->delalloc_lock);
  1391. spin_lock_init(&fs_info->new_trans_lock);
  1392. spin_lock_init(&fs_info->ref_cache_lock);
  1393. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1394. spin_lock_init(&fs_info->delayed_iput_lock);
  1395. init_completion(&fs_info->kobj_unregister);
  1396. fs_info->tree_root = tree_root;
  1397. fs_info->extent_root = extent_root;
  1398. fs_info->csum_root = csum_root;
  1399. fs_info->chunk_root = chunk_root;
  1400. fs_info->dev_root = dev_root;
  1401. fs_info->fs_devices = fs_devices;
  1402. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1403. INIT_LIST_HEAD(&fs_info->space_info);
  1404. btrfs_mapping_init(&fs_info->mapping_tree);
  1405. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1406. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1407. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1408. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1409. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1410. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1411. mutex_init(&fs_info->durable_block_rsv_mutex);
  1412. atomic_set(&fs_info->nr_async_submits, 0);
  1413. atomic_set(&fs_info->async_delalloc_pages, 0);
  1414. atomic_set(&fs_info->async_submit_draining, 0);
  1415. atomic_set(&fs_info->nr_async_bios, 0);
  1416. fs_info->sb = sb;
  1417. fs_info->max_inline = 8192 * 1024;
  1418. fs_info->metadata_ratio = 0;
  1419. fs_info->thread_pool_size = min_t(unsigned long,
  1420. num_online_cpus() + 2, 8);
  1421. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1422. spin_lock_init(&fs_info->ordered_extent_lock);
  1423. sb->s_blocksize = 4096;
  1424. sb->s_blocksize_bits = blksize_bits(4096);
  1425. sb->s_bdi = &fs_info->bdi;
  1426. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1427. fs_info->btree_inode->i_nlink = 1;
  1428. /*
  1429. * we set the i_size on the btree inode to the max possible int.
  1430. * the real end of the address space is determined by all of
  1431. * the devices in the system
  1432. */
  1433. fs_info->btree_inode->i_size = OFFSET_MAX;
  1434. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1435. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1436. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1437. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1438. fs_info->btree_inode->i_mapping,
  1439. GFP_NOFS);
  1440. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1441. GFP_NOFS);
  1442. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1443. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1444. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1445. sizeof(struct btrfs_key));
  1446. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1447. insert_inode_hash(fs_info->btree_inode);
  1448. spin_lock_init(&fs_info->block_group_cache_lock);
  1449. fs_info->block_group_cache_tree = RB_ROOT;
  1450. extent_io_tree_init(&fs_info->freed_extents[0],
  1451. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1452. extent_io_tree_init(&fs_info->freed_extents[1],
  1453. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1454. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1455. fs_info->do_barriers = 1;
  1456. mutex_init(&fs_info->trans_mutex);
  1457. mutex_init(&fs_info->ordered_operations_mutex);
  1458. mutex_init(&fs_info->tree_log_mutex);
  1459. mutex_init(&fs_info->chunk_mutex);
  1460. mutex_init(&fs_info->transaction_kthread_mutex);
  1461. mutex_init(&fs_info->cleaner_mutex);
  1462. mutex_init(&fs_info->volume_mutex);
  1463. init_rwsem(&fs_info->extent_commit_sem);
  1464. init_rwsem(&fs_info->cleanup_work_sem);
  1465. init_rwsem(&fs_info->subvol_sem);
  1466. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1467. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1468. init_waitqueue_head(&fs_info->transaction_throttle);
  1469. init_waitqueue_head(&fs_info->transaction_wait);
  1470. init_waitqueue_head(&fs_info->async_submit_wait);
  1471. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1472. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1473. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1474. if (!bh)
  1475. goto fail_iput;
  1476. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1477. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1478. sizeof(fs_info->super_for_commit));
  1479. brelse(bh);
  1480. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1481. disk_super = &fs_info->super_copy;
  1482. if (!btrfs_super_root(disk_super))
  1483. goto fail_iput;
  1484. ret = btrfs_parse_options(tree_root, options);
  1485. if (ret) {
  1486. err = ret;
  1487. goto fail_iput;
  1488. }
  1489. features = btrfs_super_incompat_flags(disk_super) &
  1490. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1491. if (features) {
  1492. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1493. "unsupported optional features (%Lx).\n",
  1494. (unsigned long long)features);
  1495. err = -EINVAL;
  1496. goto fail_iput;
  1497. }
  1498. features = btrfs_super_incompat_flags(disk_super);
  1499. if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
  1500. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1501. btrfs_set_super_incompat_flags(disk_super, features);
  1502. }
  1503. features = btrfs_super_compat_ro_flags(disk_super) &
  1504. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1505. if (!(sb->s_flags & MS_RDONLY) && features) {
  1506. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1507. "unsupported option features (%Lx).\n",
  1508. (unsigned long long)features);
  1509. err = -EINVAL;
  1510. goto fail_iput;
  1511. }
  1512. btrfs_init_workers(&fs_info->generic_worker,
  1513. "genwork", 1, NULL);
  1514. btrfs_init_workers(&fs_info->workers, "worker",
  1515. fs_info->thread_pool_size,
  1516. &fs_info->generic_worker);
  1517. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1518. fs_info->thread_pool_size,
  1519. &fs_info->generic_worker);
  1520. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1521. min_t(u64, fs_devices->num_devices,
  1522. fs_info->thread_pool_size),
  1523. &fs_info->generic_worker);
  1524. /* a higher idle thresh on the submit workers makes it much more
  1525. * likely that bios will be send down in a sane order to the
  1526. * devices
  1527. */
  1528. fs_info->submit_workers.idle_thresh = 64;
  1529. fs_info->workers.idle_thresh = 16;
  1530. fs_info->workers.ordered = 1;
  1531. fs_info->delalloc_workers.idle_thresh = 2;
  1532. fs_info->delalloc_workers.ordered = 1;
  1533. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1534. &fs_info->generic_worker);
  1535. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1536. fs_info->thread_pool_size,
  1537. &fs_info->generic_worker);
  1538. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1539. fs_info->thread_pool_size,
  1540. &fs_info->generic_worker);
  1541. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1542. "endio-meta-write", fs_info->thread_pool_size,
  1543. &fs_info->generic_worker);
  1544. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1545. fs_info->thread_pool_size,
  1546. &fs_info->generic_worker);
  1547. /*
  1548. * endios are largely parallel and should have a very
  1549. * low idle thresh
  1550. */
  1551. fs_info->endio_workers.idle_thresh = 4;
  1552. fs_info->endio_meta_workers.idle_thresh = 4;
  1553. fs_info->endio_write_workers.idle_thresh = 2;
  1554. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1555. btrfs_start_workers(&fs_info->workers, 1);
  1556. btrfs_start_workers(&fs_info->generic_worker, 1);
  1557. btrfs_start_workers(&fs_info->submit_workers, 1);
  1558. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1559. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1560. btrfs_start_workers(&fs_info->endio_workers, 1);
  1561. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1562. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1563. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1564. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1565. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1566. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1567. nodesize = btrfs_super_nodesize(disk_super);
  1568. leafsize = btrfs_super_leafsize(disk_super);
  1569. sectorsize = btrfs_super_sectorsize(disk_super);
  1570. stripesize = btrfs_super_stripesize(disk_super);
  1571. tree_root->nodesize = nodesize;
  1572. tree_root->leafsize = leafsize;
  1573. tree_root->sectorsize = sectorsize;
  1574. tree_root->stripesize = stripesize;
  1575. sb->s_blocksize = sectorsize;
  1576. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1577. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1578. sizeof(disk_super->magic))) {
  1579. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1580. goto fail_sb_buffer;
  1581. }
  1582. mutex_lock(&fs_info->chunk_mutex);
  1583. ret = btrfs_read_sys_array(tree_root);
  1584. mutex_unlock(&fs_info->chunk_mutex);
  1585. if (ret) {
  1586. printk(KERN_WARNING "btrfs: failed to read the system "
  1587. "array on %s\n", sb->s_id);
  1588. goto fail_sb_buffer;
  1589. }
  1590. blocksize = btrfs_level_size(tree_root,
  1591. btrfs_super_chunk_root_level(disk_super));
  1592. generation = btrfs_super_chunk_root_generation(disk_super);
  1593. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1594. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1595. chunk_root->node = read_tree_block(chunk_root,
  1596. btrfs_super_chunk_root(disk_super),
  1597. blocksize, generation);
  1598. BUG_ON(!chunk_root->node);
  1599. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1600. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1601. sb->s_id);
  1602. goto fail_chunk_root;
  1603. }
  1604. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1605. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1606. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1607. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1608. BTRFS_UUID_SIZE);
  1609. mutex_lock(&fs_info->chunk_mutex);
  1610. ret = btrfs_read_chunk_tree(chunk_root);
  1611. mutex_unlock(&fs_info->chunk_mutex);
  1612. if (ret) {
  1613. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1614. sb->s_id);
  1615. goto fail_chunk_root;
  1616. }
  1617. btrfs_close_extra_devices(fs_devices);
  1618. blocksize = btrfs_level_size(tree_root,
  1619. btrfs_super_root_level(disk_super));
  1620. generation = btrfs_super_generation(disk_super);
  1621. tree_root->node = read_tree_block(tree_root,
  1622. btrfs_super_root(disk_super),
  1623. blocksize, generation);
  1624. if (!tree_root->node)
  1625. goto fail_chunk_root;
  1626. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1627. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1628. sb->s_id);
  1629. goto fail_tree_root;
  1630. }
  1631. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1632. tree_root->commit_root = btrfs_root_node(tree_root);
  1633. ret = find_and_setup_root(tree_root, fs_info,
  1634. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1635. if (ret)
  1636. goto fail_tree_root;
  1637. extent_root->track_dirty = 1;
  1638. ret = find_and_setup_root(tree_root, fs_info,
  1639. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1640. if (ret)
  1641. goto fail_extent_root;
  1642. dev_root->track_dirty = 1;
  1643. ret = find_and_setup_root(tree_root, fs_info,
  1644. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1645. if (ret)
  1646. goto fail_dev_root;
  1647. csum_root->track_dirty = 1;
  1648. fs_info->generation = generation;
  1649. fs_info->last_trans_committed = generation;
  1650. fs_info->data_alloc_profile = (u64)-1;
  1651. fs_info->metadata_alloc_profile = (u64)-1;
  1652. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1653. ret = btrfs_read_block_groups(extent_root);
  1654. if (ret) {
  1655. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1656. goto fail_block_groups;
  1657. }
  1658. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1659. "btrfs-cleaner");
  1660. if (IS_ERR(fs_info->cleaner_kthread))
  1661. goto fail_block_groups;
  1662. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1663. tree_root,
  1664. "btrfs-transaction");
  1665. if (IS_ERR(fs_info->transaction_kthread))
  1666. goto fail_cleaner;
  1667. if (!btrfs_test_opt(tree_root, SSD) &&
  1668. !btrfs_test_opt(tree_root, NOSSD) &&
  1669. !fs_info->fs_devices->rotating) {
  1670. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1671. "mode\n");
  1672. btrfs_set_opt(fs_info->mount_opt, SSD);
  1673. }
  1674. if (btrfs_super_log_root(disk_super) != 0) {
  1675. u64 bytenr = btrfs_super_log_root(disk_super);
  1676. if (fs_devices->rw_devices == 0) {
  1677. printk(KERN_WARNING "Btrfs log replay required "
  1678. "on RO media\n");
  1679. err = -EIO;
  1680. goto fail_trans_kthread;
  1681. }
  1682. blocksize =
  1683. btrfs_level_size(tree_root,
  1684. btrfs_super_log_root_level(disk_super));
  1685. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1686. if (!log_tree_root) {
  1687. err = -ENOMEM;
  1688. goto fail_trans_kthread;
  1689. }
  1690. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1691. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1692. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1693. blocksize,
  1694. generation + 1);
  1695. ret = btrfs_recover_log_trees(log_tree_root);
  1696. BUG_ON(ret);
  1697. if (sb->s_flags & MS_RDONLY) {
  1698. ret = btrfs_commit_super(tree_root);
  1699. BUG_ON(ret);
  1700. }
  1701. }
  1702. ret = btrfs_find_orphan_roots(tree_root);
  1703. BUG_ON(ret);
  1704. if (!(sb->s_flags & MS_RDONLY)) {
  1705. ret = btrfs_cleanup_fs_roots(fs_info);
  1706. BUG_ON(ret);
  1707. ret = btrfs_recover_relocation(tree_root);
  1708. if (ret < 0) {
  1709. printk(KERN_WARNING
  1710. "btrfs: failed to recover relocation\n");
  1711. err = -EINVAL;
  1712. goto fail_trans_kthread;
  1713. }
  1714. }
  1715. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1716. location.type = BTRFS_ROOT_ITEM_KEY;
  1717. location.offset = (u64)-1;
  1718. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1719. if (!fs_info->fs_root)
  1720. goto fail_trans_kthread;
  1721. if (IS_ERR(fs_info->fs_root)) {
  1722. err = PTR_ERR(fs_info->fs_root);
  1723. goto fail_trans_kthread;
  1724. }
  1725. if (!(sb->s_flags & MS_RDONLY)) {
  1726. down_read(&fs_info->cleanup_work_sem);
  1727. btrfs_orphan_cleanup(fs_info->fs_root);
  1728. up_read(&fs_info->cleanup_work_sem);
  1729. }
  1730. return tree_root;
  1731. fail_trans_kthread:
  1732. kthread_stop(fs_info->transaction_kthread);
  1733. fail_cleaner:
  1734. kthread_stop(fs_info->cleaner_kthread);
  1735. /*
  1736. * make sure we're done with the btree inode before we stop our
  1737. * kthreads
  1738. */
  1739. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1740. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1741. fail_block_groups:
  1742. btrfs_free_block_groups(fs_info);
  1743. free_extent_buffer(csum_root->node);
  1744. free_extent_buffer(csum_root->commit_root);
  1745. fail_dev_root:
  1746. free_extent_buffer(dev_root->node);
  1747. free_extent_buffer(dev_root->commit_root);
  1748. fail_extent_root:
  1749. free_extent_buffer(extent_root->node);
  1750. free_extent_buffer(extent_root->commit_root);
  1751. fail_tree_root:
  1752. free_extent_buffer(tree_root->node);
  1753. free_extent_buffer(tree_root->commit_root);
  1754. fail_chunk_root:
  1755. free_extent_buffer(chunk_root->node);
  1756. free_extent_buffer(chunk_root->commit_root);
  1757. fail_sb_buffer:
  1758. btrfs_stop_workers(&fs_info->generic_worker);
  1759. btrfs_stop_workers(&fs_info->fixup_workers);
  1760. btrfs_stop_workers(&fs_info->delalloc_workers);
  1761. btrfs_stop_workers(&fs_info->workers);
  1762. btrfs_stop_workers(&fs_info->endio_workers);
  1763. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1764. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1765. btrfs_stop_workers(&fs_info->endio_write_workers);
  1766. btrfs_stop_workers(&fs_info->submit_workers);
  1767. fail_iput:
  1768. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1769. iput(fs_info->btree_inode);
  1770. btrfs_close_devices(fs_info->fs_devices);
  1771. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1772. fail_bdi:
  1773. bdi_destroy(&fs_info->bdi);
  1774. fail_srcu:
  1775. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1776. fail:
  1777. kfree(extent_root);
  1778. kfree(tree_root);
  1779. kfree(fs_info);
  1780. kfree(chunk_root);
  1781. kfree(dev_root);
  1782. kfree(csum_root);
  1783. return ERR_PTR(err);
  1784. }
  1785. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1786. {
  1787. char b[BDEVNAME_SIZE];
  1788. if (uptodate) {
  1789. set_buffer_uptodate(bh);
  1790. } else {
  1791. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1792. printk(KERN_WARNING "lost page write due to "
  1793. "I/O error on %s\n",
  1794. bdevname(bh->b_bdev, b));
  1795. }
  1796. /* note, we dont' set_buffer_write_io_error because we have
  1797. * our own ways of dealing with the IO errors
  1798. */
  1799. clear_buffer_uptodate(bh);
  1800. }
  1801. unlock_buffer(bh);
  1802. put_bh(bh);
  1803. }
  1804. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1805. {
  1806. struct buffer_head *bh;
  1807. struct buffer_head *latest = NULL;
  1808. struct btrfs_super_block *super;
  1809. int i;
  1810. u64 transid = 0;
  1811. u64 bytenr;
  1812. /* we would like to check all the supers, but that would make
  1813. * a btrfs mount succeed after a mkfs from a different FS.
  1814. * So, we need to add a special mount option to scan for
  1815. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1816. */
  1817. for (i = 0; i < 1; i++) {
  1818. bytenr = btrfs_sb_offset(i);
  1819. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1820. break;
  1821. bh = __bread(bdev, bytenr / 4096, 4096);
  1822. if (!bh)
  1823. continue;
  1824. super = (struct btrfs_super_block *)bh->b_data;
  1825. if (btrfs_super_bytenr(super) != bytenr ||
  1826. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1827. sizeof(super->magic))) {
  1828. brelse(bh);
  1829. continue;
  1830. }
  1831. if (!latest || btrfs_super_generation(super) > transid) {
  1832. brelse(latest);
  1833. latest = bh;
  1834. transid = btrfs_super_generation(super);
  1835. } else {
  1836. brelse(bh);
  1837. }
  1838. }
  1839. return latest;
  1840. }
  1841. /*
  1842. * this should be called twice, once with wait == 0 and
  1843. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1844. * we write are pinned.
  1845. *
  1846. * They are released when wait == 1 is done.
  1847. * max_mirrors must be the same for both runs, and it indicates how
  1848. * many supers on this one device should be written.
  1849. *
  1850. * max_mirrors == 0 means to write them all.
  1851. */
  1852. static int write_dev_supers(struct btrfs_device *device,
  1853. struct btrfs_super_block *sb,
  1854. int do_barriers, int wait, int max_mirrors)
  1855. {
  1856. struct buffer_head *bh;
  1857. int i;
  1858. int ret;
  1859. int errors = 0;
  1860. u32 crc;
  1861. u64 bytenr;
  1862. int last_barrier = 0;
  1863. if (max_mirrors == 0)
  1864. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1865. /* make sure only the last submit_bh does a barrier */
  1866. if (do_barriers) {
  1867. for (i = 0; i < max_mirrors; i++) {
  1868. bytenr = btrfs_sb_offset(i);
  1869. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1870. device->total_bytes)
  1871. break;
  1872. last_barrier = i;
  1873. }
  1874. }
  1875. for (i = 0; i < max_mirrors; i++) {
  1876. bytenr = btrfs_sb_offset(i);
  1877. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1878. break;
  1879. if (wait) {
  1880. bh = __find_get_block(device->bdev, bytenr / 4096,
  1881. BTRFS_SUPER_INFO_SIZE);
  1882. BUG_ON(!bh);
  1883. wait_on_buffer(bh);
  1884. if (!buffer_uptodate(bh))
  1885. errors++;
  1886. /* drop our reference */
  1887. brelse(bh);
  1888. /* drop the reference from the wait == 0 run */
  1889. brelse(bh);
  1890. continue;
  1891. } else {
  1892. btrfs_set_super_bytenr(sb, bytenr);
  1893. crc = ~(u32)0;
  1894. crc = btrfs_csum_data(NULL, (char *)sb +
  1895. BTRFS_CSUM_SIZE, crc,
  1896. BTRFS_SUPER_INFO_SIZE -
  1897. BTRFS_CSUM_SIZE);
  1898. btrfs_csum_final(crc, sb->csum);
  1899. /*
  1900. * one reference for us, and we leave it for the
  1901. * caller
  1902. */
  1903. bh = __getblk(device->bdev, bytenr / 4096,
  1904. BTRFS_SUPER_INFO_SIZE);
  1905. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1906. /* one reference for submit_bh */
  1907. get_bh(bh);
  1908. set_buffer_uptodate(bh);
  1909. lock_buffer(bh);
  1910. bh->b_end_io = btrfs_end_buffer_write_sync;
  1911. }
  1912. if (i == last_barrier && do_barriers && device->barriers) {
  1913. ret = submit_bh(WRITE_BARRIER, bh);
  1914. if (ret == -EOPNOTSUPP) {
  1915. printk("btrfs: disabling barriers on dev %s\n",
  1916. device->name);
  1917. set_buffer_uptodate(bh);
  1918. device->barriers = 0;
  1919. /* one reference for submit_bh */
  1920. get_bh(bh);
  1921. lock_buffer(bh);
  1922. ret = submit_bh(WRITE_SYNC, bh);
  1923. }
  1924. } else {
  1925. ret = submit_bh(WRITE_SYNC, bh);
  1926. }
  1927. if (ret)
  1928. errors++;
  1929. }
  1930. return errors < i ? 0 : -1;
  1931. }
  1932. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1933. {
  1934. struct list_head *head;
  1935. struct btrfs_device *dev;
  1936. struct btrfs_super_block *sb;
  1937. struct btrfs_dev_item *dev_item;
  1938. int ret;
  1939. int do_barriers;
  1940. int max_errors;
  1941. int total_errors = 0;
  1942. u64 flags;
  1943. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1944. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1945. sb = &root->fs_info->super_for_commit;
  1946. dev_item = &sb->dev_item;
  1947. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1948. head = &root->fs_info->fs_devices->devices;
  1949. list_for_each_entry(dev, head, dev_list) {
  1950. if (!dev->bdev) {
  1951. total_errors++;
  1952. continue;
  1953. }
  1954. if (!dev->in_fs_metadata || !dev->writeable)
  1955. continue;
  1956. btrfs_set_stack_device_generation(dev_item, 0);
  1957. btrfs_set_stack_device_type(dev_item, dev->type);
  1958. btrfs_set_stack_device_id(dev_item, dev->devid);
  1959. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1960. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1961. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1962. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1963. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1964. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1965. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1966. flags = btrfs_super_flags(sb);
  1967. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1968. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1969. if (ret)
  1970. total_errors++;
  1971. }
  1972. if (total_errors > max_errors) {
  1973. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1974. total_errors);
  1975. BUG();
  1976. }
  1977. total_errors = 0;
  1978. list_for_each_entry(dev, head, dev_list) {
  1979. if (!dev->bdev)
  1980. continue;
  1981. if (!dev->in_fs_metadata || !dev->writeable)
  1982. continue;
  1983. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1984. if (ret)
  1985. total_errors++;
  1986. }
  1987. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1988. if (total_errors > max_errors) {
  1989. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1990. total_errors);
  1991. BUG();
  1992. }
  1993. return 0;
  1994. }
  1995. int write_ctree_super(struct btrfs_trans_handle *trans,
  1996. struct btrfs_root *root, int max_mirrors)
  1997. {
  1998. int ret;
  1999. ret = write_all_supers(root, max_mirrors);
  2000. return ret;
  2001. }
  2002. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2003. {
  2004. spin_lock(&fs_info->fs_roots_radix_lock);
  2005. radix_tree_delete(&fs_info->fs_roots_radix,
  2006. (unsigned long)root->root_key.objectid);
  2007. spin_unlock(&fs_info->fs_roots_radix_lock);
  2008. if (btrfs_root_refs(&root->root_item) == 0)
  2009. synchronize_srcu(&fs_info->subvol_srcu);
  2010. free_fs_root(root);
  2011. return 0;
  2012. }
  2013. static void free_fs_root(struct btrfs_root *root)
  2014. {
  2015. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2016. if (root->anon_super.s_dev) {
  2017. down_write(&root->anon_super.s_umount);
  2018. kill_anon_super(&root->anon_super);
  2019. }
  2020. free_extent_buffer(root->node);
  2021. free_extent_buffer(root->commit_root);
  2022. kfree(root->name);
  2023. kfree(root);
  2024. }
  2025. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2026. {
  2027. int ret;
  2028. struct btrfs_root *gang[8];
  2029. int i;
  2030. while (!list_empty(&fs_info->dead_roots)) {
  2031. gang[0] = list_entry(fs_info->dead_roots.next,
  2032. struct btrfs_root, root_list);
  2033. list_del(&gang[0]->root_list);
  2034. if (gang[0]->in_radix) {
  2035. btrfs_free_fs_root(fs_info, gang[0]);
  2036. } else {
  2037. free_extent_buffer(gang[0]->node);
  2038. free_extent_buffer(gang[0]->commit_root);
  2039. kfree(gang[0]);
  2040. }
  2041. }
  2042. while (1) {
  2043. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2044. (void **)gang, 0,
  2045. ARRAY_SIZE(gang));
  2046. if (!ret)
  2047. break;
  2048. for (i = 0; i < ret; i++)
  2049. btrfs_free_fs_root(fs_info, gang[i]);
  2050. }
  2051. return 0;
  2052. }
  2053. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2054. {
  2055. u64 root_objectid = 0;
  2056. struct btrfs_root *gang[8];
  2057. int i;
  2058. int ret;
  2059. while (1) {
  2060. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2061. (void **)gang, root_objectid,
  2062. ARRAY_SIZE(gang));
  2063. if (!ret)
  2064. break;
  2065. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2066. for (i = 0; i < ret; i++) {
  2067. root_objectid = gang[i]->root_key.objectid;
  2068. btrfs_orphan_cleanup(gang[i]);
  2069. }
  2070. root_objectid++;
  2071. }
  2072. return 0;
  2073. }
  2074. int btrfs_commit_super(struct btrfs_root *root)
  2075. {
  2076. struct btrfs_trans_handle *trans;
  2077. int ret;
  2078. mutex_lock(&root->fs_info->cleaner_mutex);
  2079. btrfs_run_delayed_iputs(root);
  2080. btrfs_clean_old_snapshots(root);
  2081. mutex_unlock(&root->fs_info->cleaner_mutex);
  2082. /* wait until ongoing cleanup work done */
  2083. down_write(&root->fs_info->cleanup_work_sem);
  2084. up_write(&root->fs_info->cleanup_work_sem);
  2085. trans = btrfs_join_transaction(root, 1);
  2086. ret = btrfs_commit_transaction(trans, root);
  2087. BUG_ON(ret);
  2088. /* run commit again to drop the original snapshot */
  2089. trans = btrfs_join_transaction(root, 1);
  2090. btrfs_commit_transaction(trans, root);
  2091. ret = btrfs_write_and_wait_transaction(NULL, root);
  2092. BUG_ON(ret);
  2093. ret = write_ctree_super(NULL, root, 0);
  2094. return ret;
  2095. }
  2096. int close_ctree(struct btrfs_root *root)
  2097. {
  2098. struct btrfs_fs_info *fs_info = root->fs_info;
  2099. int ret;
  2100. fs_info->closing = 1;
  2101. smp_mb();
  2102. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2103. ret = btrfs_commit_super(root);
  2104. if (ret)
  2105. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2106. }
  2107. kthread_stop(root->fs_info->transaction_kthread);
  2108. kthread_stop(root->fs_info->cleaner_kthread);
  2109. fs_info->closing = 2;
  2110. smp_mb();
  2111. if (fs_info->delalloc_bytes) {
  2112. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2113. (unsigned long long)fs_info->delalloc_bytes);
  2114. }
  2115. if (fs_info->total_ref_cache_size) {
  2116. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2117. (unsigned long long)fs_info->total_ref_cache_size);
  2118. }
  2119. free_extent_buffer(fs_info->extent_root->node);
  2120. free_extent_buffer(fs_info->extent_root->commit_root);
  2121. free_extent_buffer(fs_info->tree_root->node);
  2122. free_extent_buffer(fs_info->tree_root->commit_root);
  2123. free_extent_buffer(root->fs_info->chunk_root->node);
  2124. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2125. free_extent_buffer(root->fs_info->dev_root->node);
  2126. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2127. free_extent_buffer(root->fs_info->csum_root->node);
  2128. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2129. btrfs_free_block_groups(root->fs_info);
  2130. del_fs_roots(fs_info);
  2131. iput(fs_info->btree_inode);
  2132. btrfs_stop_workers(&fs_info->generic_worker);
  2133. btrfs_stop_workers(&fs_info->fixup_workers);
  2134. btrfs_stop_workers(&fs_info->delalloc_workers);
  2135. btrfs_stop_workers(&fs_info->workers);
  2136. btrfs_stop_workers(&fs_info->endio_workers);
  2137. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2138. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2139. btrfs_stop_workers(&fs_info->endio_write_workers);
  2140. btrfs_stop_workers(&fs_info->submit_workers);
  2141. btrfs_close_devices(fs_info->fs_devices);
  2142. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2143. bdi_destroy(&fs_info->bdi);
  2144. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2145. kfree(fs_info->extent_root);
  2146. kfree(fs_info->tree_root);
  2147. kfree(fs_info->chunk_root);
  2148. kfree(fs_info->dev_root);
  2149. kfree(fs_info->csum_root);
  2150. return 0;
  2151. }
  2152. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2153. {
  2154. int ret;
  2155. struct inode *btree_inode = buf->first_page->mapping->host;
  2156. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2157. NULL);
  2158. if (!ret)
  2159. return ret;
  2160. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2161. parent_transid);
  2162. return !ret;
  2163. }
  2164. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2165. {
  2166. struct inode *btree_inode = buf->first_page->mapping->host;
  2167. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2168. buf);
  2169. }
  2170. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2171. {
  2172. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2173. u64 transid = btrfs_header_generation(buf);
  2174. struct inode *btree_inode = root->fs_info->btree_inode;
  2175. int was_dirty;
  2176. btrfs_assert_tree_locked(buf);
  2177. if (transid != root->fs_info->generation) {
  2178. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2179. "found %llu running %llu\n",
  2180. (unsigned long long)buf->start,
  2181. (unsigned long long)transid,
  2182. (unsigned long long)root->fs_info->generation);
  2183. WARN_ON(1);
  2184. }
  2185. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2186. buf);
  2187. if (!was_dirty) {
  2188. spin_lock(&root->fs_info->delalloc_lock);
  2189. root->fs_info->dirty_metadata_bytes += buf->len;
  2190. spin_unlock(&root->fs_info->delalloc_lock);
  2191. }
  2192. }
  2193. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2194. {
  2195. /*
  2196. * looks as though older kernels can get into trouble with
  2197. * this code, they end up stuck in balance_dirty_pages forever
  2198. */
  2199. u64 num_dirty;
  2200. unsigned long thresh = 32 * 1024 * 1024;
  2201. if (current->flags & PF_MEMALLOC)
  2202. return;
  2203. num_dirty = root->fs_info->dirty_metadata_bytes;
  2204. if (num_dirty > thresh) {
  2205. balance_dirty_pages_ratelimited_nr(
  2206. root->fs_info->btree_inode->i_mapping, 1);
  2207. }
  2208. return;
  2209. }
  2210. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2211. {
  2212. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2213. int ret;
  2214. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2215. if (ret == 0)
  2216. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2217. return ret;
  2218. }
  2219. int btree_lock_page_hook(struct page *page)
  2220. {
  2221. struct inode *inode = page->mapping->host;
  2222. struct btrfs_root *root = BTRFS_I(inode)->root;
  2223. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2224. struct extent_buffer *eb;
  2225. unsigned long len;
  2226. u64 bytenr = page_offset(page);
  2227. if (page->private == EXTENT_PAGE_PRIVATE)
  2228. goto out;
  2229. len = page->private >> 2;
  2230. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2231. if (!eb)
  2232. goto out;
  2233. btrfs_tree_lock(eb);
  2234. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2235. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2236. spin_lock(&root->fs_info->delalloc_lock);
  2237. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2238. root->fs_info->dirty_metadata_bytes -= eb->len;
  2239. else
  2240. WARN_ON(1);
  2241. spin_unlock(&root->fs_info->delalloc_lock);
  2242. }
  2243. btrfs_tree_unlock(eb);
  2244. free_extent_buffer(eb);
  2245. out:
  2246. lock_page(page);
  2247. return 0;
  2248. }
  2249. static struct extent_io_ops btree_extent_io_ops = {
  2250. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2251. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2252. .submit_bio_hook = btree_submit_bio_hook,
  2253. /* note we're sharing with inode.c for the merge bio hook */
  2254. .merge_bio_hook = btrfs_merge_bio_hook,
  2255. };