bio.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <scsi/sg.h> /* for struct sg_iovec */
  29. #include <trace/events/block.h>
  30. /*
  31. * Test patch to inline a certain number of bi_io_vec's inside the bio
  32. * itself, to shrink a bio data allocation from two mempool calls to one
  33. */
  34. #define BIO_INLINE_VECS 4
  35. static mempool_t *bio_split_pool __read_mostly;
  36. /*
  37. * if you change this list, also change bvec_alloc or things will
  38. * break badly! cannot be bigger than what you can fit into an
  39. * unsigned short
  40. */
  41. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  42. struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  43. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  44. };
  45. #undef BV
  46. /*
  47. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  48. * IO code that does not need private memory pools.
  49. */
  50. struct bio_set *fs_bio_set;
  51. /*
  52. * Our slab pool management
  53. */
  54. struct bio_slab {
  55. struct kmem_cache *slab;
  56. unsigned int slab_ref;
  57. unsigned int slab_size;
  58. char name[8];
  59. };
  60. static DEFINE_MUTEX(bio_slab_lock);
  61. static struct bio_slab *bio_slabs;
  62. static unsigned int bio_slab_nr, bio_slab_max;
  63. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  64. {
  65. unsigned int sz = sizeof(struct bio) + extra_size;
  66. struct kmem_cache *slab = NULL;
  67. struct bio_slab *bslab;
  68. unsigned int i, entry = -1;
  69. mutex_lock(&bio_slab_lock);
  70. i = 0;
  71. while (i < bio_slab_nr) {
  72. bslab = &bio_slabs[i];
  73. if (!bslab->slab && entry == -1)
  74. entry = i;
  75. else if (bslab->slab_size == sz) {
  76. slab = bslab->slab;
  77. bslab->slab_ref++;
  78. break;
  79. }
  80. i++;
  81. }
  82. if (slab)
  83. goto out_unlock;
  84. if (bio_slab_nr == bio_slab_max && entry == -1) {
  85. bio_slab_max <<= 1;
  86. bio_slabs = krealloc(bio_slabs,
  87. bio_slab_max * sizeof(struct bio_slab),
  88. GFP_KERNEL);
  89. if (!bio_slabs)
  90. goto out_unlock;
  91. }
  92. if (entry == -1)
  93. entry = bio_slab_nr++;
  94. bslab = &bio_slabs[entry];
  95. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  96. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  97. if (!slab)
  98. goto out_unlock;
  99. printk("bio: create slab <%s> at %d\n", bslab->name, entry);
  100. bslab->slab = slab;
  101. bslab->slab_ref = 1;
  102. bslab->slab_size = sz;
  103. out_unlock:
  104. mutex_unlock(&bio_slab_lock);
  105. return slab;
  106. }
  107. static void bio_put_slab(struct bio_set *bs)
  108. {
  109. struct bio_slab *bslab = NULL;
  110. unsigned int i;
  111. mutex_lock(&bio_slab_lock);
  112. for (i = 0; i < bio_slab_nr; i++) {
  113. if (bs->bio_slab == bio_slabs[i].slab) {
  114. bslab = &bio_slabs[i];
  115. break;
  116. }
  117. }
  118. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  119. goto out;
  120. WARN_ON(!bslab->slab_ref);
  121. if (--bslab->slab_ref)
  122. goto out;
  123. kmem_cache_destroy(bslab->slab);
  124. bslab->slab = NULL;
  125. out:
  126. mutex_unlock(&bio_slab_lock);
  127. }
  128. unsigned int bvec_nr_vecs(unsigned short idx)
  129. {
  130. return bvec_slabs[idx].nr_vecs;
  131. }
  132. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  133. {
  134. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  135. if (idx == BIOVEC_MAX_IDX)
  136. mempool_free(bv, bs->bvec_pool);
  137. else {
  138. struct biovec_slab *bvs = bvec_slabs + idx;
  139. kmem_cache_free(bvs->slab, bv);
  140. }
  141. }
  142. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  143. struct bio_set *bs)
  144. {
  145. struct bio_vec *bvl;
  146. /*
  147. * see comment near bvec_array define!
  148. */
  149. switch (nr) {
  150. case 1:
  151. *idx = 0;
  152. break;
  153. case 2 ... 4:
  154. *idx = 1;
  155. break;
  156. case 5 ... 16:
  157. *idx = 2;
  158. break;
  159. case 17 ... 64:
  160. *idx = 3;
  161. break;
  162. case 65 ... 128:
  163. *idx = 4;
  164. break;
  165. case 129 ... BIO_MAX_PAGES:
  166. *idx = 5;
  167. break;
  168. default:
  169. return NULL;
  170. }
  171. /*
  172. * idx now points to the pool we want to allocate from. only the
  173. * 1-vec entry pool is mempool backed.
  174. */
  175. if (*idx == BIOVEC_MAX_IDX) {
  176. fallback:
  177. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  178. } else {
  179. struct biovec_slab *bvs = bvec_slabs + *idx;
  180. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  181. /*
  182. * Make this allocation restricted and don't dump info on
  183. * allocation failures, since we'll fallback to the mempool
  184. * in case of failure.
  185. */
  186. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  187. /*
  188. * Try a slab allocation. If this fails and __GFP_WAIT
  189. * is set, retry with the 1-entry mempool
  190. */
  191. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  192. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  193. *idx = BIOVEC_MAX_IDX;
  194. goto fallback;
  195. }
  196. }
  197. return bvl;
  198. }
  199. void bio_free(struct bio *bio, struct bio_set *bs)
  200. {
  201. void *p;
  202. if (bio_has_allocated_vec(bio))
  203. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  204. if (bio_integrity(bio))
  205. bio_integrity_free(bio, bs);
  206. /*
  207. * If we have front padding, adjust the bio pointer before freeing
  208. */
  209. p = bio;
  210. if (bs->front_pad)
  211. p -= bs->front_pad;
  212. mempool_free(p, bs->bio_pool);
  213. }
  214. EXPORT_SYMBOL(bio_free);
  215. void bio_init(struct bio *bio)
  216. {
  217. memset(bio, 0, sizeof(*bio));
  218. bio->bi_flags = 1 << BIO_UPTODATE;
  219. bio->bi_comp_cpu = -1;
  220. atomic_set(&bio->bi_cnt, 1);
  221. }
  222. EXPORT_SYMBOL(bio_init);
  223. /**
  224. * bio_alloc_bioset - allocate a bio for I/O
  225. * @gfp_mask: the GFP_ mask given to the slab allocator
  226. * @nr_iovecs: number of iovecs to pre-allocate
  227. * @bs: the bio_set to allocate from.
  228. *
  229. * Description:
  230. * bio_alloc_bioset will try its own mempool to satisfy the allocation.
  231. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  232. * for a &struct bio to become free.
  233. *
  234. * Note that the caller must set ->bi_destructor on successful return
  235. * of a bio, to do the appropriate freeing of the bio once the reference
  236. * count drops to zero.
  237. **/
  238. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  239. {
  240. unsigned long idx = BIO_POOL_NONE;
  241. struct bio_vec *bvl = NULL;
  242. struct bio *bio;
  243. void *p;
  244. p = mempool_alloc(bs->bio_pool, gfp_mask);
  245. if (unlikely(!p))
  246. return NULL;
  247. bio = p + bs->front_pad;
  248. bio_init(bio);
  249. if (unlikely(!nr_iovecs))
  250. goto out_set;
  251. if (nr_iovecs <= BIO_INLINE_VECS) {
  252. bvl = bio->bi_inline_vecs;
  253. nr_iovecs = BIO_INLINE_VECS;
  254. } else {
  255. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  256. if (unlikely(!bvl))
  257. goto err_free;
  258. nr_iovecs = bvec_nr_vecs(idx);
  259. }
  260. out_set:
  261. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  262. bio->bi_max_vecs = nr_iovecs;
  263. bio->bi_io_vec = bvl;
  264. return bio;
  265. err_free:
  266. mempool_free(p, bs->bio_pool);
  267. return NULL;
  268. }
  269. EXPORT_SYMBOL(bio_alloc_bioset);
  270. static void bio_fs_destructor(struct bio *bio)
  271. {
  272. bio_free(bio, fs_bio_set);
  273. }
  274. /**
  275. * bio_alloc - allocate a new bio, memory pool backed
  276. * @gfp_mask: allocation mask to use
  277. * @nr_iovecs: number of iovecs
  278. *
  279. * bio_alloc will allocate a bio and associated bio_vec array that can hold
  280. * at least @nr_iovecs entries. Allocations will be done from the
  281. * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
  282. *
  283. * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
  284. * a bio. This is due to the mempool guarantees. To make this work, callers
  285. * must never allocate more than 1 bio at a time from this pool. Callers
  286. * that need to allocate more than 1 bio must always submit the previously
  287. * allocated bio for IO before attempting to allocate a new one. Failure to
  288. * do so can cause livelocks under memory pressure.
  289. *
  290. * RETURNS:
  291. * Pointer to new bio on success, NULL on failure.
  292. */
  293. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  294. {
  295. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  296. if (bio)
  297. bio->bi_destructor = bio_fs_destructor;
  298. return bio;
  299. }
  300. EXPORT_SYMBOL(bio_alloc);
  301. static void bio_kmalloc_destructor(struct bio *bio)
  302. {
  303. if (bio_integrity(bio))
  304. bio_integrity_free(bio, fs_bio_set);
  305. kfree(bio);
  306. }
  307. /**
  308. * bio_kmalloc - allocate a bio for I/O using kmalloc()
  309. * @gfp_mask: the GFP_ mask given to the slab allocator
  310. * @nr_iovecs: number of iovecs to pre-allocate
  311. *
  312. * Description:
  313. * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
  314. * %__GFP_WAIT, the allocation is guaranteed to succeed.
  315. *
  316. **/
  317. struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
  318. {
  319. struct bio *bio;
  320. bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
  321. gfp_mask);
  322. if (unlikely(!bio))
  323. return NULL;
  324. bio_init(bio);
  325. bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
  326. bio->bi_max_vecs = nr_iovecs;
  327. bio->bi_io_vec = bio->bi_inline_vecs;
  328. bio->bi_destructor = bio_kmalloc_destructor;
  329. return bio;
  330. }
  331. EXPORT_SYMBOL(bio_kmalloc);
  332. void zero_fill_bio(struct bio *bio)
  333. {
  334. unsigned long flags;
  335. struct bio_vec *bv;
  336. int i;
  337. bio_for_each_segment(bv, bio, i) {
  338. char *data = bvec_kmap_irq(bv, &flags);
  339. memset(data, 0, bv->bv_len);
  340. flush_dcache_page(bv->bv_page);
  341. bvec_kunmap_irq(data, &flags);
  342. }
  343. }
  344. EXPORT_SYMBOL(zero_fill_bio);
  345. /**
  346. * bio_put - release a reference to a bio
  347. * @bio: bio to release reference to
  348. *
  349. * Description:
  350. * Put a reference to a &struct bio, either one you have gotten with
  351. * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  352. **/
  353. void bio_put(struct bio *bio)
  354. {
  355. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  356. /*
  357. * last put frees it
  358. */
  359. if (atomic_dec_and_test(&bio->bi_cnt)) {
  360. bio->bi_next = NULL;
  361. bio->bi_destructor(bio);
  362. }
  363. }
  364. EXPORT_SYMBOL(bio_put);
  365. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  366. {
  367. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  368. blk_recount_segments(q, bio);
  369. return bio->bi_phys_segments;
  370. }
  371. EXPORT_SYMBOL(bio_phys_segments);
  372. /**
  373. * __bio_clone - clone a bio
  374. * @bio: destination bio
  375. * @bio_src: bio to clone
  376. *
  377. * Clone a &bio. Caller will own the returned bio, but not
  378. * the actual data it points to. Reference count of returned
  379. * bio will be one.
  380. */
  381. void __bio_clone(struct bio *bio, struct bio *bio_src)
  382. {
  383. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  384. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  385. /*
  386. * most users will be overriding ->bi_bdev with a new target,
  387. * so we don't set nor calculate new physical/hw segment counts here
  388. */
  389. bio->bi_sector = bio_src->bi_sector;
  390. bio->bi_bdev = bio_src->bi_bdev;
  391. bio->bi_flags |= 1 << BIO_CLONED;
  392. bio->bi_rw = bio_src->bi_rw;
  393. bio->bi_vcnt = bio_src->bi_vcnt;
  394. bio->bi_size = bio_src->bi_size;
  395. bio->bi_idx = bio_src->bi_idx;
  396. }
  397. EXPORT_SYMBOL(__bio_clone);
  398. /**
  399. * bio_clone - clone a bio
  400. * @bio: bio to clone
  401. * @gfp_mask: allocation priority
  402. *
  403. * Like __bio_clone, only also allocates the returned bio
  404. */
  405. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  406. {
  407. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  408. if (!b)
  409. return NULL;
  410. b->bi_destructor = bio_fs_destructor;
  411. __bio_clone(b, bio);
  412. if (bio_integrity(bio)) {
  413. int ret;
  414. ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
  415. if (ret < 0) {
  416. bio_put(b);
  417. return NULL;
  418. }
  419. }
  420. return b;
  421. }
  422. EXPORT_SYMBOL(bio_clone);
  423. /**
  424. * bio_get_nr_vecs - return approx number of vecs
  425. * @bdev: I/O target
  426. *
  427. * Return the approximate number of pages we can send to this target.
  428. * There's no guarantee that you will be able to fit this number of pages
  429. * into a bio, it does not account for dynamic restrictions that vary
  430. * on offset.
  431. */
  432. int bio_get_nr_vecs(struct block_device *bdev)
  433. {
  434. struct request_queue *q = bdev_get_queue(bdev);
  435. int nr_pages;
  436. nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  437. if (nr_pages > queue_max_segments(q))
  438. nr_pages = queue_max_segments(q);
  439. return nr_pages;
  440. }
  441. EXPORT_SYMBOL(bio_get_nr_vecs);
  442. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  443. *page, unsigned int len, unsigned int offset,
  444. unsigned short max_sectors)
  445. {
  446. int retried_segments = 0;
  447. struct bio_vec *bvec;
  448. /*
  449. * cloned bio must not modify vec list
  450. */
  451. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  452. return 0;
  453. if (((bio->bi_size + len) >> 9) > max_sectors)
  454. return 0;
  455. /*
  456. * For filesystems with a blocksize smaller than the pagesize
  457. * we will often be called with the same page as last time and
  458. * a consecutive offset. Optimize this special case.
  459. */
  460. if (bio->bi_vcnt > 0) {
  461. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  462. if (page == prev->bv_page &&
  463. offset == prev->bv_offset + prev->bv_len) {
  464. unsigned int prev_bv_len = prev->bv_len;
  465. prev->bv_len += len;
  466. if (q->merge_bvec_fn) {
  467. struct bvec_merge_data bvm = {
  468. /* prev_bvec is already charged in
  469. bi_size, discharge it in order to
  470. simulate merging updated prev_bvec
  471. as new bvec. */
  472. .bi_bdev = bio->bi_bdev,
  473. .bi_sector = bio->bi_sector,
  474. .bi_size = bio->bi_size - prev_bv_len,
  475. .bi_rw = bio->bi_rw,
  476. };
  477. if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
  478. prev->bv_len -= len;
  479. return 0;
  480. }
  481. }
  482. goto done;
  483. }
  484. }
  485. if (bio->bi_vcnt >= bio->bi_max_vecs)
  486. return 0;
  487. /*
  488. * we might lose a segment or two here, but rather that than
  489. * make this too complex.
  490. */
  491. while (bio->bi_phys_segments >= queue_max_segments(q)) {
  492. if (retried_segments)
  493. return 0;
  494. retried_segments = 1;
  495. blk_recount_segments(q, bio);
  496. }
  497. /*
  498. * setup the new entry, we might clear it again later if we
  499. * cannot add the page
  500. */
  501. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  502. bvec->bv_page = page;
  503. bvec->bv_len = len;
  504. bvec->bv_offset = offset;
  505. /*
  506. * if queue has other restrictions (eg varying max sector size
  507. * depending on offset), it can specify a merge_bvec_fn in the
  508. * queue to get further control
  509. */
  510. if (q->merge_bvec_fn) {
  511. struct bvec_merge_data bvm = {
  512. .bi_bdev = bio->bi_bdev,
  513. .bi_sector = bio->bi_sector,
  514. .bi_size = bio->bi_size,
  515. .bi_rw = bio->bi_rw,
  516. };
  517. /*
  518. * merge_bvec_fn() returns number of bytes it can accept
  519. * at this offset
  520. */
  521. if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
  522. bvec->bv_page = NULL;
  523. bvec->bv_len = 0;
  524. bvec->bv_offset = 0;
  525. return 0;
  526. }
  527. }
  528. /* If we may be able to merge these biovecs, force a recount */
  529. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  530. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  531. bio->bi_vcnt++;
  532. bio->bi_phys_segments++;
  533. done:
  534. bio->bi_size += len;
  535. return len;
  536. }
  537. /**
  538. * bio_add_pc_page - attempt to add page to bio
  539. * @q: the target queue
  540. * @bio: destination bio
  541. * @page: page to add
  542. * @len: vec entry length
  543. * @offset: vec entry offset
  544. *
  545. * Attempt to add a page to the bio_vec maplist. This can fail for a
  546. * number of reasons, such as the bio being full or target block
  547. * device limitations. The target block device must allow bio's
  548. * smaller than PAGE_SIZE, so it is always possible to add a single
  549. * page to an empty bio. This should only be used by REQ_PC bios.
  550. */
  551. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  552. unsigned int len, unsigned int offset)
  553. {
  554. return __bio_add_page(q, bio, page, len, offset,
  555. queue_max_hw_sectors(q));
  556. }
  557. EXPORT_SYMBOL(bio_add_pc_page);
  558. /**
  559. * bio_add_page - attempt to add page to bio
  560. * @bio: destination bio
  561. * @page: page to add
  562. * @len: vec entry length
  563. * @offset: vec entry offset
  564. *
  565. * Attempt to add a page to the bio_vec maplist. This can fail for a
  566. * number of reasons, such as the bio being full or target block
  567. * device limitations. The target block device must allow bio's
  568. * smaller than PAGE_SIZE, so it is always possible to add a single
  569. * page to an empty bio.
  570. */
  571. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  572. unsigned int offset)
  573. {
  574. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  575. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  576. }
  577. EXPORT_SYMBOL(bio_add_page);
  578. struct bio_map_data {
  579. struct bio_vec *iovecs;
  580. struct sg_iovec *sgvecs;
  581. int nr_sgvecs;
  582. int is_our_pages;
  583. };
  584. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  585. struct sg_iovec *iov, int iov_count,
  586. int is_our_pages)
  587. {
  588. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  589. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  590. bmd->nr_sgvecs = iov_count;
  591. bmd->is_our_pages = is_our_pages;
  592. bio->bi_private = bmd;
  593. }
  594. static void bio_free_map_data(struct bio_map_data *bmd)
  595. {
  596. kfree(bmd->iovecs);
  597. kfree(bmd->sgvecs);
  598. kfree(bmd);
  599. }
  600. static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
  601. gfp_t gfp_mask)
  602. {
  603. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
  604. if (!bmd)
  605. return NULL;
  606. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  607. if (!bmd->iovecs) {
  608. kfree(bmd);
  609. return NULL;
  610. }
  611. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  612. if (bmd->sgvecs)
  613. return bmd;
  614. kfree(bmd->iovecs);
  615. kfree(bmd);
  616. return NULL;
  617. }
  618. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  619. struct sg_iovec *iov, int iov_count,
  620. int to_user, int from_user, int do_free_page)
  621. {
  622. int ret = 0, i;
  623. struct bio_vec *bvec;
  624. int iov_idx = 0;
  625. unsigned int iov_off = 0;
  626. __bio_for_each_segment(bvec, bio, i, 0) {
  627. char *bv_addr = page_address(bvec->bv_page);
  628. unsigned int bv_len = iovecs[i].bv_len;
  629. while (bv_len && iov_idx < iov_count) {
  630. unsigned int bytes;
  631. char __user *iov_addr;
  632. bytes = min_t(unsigned int,
  633. iov[iov_idx].iov_len - iov_off, bv_len);
  634. iov_addr = iov[iov_idx].iov_base + iov_off;
  635. if (!ret) {
  636. if (to_user)
  637. ret = copy_to_user(iov_addr, bv_addr,
  638. bytes);
  639. if (from_user)
  640. ret = copy_from_user(bv_addr, iov_addr,
  641. bytes);
  642. if (ret)
  643. ret = -EFAULT;
  644. }
  645. bv_len -= bytes;
  646. bv_addr += bytes;
  647. iov_addr += bytes;
  648. iov_off += bytes;
  649. if (iov[iov_idx].iov_len == iov_off) {
  650. iov_idx++;
  651. iov_off = 0;
  652. }
  653. }
  654. if (do_free_page)
  655. __free_page(bvec->bv_page);
  656. }
  657. return ret;
  658. }
  659. /**
  660. * bio_uncopy_user - finish previously mapped bio
  661. * @bio: bio being terminated
  662. *
  663. * Free pages allocated from bio_copy_user() and write back data
  664. * to user space in case of a read.
  665. */
  666. int bio_uncopy_user(struct bio *bio)
  667. {
  668. struct bio_map_data *bmd = bio->bi_private;
  669. int ret = 0;
  670. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  671. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  672. bmd->nr_sgvecs, bio_data_dir(bio) == READ,
  673. 0, bmd->is_our_pages);
  674. bio_free_map_data(bmd);
  675. bio_put(bio);
  676. return ret;
  677. }
  678. EXPORT_SYMBOL(bio_uncopy_user);
  679. /**
  680. * bio_copy_user_iov - copy user data to bio
  681. * @q: destination block queue
  682. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  683. * @iov: the iovec.
  684. * @iov_count: number of elements in the iovec
  685. * @write_to_vm: bool indicating writing to pages or not
  686. * @gfp_mask: memory allocation flags
  687. *
  688. * Prepares and returns a bio for indirect user io, bouncing data
  689. * to/from kernel pages as necessary. Must be paired with
  690. * call bio_uncopy_user() on io completion.
  691. */
  692. struct bio *bio_copy_user_iov(struct request_queue *q,
  693. struct rq_map_data *map_data,
  694. struct sg_iovec *iov, int iov_count,
  695. int write_to_vm, gfp_t gfp_mask)
  696. {
  697. struct bio_map_data *bmd;
  698. struct bio_vec *bvec;
  699. struct page *page;
  700. struct bio *bio;
  701. int i, ret;
  702. int nr_pages = 0;
  703. unsigned int len = 0;
  704. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  705. for (i = 0; i < iov_count; i++) {
  706. unsigned long uaddr;
  707. unsigned long end;
  708. unsigned long start;
  709. uaddr = (unsigned long)iov[i].iov_base;
  710. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  711. start = uaddr >> PAGE_SHIFT;
  712. nr_pages += end - start;
  713. len += iov[i].iov_len;
  714. }
  715. if (offset)
  716. nr_pages++;
  717. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  718. if (!bmd)
  719. return ERR_PTR(-ENOMEM);
  720. ret = -ENOMEM;
  721. bio = bio_kmalloc(gfp_mask, nr_pages);
  722. if (!bio)
  723. goto out_bmd;
  724. if (!write_to_vm)
  725. bio->bi_rw |= REQ_WRITE;
  726. ret = 0;
  727. if (map_data) {
  728. nr_pages = 1 << map_data->page_order;
  729. i = map_data->offset / PAGE_SIZE;
  730. }
  731. while (len) {
  732. unsigned int bytes = PAGE_SIZE;
  733. bytes -= offset;
  734. if (bytes > len)
  735. bytes = len;
  736. if (map_data) {
  737. if (i == map_data->nr_entries * nr_pages) {
  738. ret = -ENOMEM;
  739. break;
  740. }
  741. page = map_data->pages[i / nr_pages];
  742. page += (i % nr_pages);
  743. i++;
  744. } else {
  745. page = alloc_page(q->bounce_gfp | gfp_mask);
  746. if (!page) {
  747. ret = -ENOMEM;
  748. break;
  749. }
  750. }
  751. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  752. break;
  753. len -= bytes;
  754. offset = 0;
  755. }
  756. if (ret)
  757. goto cleanup;
  758. /*
  759. * success
  760. */
  761. if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  762. (map_data && map_data->from_user)) {
  763. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
  764. if (ret)
  765. goto cleanup;
  766. }
  767. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  768. return bio;
  769. cleanup:
  770. if (!map_data)
  771. bio_for_each_segment(bvec, bio, i)
  772. __free_page(bvec->bv_page);
  773. bio_put(bio);
  774. out_bmd:
  775. bio_free_map_data(bmd);
  776. return ERR_PTR(ret);
  777. }
  778. /**
  779. * bio_copy_user - copy user data to bio
  780. * @q: destination block queue
  781. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  782. * @uaddr: start of user address
  783. * @len: length in bytes
  784. * @write_to_vm: bool indicating writing to pages or not
  785. * @gfp_mask: memory allocation flags
  786. *
  787. * Prepares and returns a bio for indirect user io, bouncing data
  788. * to/from kernel pages as necessary. Must be paired with
  789. * call bio_uncopy_user() on io completion.
  790. */
  791. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  792. unsigned long uaddr, unsigned int len,
  793. int write_to_vm, gfp_t gfp_mask)
  794. {
  795. struct sg_iovec iov;
  796. iov.iov_base = (void __user *)uaddr;
  797. iov.iov_len = len;
  798. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  799. }
  800. EXPORT_SYMBOL(bio_copy_user);
  801. static struct bio *__bio_map_user_iov(struct request_queue *q,
  802. struct block_device *bdev,
  803. struct sg_iovec *iov, int iov_count,
  804. int write_to_vm, gfp_t gfp_mask)
  805. {
  806. int i, j;
  807. int nr_pages = 0;
  808. struct page **pages;
  809. struct bio *bio;
  810. int cur_page = 0;
  811. int ret, offset;
  812. for (i = 0; i < iov_count; i++) {
  813. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  814. unsigned long len = iov[i].iov_len;
  815. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  816. unsigned long start = uaddr >> PAGE_SHIFT;
  817. nr_pages += end - start;
  818. /*
  819. * buffer must be aligned to at least hardsector size for now
  820. */
  821. if (uaddr & queue_dma_alignment(q))
  822. return ERR_PTR(-EINVAL);
  823. }
  824. if (!nr_pages)
  825. return ERR_PTR(-EINVAL);
  826. bio = bio_kmalloc(gfp_mask, nr_pages);
  827. if (!bio)
  828. return ERR_PTR(-ENOMEM);
  829. ret = -ENOMEM;
  830. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  831. if (!pages)
  832. goto out;
  833. for (i = 0; i < iov_count; i++) {
  834. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  835. unsigned long len = iov[i].iov_len;
  836. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  837. unsigned long start = uaddr >> PAGE_SHIFT;
  838. const int local_nr_pages = end - start;
  839. const int page_limit = cur_page + local_nr_pages;
  840. ret = get_user_pages_fast(uaddr, local_nr_pages,
  841. write_to_vm, &pages[cur_page]);
  842. if (ret < local_nr_pages) {
  843. ret = -EFAULT;
  844. goto out_unmap;
  845. }
  846. offset = uaddr & ~PAGE_MASK;
  847. for (j = cur_page; j < page_limit; j++) {
  848. unsigned int bytes = PAGE_SIZE - offset;
  849. if (len <= 0)
  850. break;
  851. if (bytes > len)
  852. bytes = len;
  853. /*
  854. * sorry...
  855. */
  856. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  857. bytes)
  858. break;
  859. len -= bytes;
  860. offset = 0;
  861. }
  862. cur_page = j;
  863. /*
  864. * release the pages we didn't map into the bio, if any
  865. */
  866. while (j < page_limit)
  867. page_cache_release(pages[j++]);
  868. }
  869. kfree(pages);
  870. /*
  871. * set data direction, and check if mapped pages need bouncing
  872. */
  873. if (!write_to_vm)
  874. bio->bi_rw |= REQ_WRITE;
  875. bio->bi_bdev = bdev;
  876. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  877. return bio;
  878. out_unmap:
  879. for (i = 0; i < nr_pages; i++) {
  880. if(!pages[i])
  881. break;
  882. page_cache_release(pages[i]);
  883. }
  884. out:
  885. kfree(pages);
  886. bio_put(bio);
  887. return ERR_PTR(ret);
  888. }
  889. /**
  890. * bio_map_user - map user address into bio
  891. * @q: the struct request_queue for the bio
  892. * @bdev: destination block device
  893. * @uaddr: start of user address
  894. * @len: length in bytes
  895. * @write_to_vm: bool indicating writing to pages or not
  896. * @gfp_mask: memory allocation flags
  897. *
  898. * Map the user space address into a bio suitable for io to a block
  899. * device. Returns an error pointer in case of error.
  900. */
  901. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  902. unsigned long uaddr, unsigned int len, int write_to_vm,
  903. gfp_t gfp_mask)
  904. {
  905. struct sg_iovec iov;
  906. iov.iov_base = (void __user *)uaddr;
  907. iov.iov_len = len;
  908. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  909. }
  910. EXPORT_SYMBOL(bio_map_user);
  911. /**
  912. * bio_map_user_iov - map user sg_iovec table into bio
  913. * @q: the struct request_queue for the bio
  914. * @bdev: destination block device
  915. * @iov: the iovec.
  916. * @iov_count: number of elements in the iovec
  917. * @write_to_vm: bool indicating writing to pages or not
  918. * @gfp_mask: memory allocation flags
  919. *
  920. * Map the user space address into a bio suitable for io to a block
  921. * device. Returns an error pointer in case of error.
  922. */
  923. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  924. struct sg_iovec *iov, int iov_count,
  925. int write_to_vm, gfp_t gfp_mask)
  926. {
  927. struct bio *bio;
  928. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  929. gfp_mask);
  930. if (IS_ERR(bio))
  931. return bio;
  932. /*
  933. * subtle -- if __bio_map_user() ended up bouncing a bio,
  934. * it would normally disappear when its bi_end_io is run.
  935. * however, we need it for the unmap, so grab an extra
  936. * reference to it
  937. */
  938. bio_get(bio);
  939. return bio;
  940. }
  941. static void __bio_unmap_user(struct bio *bio)
  942. {
  943. struct bio_vec *bvec;
  944. int i;
  945. /*
  946. * make sure we dirty pages we wrote to
  947. */
  948. __bio_for_each_segment(bvec, bio, i, 0) {
  949. if (bio_data_dir(bio) == READ)
  950. set_page_dirty_lock(bvec->bv_page);
  951. page_cache_release(bvec->bv_page);
  952. }
  953. bio_put(bio);
  954. }
  955. /**
  956. * bio_unmap_user - unmap a bio
  957. * @bio: the bio being unmapped
  958. *
  959. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  960. * a process context.
  961. *
  962. * bio_unmap_user() may sleep.
  963. */
  964. void bio_unmap_user(struct bio *bio)
  965. {
  966. __bio_unmap_user(bio);
  967. bio_put(bio);
  968. }
  969. EXPORT_SYMBOL(bio_unmap_user);
  970. static void bio_map_kern_endio(struct bio *bio, int err)
  971. {
  972. bio_put(bio);
  973. }
  974. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  975. unsigned int len, gfp_t gfp_mask)
  976. {
  977. unsigned long kaddr = (unsigned long)data;
  978. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  979. unsigned long start = kaddr >> PAGE_SHIFT;
  980. const int nr_pages = end - start;
  981. int offset, i;
  982. struct bio *bio;
  983. bio = bio_kmalloc(gfp_mask, nr_pages);
  984. if (!bio)
  985. return ERR_PTR(-ENOMEM);
  986. offset = offset_in_page(kaddr);
  987. for (i = 0; i < nr_pages; i++) {
  988. unsigned int bytes = PAGE_SIZE - offset;
  989. if (len <= 0)
  990. break;
  991. if (bytes > len)
  992. bytes = len;
  993. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  994. offset) < bytes)
  995. break;
  996. data += bytes;
  997. len -= bytes;
  998. offset = 0;
  999. }
  1000. bio->bi_end_io = bio_map_kern_endio;
  1001. return bio;
  1002. }
  1003. /**
  1004. * bio_map_kern - map kernel address into bio
  1005. * @q: the struct request_queue for the bio
  1006. * @data: pointer to buffer to map
  1007. * @len: length in bytes
  1008. * @gfp_mask: allocation flags for bio allocation
  1009. *
  1010. * Map the kernel address into a bio suitable for io to a block
  1011. * device. Returns an error pointer in case of error.
  1012. */
  1013. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1014. gfp_t gfp_mask)
  1015. {
  1016. struct bio *bio;
  1017. bio = __bio_map_kern(q, data, len, gfp_mask);
  1018. if (IS_ERR(bio))
  1019. return bio;
  1020. if (bio->bi_size == len)
  1021. return bio;
  1022. /*
  1023. * Don't support partial mappings.
  1024. */
  1025. bio_put(bio);
  1026. return ERR_PTR(-EINVAL);
  1027. }
  1028. EXPORT_SYMBOL(bio_map_kern);
  1029. static void bio_copy_kern_endio(struct bio *bio, int err)
  1030. {
  1031. struct bio_vec *bvec;
  1032. const int read = bio_data_dir(bio) == READ;
  1033. struct bio_map_data *bmd = bio->bi_private;
  1034. int i;
  1035. char *p = bmd->sgvecs[0].iov_base;
  1036. __bio_for_each_segment(bvec, bio, i, 0) {
  1037. char *addr = page_address(bvec->bv_page);
  1038. int len = bmd->iovecs[i].bv_len;
  1039. if (read)
  1040. memcpy(p, addr, len);
  1041. __free_page(bvec->bv_page);
  1042. p += len;
  1043. }
  1044. bio_free_map_data(bmd);
  1045. bio_put(bio);
  1046. }
  1047. /**
  1048. * bio_copy_kern - copy kernel address into bio
  1049. * @q: the struct request_queue for the bio
  1050. * @data: pointer to buffer to copy
  1051. * @len: length in bytes
  1052. * @gfp_mask: allocation flags for bio and page allocation
  1053. * @reading: data direction is READ
  1054. *
  1055. * copy the kernel address into a bio suitable for io to a block
  1056. * device. Returns an error pointer in case of error.
  1057. */
  1058. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1059. gfp_t gfp_mask, int reading)
  1060. {
  1061. struct bio *bio;
  1062. struct bio_vec *bvec;
  1063. int i;
  1064. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1065. if (IS_ERR(bio))
  1066. return bio;
  1067. if (!reading) {
  1068. void *p = data;
  1069. bio_for_each_segment(bvec, bio, i) {
  1070. char *addr = page_address(bvec->bv_page);
  1071. memcpy(addr, p, bvec->bv_len);
  1072. p += bvec->bv_len;
  1073. }
  1074. }
  1075. bio->bi_end_io = bio_copy_kern_endio;
  1076. return bio;
  1077. }
  1078. EXPORT_SYMBOL(bio_copy_kern);
  1079. /*
  1080. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1081. * for performing direct-IO in BIOs.
  1082. *
  1083. * The problem is that we cannot run set_page_dirty() from interrupt context
  1084. * because the required locks are not interrupt-safe. So what we can do is to
  1085. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1086. * check that the pages are still dirty. If so, fine. If not, redirty them
  1087. * in process context.
  1088. *
  1089. * We special-case compound pages here: normally this means reads into hugetlb
  1090. * pages. The logic in here doesn't really work right for compound pages
  1091. * because the VM does not uniformly chase down the head page in all cases.
  1092. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1093. * handle them at all. So we skip compound pages here at an early stage.
  1094. *
  1095. * Note that this code is very hard to test under normal circumstances because
  1096. * direct-io pins the pages with get_user_pages(). This makes
  1097. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1098. * But other code (eg, pdflush) could clean the pages if they are mapped
  1099. * pagecache.
  1100. *
  1101. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1102. * deferred bio dirtying paths.
  1103. */
  1104. /*
  1105. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1106. */
  1107. void bio_set_pages_dirty(struct bio *bio)
  1108. {
  1109. struct bio_vec *bvec = bio->bi_io_vec;
  1110. int i;
  1111. for (i = 0; i < bio->bi_vcnt; i++) {
  1112. struct page *page = bvec[i].bv_page;
  1113. if (page && !PageCompound(page))
  1114. set_page_dirty_lock(page);
  1115. }
  1116. }
  1117. static void bio_release_pages(struct bio *bio)
  1118. {
  1119. struct bio_vec *bvec = bio->bi_io_vec;
  1120. int i;
  1121. for (i = 0; i < bio->bi_vcnt; i++) {
  1122. struct page *page = bvec[i].bv_page;
  1123. if (page)
  1124. put_page(page);
  1125. }
  1126. }
  1127. /*
  1128. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1129. * If they are, then fine. If, however, some pages are clean then they must
  1130. * have been written out during the direct-IO read. So we take another ref on
  1131. * the BIO and the offending pages and re-dirty the pages in process context.
  1132. *
  1133. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1134. * here on. It will run one page_cache_release() against each page and will
  1135. * run one bio_put() against the BIO.
  1136. */
  1137. static void bio_dirty_fn(struct work_struct *work);
  1138. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1139. static DEFINE_SPINLOCK(bio_dirty_lock);
  1140. static struct bio *bio_dirty_list;
  1141. /*
  1142. * This runs in process context
  1143. */
  1144. static void bio_dirty_fn(struct work_struct *work)
  1145. {
  1146. unsigned long flags;
  1147. struct bio *bio;
  1148. spin_lock_irqsave(&bio_dirty_lock, flags);
  1149. bio = bio_dirty_list;
  1150. bio_dirty_list = NULL;
  1151. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1152. while (bio) {
  1153. struct bio *next = bio->bi_private;
  1154. bio_set_pages_dirty(bio);
  1155. bio_release_pages(bio);
  1156. bio_put(bio);
  1157. bio = next;
  1158. }
  1159. }
  1160. void bio_check_pages_dirty(struct bio *bio)
  1161. {
  1162. struct bio_vec *bvec = bio->bi_io_vec;
  1163. int nr_clean_pages = 0;
  1164. int i;
  1165. for (i = 0; i < bio->bi_vcnt; i++) {
  1166. struct page *page = bvec[i].bv_page;
  1167. if (PageDirty(page) || PageCompound(page)) {
  1168. page_cache_release(page);
  1169. bvec[i].bv_page = NULL;
  1170. } else {
  1171. nr_clean_pages++;
  1172. }
  1173. }
  1174. if (nr_clean_pages) {
  1175. unsigned long flags;
  1176. spin_lock_irqsave(&bio_dirty_lock, flags);
  1177. bio->bi_private = bio_dirty_list;
  1178. bio_dirty_list = bio;
  1179. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1180. schedule_work(&bio_dirty_work);
  1181. } else {
  1182. bio_put(bio);
  1183. }
  1184. }
  1185. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
  1186. void bio_flush_dcache_pages(struct bio *bi)
  1187. {
  1188. int i;
  1189. struct bio_vec *bvec;
  1190. bio_for_each_segment(bvec, bi, i)
  1191. flush_dcache_page(bvec->bv_page);
  1192. }
  1193. EXPORT_SYMBOL(bio_flush_dcache_pages);
  1194. #endif
  1195. /**
  1196. * bio_endio - end I/O on a bio
  1197. * @bio: bio
  1198. * @error: error, if any
  1199. *
  1200. * Description:
  1201. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1202. * preferred way to end I/O on a bio, it takes care of clearing
  1203. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1204. * established -Exxxx (-EIO, for instance) error values in case
  1205. * something went wrong. Noone should call bi_end_io() directly on a
  1206. * bio unless they own it and thus know that it has an end_io
  1207. * function.
  1208. **/
  1209. void bio_endio(struct bio *bio, int error)
  1210. {
  1211. if (error)
  1212. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1213. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1214. error = -EIO;
  1215. if (bio->bi_end_io)
  1216. bio->bi_end_io(bio, error);
  1217. }
  1218. EXPORT_SYMBOL(bio_endio);
  1219. void bio_pair_release(struct bio_pair *bp)
  1220. {
  1221. if (atomic_dec_and_test(&bp->cnt)) {
  1222. struct bio *master = bp->bio1.bi_private;
  1223. bio_endio(master, bp->error);
  1224. mempool_free(bp, bp->bio2.bi_private);
  1225. }
  1226. }
  1227. EXPORT_SYMBOL(bio_pair_release);
  1228. static void bio_pair_end_1(struct bio *bi, int err)
  1229. {
  1230. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1231. if (err)
  1232. bp->error = err;
  1233. bio_pair_release(bp);
  1234. }
  1235. static void bio_pair_end_2(struct bio *bi, int err)
  1236. {
  1237. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1238. if (err)
  1239. bp->error = err;
  1240. bio_pair_release(bp);
  1241. }
  1242. /*
  1243. * split a bio - only worry about a bio with a single page in its iovec
  1244. */
  1245. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1246. {
  1247. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1248. if (!bp)
  1249. return bp;
  1250. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1251. bi->bi_sector + first_sectors);
  1252. BUG_ON(bi->bi_vcnt != 1);
  1253. BUG_ON(bi->bi_idx != 0);
  1254. atomic_set(&bp->cnt, 3);
  1255. bp->error = 0;
  1256. bp->bio1 = *bi;
  1257. bp->bio2 = *bi;
  1258. bp->bio2.bi_sector += first_sectors;
  1259. bp->bio2.bi_size -= first_sectors << 9;
  1260. bp->bio1.bi_size = first_sectors << 9;
  1261. bp->bv1 = bi->bi_io_vec[0];
  1262. bp->bv2 = bi->bi_io_vec[0];
  1263. bp->bv2.bv_offset += first_sectors << 9;
  1264. bp->bv2.bv_len -= first_sectors << 9;
  1265. bp->bv1.bv_len = first_sectors << 9;
  1266. bp->bio1.bi_io_vec = &bp->bv1;
  1267. bp->bio2.bi_io_vec = &bp->bv2;
  1268. bp->bio1.bi_max_vecs = 1;
  1269. bp->bio2.bi_max_vecs = 1;
  1270. bp->bio1.bi_end_io = bio_pair_end_1;
  1271. bp->bio2.bi_end_io = bio_pair_end_2;
  1272. bp->bio1.bi_private = bi;
  1273. bp->bio2.bi_private = bio_split_pool;
  1274. if (bio_integrity(bi))
  1275. bio_integrity_split(bi, bp, first_sectors);
  1276. return bp;
  1277. }
  1278. EXPORT_SYMBOL(bio_split);
  1279. /**
  1280. * bio_sector_offset - Find hardware sector offset in bio
  1281. * @bio: bio to inspect
  1282. * @index: bio_vec index
  1283. * @offset: offset in bv_page
  1284. *
  1285. * Return the number of hardware sectors between beginning of bio
  1286. * and an end point indicated by a bio_vec index and an offset
  1287. * within that vector's page.
  1288. */
  1289. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1290. unsigned int offset)
  1291. {
  1292. unsigned int sector_sz;
  1293. struct bio_vec *bv;
  1294. sector_t sectors;
  1295. int i;
  1296. sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
  1297. sectors = 0;
  1298. if (index >= bio->bi_idx)
  1299. index = bio->bi_vcnt - 1;
  1300. __bio_for_each_segment(bv, bio, i, 0) {
  1301. if (i == index) {
  1302. if (offset > bv->bv_offset)
  1303. sectors += (offset - bv->bv_offset) / sector_sz;
  1304. break;
  1305. }
  1306. sectors += bv->bv_len / sector_sz;
  1307. }
  1308. return sectors;
  1309. }
  1310. EXPORT_SYMBOL(bio_sector_offset);
  1311. /*
  1312. * create memory pools for biovec's in a bio_set.
  1313. * use the global biovec slabs created for general use.
  1314. */
  1315. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1316. {
  1317. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1318. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1319. if (!bs->bvec_pool)
  1320. return -ENOMEM;
  1321. return 0;
  1322. }
  1323. static void biovec_free_pools(struct bio_set *bs)
  1324. {
  1325. mempool_destroy(bs->bvec_pool);
  1326. }
  1327. void bioset_free(struct bio_set *bs)
  1328. {
  1329. if (bs->bio_pool)
  1330. mempool_destroy(bs->bio_pool);
  1331. bioset_integrity_free(bs);
  1332. biovec_free_pools(bs);
  1333. bio_put_slab(bs);
  1334. kfree(bs);
  1335. }
  1336. EXPORT_SYMBOL(bioset_free);
  1337. /**
  1338. * bioset_create - Create a bio_set
  1339. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1340. * @front_pad: Number of bytes to allocate in front of the returned bio
  1341. *
  1342. * Description:
  1343. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1344. * to ask for a number of bytes to be allocated in front of the bio.
  1345. * Front pad allocation is useful for embedding the bio inside
  1346. * another structure, to avoid allocating extra data to go with the bio.
  1347. * Note that the bio must be embedded at the END of that structure always,
  1348. * or things will break badly.
  1349. */
  1350. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1351. {
  1352. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1353. struct bio_set *bs;
  1354. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1355. if (!bs)
  1356. return NULL;
  1357. bs->front_pad = front_pad;
  1358. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1359. if (!bs->bio_slab) {
  1360. kfree(bs);
  1361. return NULL;
  1362. }
  1363. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1364. if (!bs->bio_pool)
  1365. goto bad;
  1366. if (bioset_integrity_create(bs, pool_size))
  1367. goto bad;
  1368. if (!biovec_create_pools(bs, pool_size))
  1369. return bs;
  1370. bad:
  1371. bioset_free(bs);
  1372. return NULL;
  1373. }
  1374. EXPORT_SYMBOL(bioset_create);
  1375. static void __init biovec_init_slabs(void)
  1376. {
  1377. int i;
  1378. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1379. int size;
  1380. struct biovec_slab *bvs = bvec_slabs + i;
  1381. #ifndef CONFIG_BLK_DEV_INTEGRITY
  1382. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1383. bvs->slab = NULL;
  1384. continue;
  1385. }
  1386. #endif
  1387. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1388. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1389. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1390. }
  1391. }
  1392. static int __init init_bio(void)
  1393. {
  1394. bio_slab_max = 2;
  1395. bio_slab_nr = 0;
  1396. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1397. if (!bio_slabs)
  1398. panic("bio: can't allocate bios\n");
  1399. bio_integrity_init();
  1400. biovec_init_slabs();
  1401. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1402. if (!fs_bio_set)
  1403. panic("bio: can't allocate bios\n");
  1404. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1405. sizeof(struct bio_pair));
  1406. if (!bio_split_pool)
  1407. panic("bio: can't create split pool\n");
  1408. return 0;
  1409. }
  1410. subsys_initcall(init_bio);