super.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559
  1. /* AFS superblock handling
  2. *
  3. * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
  4. *
  5. * This software may be freely redistributed under the terms of the
  6. * GNU General Public License.
  7. *
  8. * You should have received a copy of the GNU General Public License
  9. * along with this program; if not, write to the Free Software
  10. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  11. *
  12. * Authors: David Howells <dhowells@redhat.com>
  13. * David Woodhouse <dwmw2@infradead.org>
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/mount.h>
  19. #include <linux/init.h>
  20. #include <linux/slab.h>
  21. #include <linux/smp_lock.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/parser.h>
  25. #include <linux/statfs.h>
  26. #include <linux/sched.h>
  27. #include "internal.h"
  28. #define AFS_FS_MAGIC 0x6B414653 /* 'kAFS' */
  29. static void afs_i_init_once(void *foo);
  30. static int afs_get_sb(struct file_system_type *fs_type,
  31. int flags, const char *dev_name,
  32. void *data, struct vfsmount *mnt);
  33. static struct inode *afs_alloc_inode(struct super_block *sb);
  34. static void afs_put_super(struct super_block *sb);
  35. static void afs_destroy_inode(struct inode *inode);
  36. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
  37. struct file_system_type afs_fs_type = {
  38. .owner = THIS_MODULE,
  39. .name = "afs",
  40. .get_sb = afs_get_sb,
  41. .kill_sb = kill_anon_super,
  42. .fs_flags = 0,
  43. };
  44. static const struct super_operations afs_super_ops = {
  45. .statfs = afs_statfs,
  46. .alloc_inode = afs_alloc_inode,
  47. .drop_inode = afs_drop_inode,
  48. .destroy_inode = afs_destroy_inode,
  49. .evict_inode = afs_evict_inode,
  50. .put_super = afs_put_super,
  51. .show_options = generic_show_options,
  52. };
  53. static struct kmem_cache *afs_inode_cachep;
  54. static atomic_t afs_count_active_inodes;
  55. enum {
  56. afs_no_opt,
  57. afs_opt_cell,
  58. afs_opt_rwpath,
  59. afs_opt_vol,
  60. afs_opt_autocell,
  61. };
  62. static const match_table_t afs_options_list = {
  63. { afs_opt_cell, "cell=%s" },
  64. { afs_opt_rwpath, "rwpath" },
  65. { afs_opt_vol, "vol=%s" },
  66. { afs_opt_autocell, "autocell" },
  67. { afs_no_opt, NULL },
  68. };
  69. /*
  70. * initialise the filesystem
  71. */
  72. int __init afs_fs_init(void)
  73. {
  74. int ret;
  75. _enter("");
  76. /* create ourselves an inode cache */
  77. atomic_set(&afs_count_active_inodes, 0);
  78. ret = -ENOMEM;
  79. afs_inode_cachep = kmem_cache_create("afs_inode_cache",
  80. sizeof(struct afs_vnode),
  81. 0,
  82. SLAB_HWCACHE_ALIGN,
  83. afs_i_init_once);
  84. if (!afs_inode_cachep) {
  85. printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
  86. return ret;
  87. }
  88. /* now export our filesystem to lesser mortals */
  89. ret = register_filesystem(&afs_fs_type);
  90. if (ret < 0) {
  91. kmem_cache_destroy(afs_inode_cachep);
  92. _leave(" = %d", ret);
  93. return ret;
  94. }
  95. _leave(" = 0");
  96. return 0;
  97. }
  98. /*
  99. * clean up the filesystem
  100. */
  101. void __exit afs_fs_exit(void)
  102. {
  103. _enter("");
  104. afs_mntpt_kill_timer();
  105. unregister_filesystem(&afs_fs_type);
  106. if (atomic_read(&afs_count_active_inodes) != 0) {
  107. printk("kAFS: %d active inode objects still present\n",
  108. atomic_read(&afs_count_active_inodes));
  109. BUG();
  110. }
  111. kmem_cache_destroy(afs_inode_cachep);
  112. _leave("");
  113. }
  114. /*
  115. * parse the mount options
  116. * - this function has been shamelessly adapted from the ext3 fs which
  117. * shamelessly adapted it from the msdos fs
  118. */
  119. static int afs_parse_options(struct afs_mount_params *params,
  120. char *options, const char **devname)
  121. {
  122. struct afs_cell *cell;
  123. substring_t args[MAX_OPT_ARGS];
  124. char *p;
  125. int token;
  126. _enter("%s", options);
  127. options[PAGE_SIZE - 1] = 0;
  128. while ((p = strsep(&options, ","))) {
  129. if (!*p)
  130. continue;
  131. token = match_token(p, afs_options_list, args);
  132. switch (token) {
  133. case afs_opt_cell:
  134. cell = afs_cell_lookup(args[0].from,
  135. args[0].to - args[0].from,
  136. false);
  137. if (IS_ERR(cell))
  138. return PTR_ERR(cell);
  139. afs_put_cell(params->cell);
  140. params->cell = cell;
  141. break;
  142. case afs_opt_rwpath:
  143. params->rwpath = 1;
  144. break;
  145. case afs_opt_vol:
  146. *devname = args[0].from;
  147. break;
  148. case afs_opt_autocell:
  149. params->autocell = 1;
  150. break;
  151. default:
  152. printk(KERN_ERR "kAFS:"
  153. " Unknown or invalid mount option: '%s'\n", p);
  154. return -EINVAL;
  155. }
  156. }
  157. _leave(" = 0");
  158. return 0;
  159. }
  160. /*
  161. * parse a device name to get cell name, volume name, volume type and R/W
  162. * selector
  163. * - this can be one of the following:
  164. * "%[cell:]volume[.]" R/W volume
  165. * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0),
  166. * or R/W (rwpath=1) volume
  167. * "%[cell:]volume.readonly" R/O volume
  168. * "#[cell:]volume.readonly" R/O volume
  169. * "%[cell:]volume.backup" Backup volume
  170. * "#[cell:]volume.backup" Backup volume
  171. */
  172. static int afs_parse_device_name(struct afs_mount_params *params,
  173. const char *name)
  174. {
  175. struct afs_cell *cell;
  176. const char *cellname, *suffix;
  177. int cellnamesz;
  178. _enter(",%s", name);
  179. if (!name) {
  180. printk(KERN_ERR "kAFS: no volume name specified\n");
  181. return -EINVAL;
  182. }
  183. if ((name[0] != '%' && name[0] != '#') || !name[1]) {
  184. printk(KERN_ERR "kAFS: unparsable volume name\n");
  185. return -EINVAL;
  186. }
  187. /* determine the type of volume we're looking for */
  188. params->type = AFSVL_ROVOL;
  189. params->force = false;
  190. if (params->rwpath || name[0] == '%') {
  191. params->type = AFSVL_RWVOL;
  192. params->force = true;
  193. }
  194. name++;
  195. /* split the cell name out if there is one */
  196. params->volname = strchr(name, ':');
  197. if (params->volname) {
  198. cellname = name;
  199. cellnamesz = params->volname - name;
  200. params->volname++;
  201. } else {
  202. params->volname = name;
  203. cellname = NULL;
  204. cellnamesz = 0;
  205. }
  206. /* the volume type is further affected by a possible suffix */
  207. suffix = strrchr(params->volname, '.');
  208. if (suffix) {
  209. if (strcmp(suffix, ".readonly") == 0) {
  210. params->type = AFSVL_ROVOL;
  211. params->force = true;
  212. } else if (strcmp(suffix, ".backup") == 0) {
  213. params->type = AFSVL_BACKVOL;
  214. params->force = true;
  215. } else if (suffix[1] == 0) {
  216. } else {
  217. suffix = NULL;
  218. }
  219. }
  220. params->volnamesz = suffix ?
  221. suffix - params->volname : strlen(params->volname);
  222. _debug("cell %*.*s [%p]",
  223. cellnamesz, cellnamesz, cellname ?: "", params->cell);
  224. /* lookup the cell record */
  225. if (cellname || !params->cell) {
  226. cell = afs_cell_lookup(cellname, cellnamesz, true);
  227. if (IS_ERR(cell)) {
  228. printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
  229. cellnamesz, cellnamesz, cellname ?: "");
  230. return PTR_ERR(cell);
  231. }
  232. afs_put_cell(params->cell);
  233. params->cell = cell;
  234. }
  235. _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
  236. params->cell->name, params->cell,
  237. params->volnamesz, params->volnamesz, params->volname,
  238. suffix ?: "-", params->type, params->force ? " FORCE" : "");
  239. return 0;
  240. }
  241. /*
  242. * check a superblock to see if it's the one we're looking for
  243. */
  244. static int afs_test_super(struct super_block *sb, void *data)
  245. {
  246. struct afs_mount_params *params = data;
  247. struct afs_super_info *as = sb->s_fs_info;
  248. return as->volume == params->volume;
  249. }
  250. /*
  251. * fill in the superblock
  252. */
  253. static int afs_fill_super(struct super_block *sb, void *data)
  254. {
  255. struct afs_mount_params *params = data;
  256. struct afs_super_info *as = NULL;
  257. struct afs_fid fid;
  258. struct dentry *root = NULL;
  259. struct inode *inode = NULL;
  260. int ret;
  261. _enter("");
  262. /* allocate a superblock info record */
  263. as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
  264. if (!as) {
  265. _leave(" = -ENOMEM");
  266. return -ENOMEM;
  267. }
  268. afs_get_volume(params->volume);
  269. as->volume = params->volume;
  270. /* fill in the superblock */
  271. sb->s_blocksize = PAGE_CACHE_SIZE;
  272. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  273. sb->s_magic = AFS_FS_MAGIC;
  274. sb->s_op = &afs_super_ops;
  275. sb->s_fs_info = as;
  276. sb->s_bdi = &as->volume->bdi;
  277. /* allocate the root inode and dentry */
  278. fid.vid = as->volume->vid;
  279. fid.vnode = 1;
  280. fid.unique = 1;
  281. inode = afs_iget(sb, params->key, &fid, NULL, NULL);
  282. if (IS_ERR(inode))
  283. goto error_inode;
  284. if (params->autocell)
  285. set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
  286. ret = -ENOMEM;
  287. root = d_alloc_root(inode);
  288. if (!root)
  289. goto error;
  290. sb->s_root = root;
  291. _leave(" = 0");
  292. return 0;
  293. error_inode:
  294. ret = PTR_ERR(inode);
  295. inode = NULL;
  296. error:
  297. iput(inode);
  298. afs_put_volume(as->volume);
  299. kfree(as);
  300. sb->s_fs_info = NULL;
  301. _leave(" = %d", ret);
  302. return ret;
  303. }
  304. /*
  305. * get an AFS superblock
  306. */
  307. static int afs_get_sb(struct file_system_type *fs_type,
  308. int flags,
  309. const char *dev_name,
  310. void *options,
  311. struct vfsmount *mnt)
  312. {
  313. struct afs_mount_params params;
  314. struct super_block *sb;
  315. struct afs_volume *vol;
  316. struct key *key;
  317. char *new_opts = kstrdup(options, GFP_KERNEL);
  318. int ret;
  319. _enter(",,%s,%p", dev_name, options);
  320. memset(&params, 0, sizeof(params));
  321. /* parse the options and device name */
  322. if (options) {
  323. ret = afs_parse_options(&params, options, &dev_name);
  324. if (ret < 0)
  325. goto error;
  326. }
  327. ret = afs_parse_device_name(&params, dev_name);
  328. if (ret < 0)
  329. goto error;
  330. /* try and do the mount securely */
  331. key = afs_request_key(params.cell);
  332. if (IS_ERR(key)) {
  333. _leave(" = %ld [key]", PTR_ERR(key));
  334. ret = PTR_ERR(key);
  335. goto error;
  336. }
  337. params.key = key;
  338. /* parse the device name */
  339. vol = afs_volume_lookup(&params);
  340. if (IS_ERR(vol)) {
  341. ret = PTR_ERR(vol);
  342. goto error;
  343. }
  344. params.volume = vol;
  345. /* allocate a deviceless superblock */
  346. sb = sget(fs_type, afs_test_super, set_anon_super, &params);
  347. if (IS_ERR(sb)) {
  348. ret = PTR_ERR(sb);
  349. goto error;
  350. }
  351. if (!sb->s_root) {
  352. /* initial superblock/root creation */
  353. _debug("create");
  354. sb->s_flags = flags;
  355. ret = afs_fill_super(sb, &params);
  356. if (ret < 0) {
  357. deactivate_locked_super(sb);
  358. goto error;
  359. }
  360. save_mount_options(sb, new_opts);
  361. sb->s_flags |= MS_ACTIVE;
  362. } else {
  363. _debug("reuse");
  364. ASSERTCMP(sb->s_flags, &, MS_ACTIVE);
  365. }
  366. simple_set_mnt(mnt, sb);
  367. afs_put_volume(params.volume);
  368. afs_put_cell(params.cell);
  369. kfree(new_opts);
  370. _leave(" = 0 [%p]", sb);
  371. return 0;
  372. error:
  373. afs_put_volume(params.volume);
  374. afs_put_cell(params.cell);
  375. key_put(params.key);
  376. kfree(new_opts);
  377. _leave(" = %d", ret);
  378. return ret;
  379. }
  380. /*
  381. * finish the unmounting process on the superblock
  382. */
  383. static void afs_put_super(struct super_block *sb)
  384. {
  385. struct afs_super_info *as = sb->s_fs_info;
  386. _enter("");
  387. lock_kernel();
  388. afs_put_volume(as->volume);
  389. unlock_kernel();
  390. _leave("");
  391. }
  392. /*
  393. * initialise an inode cache slab element prior to any use
  394. */
  395. static void afs_i_init_once(void *_vnode)
  396. {
  397. struct afs_vnode *vnode = _vnode;
  398. memset(vnode, 0, sizeof(*vnode));
  399. inode_init_once(&vnode->vfs_inode);
  400. init_waitqueue_head(&vnode->update_waitq);
  401. mutex_init(&vnode->permits_lock);
  402. mutex_init(&vnode->validate_lock);
  403. spin_lock_init(&vnode->writeback_lock);
  404. spin_lock_init(&vnode->lock);
  405. INIT_LIST_HEAD(&vnode->writebacks);
  406. INIT_LIST_HEAD(&vnode->pending_locks);
  407. INIT_LIST_HEAD(&vnode->granted_locks);
  408. INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
  409. INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work);
  410. }
  411. /*
  412. * allocate an AFS inode struct from our slab cache
  413. */
  414. static struct inode *afs_alloc_inode(struct super_block *sb)
  415. {
  416. struct afs_vnode *vnode;
  417. vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
  418. if (!vnode)
  419. return NULL;
  420. atomic_inc(&afs_count_active_inodes);
  421. memset(&vnode->fid, 0, sizeof(vnode->fid));
  422. memset(&vnode->status, 0, sizeof(vnode->status));
  423. vnode->volume = NULL;
  424. vnode->update_cnt = 0;
  425. vnode->flags = 1 << AFS_VNODE_UNSET;
  426. vnode->cb_promised = false;
  427. _leave(" = %p", &vnode->vfs_inode);
  428. return &vnode->vfs_inode;
  429. }
  430. /*
  431. * destroy an AFS inode struct
  432. */
  433. static void afs_destroy_inode(struct inode *inode)
  434. {
  435. struct afs_vnode *vnode = AFS_FS_I(inode);
  436. _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
  437. _debug("DESTROY INODE %p", inode);
  438. ASSERTCMP(vnode->server, ==, NULL);
  439. kmem_cache_free(afs_inode_cachep, vnode);
  440. atomic_dec(&afs_count_active_inodes);
  441. }
  442. /*
  443. * return information about an AFS volume
  444. */
  445. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
  446. {
  447. struct afs_volume_status vs;
  448. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  449. struct key *key;
  450. int ret;
  451. key = afs_request_key(vnode->volume->cell);
  452. if (IS_ERR(key))
  453. return PTR_ERR(key);
  454. ret = afs_vnode_get_volume_status(vnode, key, &vs);
  455. key_put(key);
  456. if (ret < 0) {
  457. _leave(" = %d", ret);
  458. return ret;
  459. }
  460. buf->f_type = dentry->d_sb->s_magic;
  461. buf->f_bsize = AFS_BLOCK_SIZE;
  462. buf->f_namelen = AFSNAMEMAX - 1;
  463. if (vs.max_quota == 0)
  464. buf->f_blocks = vs.part_max_blocks;
  465. else
  466. buf->f_blocks = vs.max_quota;
  467. buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
  468. return 0;
  469. }