octeon-wdt-main.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. /*
  2. * Octeon Watchdog driver
  3. *
  4. * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
  5. *
  6. * Some parts derived from wdt.c
  7. *
  8. * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
  9. * All Rights Reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. *
  16. * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
  17. * warranty for any of this software. This material is provided
  18. * "AS-IS" and at no charge.
  19. *
  20. * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
  21. *
  22. * This file is subject to the terms and conditions of the GNU General Public
  23. * License. See the file "COPYING" in the main directory of this archive
  24. * for more details.
  25. *
  26. *
  27. * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
  28. * For most systems this is less than 10 seconds, so to allow for
  29. * software to request longer watchdog heartbeats, we maintain software
  30. * counters to count multiples of the base rate. If the system locks
  31. * up in such a manner that we can not run the software counters, the
  32. * only result is a watchdog reset sooner than was requested. But
  33. * that is OK, because in this case userspace would likely not be able
  34. * to do anything anyhow.
  35. *
  36. * The hardware watchdog interval we call the period. The OCTEON
  37. * watchdog goes through several stages, after the first period an
  38. * irq is asserted, then if it is not reset, after the next period NMI
  39. * is asserted, then after an additional period a chip wide soft reset.
  40. * So for the software counters, we reset watchdog after each period
  41. * and decrement the counter. But for the last two periods we need to
  42. * let the watchdog progress to the NMI stage so we disable the irq
  43. * and let it proceed. Once in the NMI, we print the register state
  44. * to the serial port and then wait for the reset.
  45. *
  46. * A watchdog is maintained for each CPU in the system, that way if
  47. * one CPU suffers a lockup, we also get a register dump and reset.
  48. * The userspace ping resets the watchdog on all CPUs.
  49. *
  50. * Before userspace opens the watchdog device, we still run the
  51. * watchdogs to catch any lockups that may be kernel related.
  52. *
  53. */
  54. #include <linux/miscdevice.h>
  55. #include <linux/interrupt.h>
  56. #include <linux/watchdog.h>
  57. #include <linux/cpumask.h>
  58. #include <linux/bitops.h>
  59. #include <linux/kernel.h>
  60. #include <linux/module.h>
  61. #include <linux/string.h>
  62. #include <linux/delay.h>
  63. #include <linux/cpu.h>
  64. #include <linux/smp.h>
  65. #include <linux/fs.h>
  66. #include <asm/mipsregs.h>
  67. #include <asm/uasm.h>
  68. #include <asm/octeon/octeon.h>
  69. /* The count needed to achieve timeout_sec. */
  70. static unsigned int timeout_cnt;
  71. /* The maximum period supported. */
  72. static unsigned int max_timeout_sec;
  73. /* The current period. */
  74. static unsigned int timeout_sec;
  75. /* Set to non-zero when userspace countdown mode active */
  76. static int do_coundown;
  77. static unsigned int countdown_reset;
  78. static unsigned int per_cpu_countdown[NR_CPUS];
  79. static cpumask_t irq_enabled_cpus;
  80. #define WD_TIMO 60 /* Default heartbeat = 60 seconds */
  81. static int heartbeat = WD_TIMO;
  82. module_param(heartbeat, int, S_IRUGO);
  83. MODULE_PARM_DESC(heartbeat,
  84. "Watchdog heartbeat in seconds. (0 < heartbeat, default="
  85. __MODULE_STRING(WD_TIMO) ")");
  86. static int nowayout = WATCHDOG_NOWAYOUT;
  87. module_param(nowayout, int, S_IRUGO);
  88. MODULE_PARM_DESC(nowayout,
  89. "Watchdog cannot be stopped once started (default="
  90. __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
  91. static unsigned long octeon_wdt_is_open;
  92. static char expect_close;
  93. static u32 __initdata nmi_stage1_insns[64];
  94. /* We need one branch and therefore one relocation per target label. */
  95. static struct uasm_label __initdata labels[5];
  96. static struct uasm_reloc __initdata relocs[5];
  97. enum lable_id {
  98. label_enter_bootloader = 1
  99. };
  100. /* Some CP0 registers */
  101. #define K0 26
  102. #define C0_CVMMEMCTL 11, 7
  103. #define C0_STATUS 12, 0
  104. #define C0_EBASE 15, 1
  105. #define C0_DESAVE 31, 0
  106. void octeon_wdt_nmi_stage2(void);
  107. static void __init octeon_wdt_build_stage1(void)
  108. {
  109. int i;
  110. int len;
  111. u32 *p = nmi_stage1_insns;
  112. #ifdef CONFIG_HOTPLUG_CPU
  113. struct uasm_label *l = labels;
  114. struct uasm_reloc *r = relocs;
  115. #endif
  116. /*
  117. * For the next few instructions running the debugger may
  118. * cause corruption of k0 in the saved registers. Since we're
  119. * about to crash, nobody probably cares.
  120. *
  121. * Save K0 into the debug scratch register
  122. */
  123. uasm_i_dmtc0(&p, K0, C0_DESAVE);
  124. uasm_i_mfc0(&p, K0, C0_STATUS);
  125. #ifdef CONFIG_HOTPLUG_CPU
  126. uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
  127. #endif
  128. /* Force 64-bit addressing enabled */
  129. uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
  130. uasm_i_mtc0(&p, K0, C0_STATUS);
  131. #ifdef CONFIG_HOTPLUG_CPU
  132. uasm_i_mfc0(&p, K0, C0_EBASE);
  133. /* Coreid number in K0 */
  134. uasm_i_andi(&p, K0, K0, 0xf);
  135. /* 8 * coreid in bits 16-31 */
  136. uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
  137. uasm_i_ori(&p, K0, K0, 0x8001);
  138. uasm_i_dsll_safe(&p, K0, K0, 16);
  139. uasm_i_ori(&p, K0, K0, 0x0700);
  140. uasm_i_drotr_safe(&p, K0, K0, 32);
  141. /*
  142. * Should result in: 0x8001,0700,0000,8*coreid which is
  143. * CVMX_CIU_WDOGX(coreid) - 0x0500
  144. *
  145. * Now ld K0, CVMX_CIU_WDOGX(coreid)
  146. */
  147. uasm_i_ld(&p, K0, 0x500, K0);
  148. /*
  149. * If bit one set handle the NMI as a watchdog event.
  150. * otherwise transfer control to bootloader.
  151. */
  152. uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
  153. uasm_i_nop(&p);
  154. #endif
  155. /* Clear Dcache so cvmseg works right. */
  156. uasm_i_cache(&p, 1, 0, 0);
  157. /* Use K0 to do a read/modify/write of CVMMEMCTL */
  158. uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
  159. /* Clear out the size of CVMSEG */
  160. uasm_i_dins(&p, K0, 0, 0, 6);
  161. /* Set CVMSEG to its largest value */
  162. uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
  163. /* Store the CVMMEMCTL value */
  164. uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
  165. /* Load the address of the second stage handler */
  166. UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
  167. uasm_i_jr(&p, K0);
  168. uasm_i_dmfc0(&p, K0, C0_DESAVE);
  169. #ifdef CONFIG_HOTPLUG_CPU
  170. uasm_build_label(&l, p, label_enter_bootloader);
  171. /* Jump to the bootloader and restore K0 */
  172. UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
  173. uasm_i_jr(&p, K0);
  174. uasm_i_dmfc0(&p, K0, C0_DESAVE);
  175. #endif
  176. uasm_resolve_relocs(relocs, labels);
  177. len = (int)(p - nmi_stage1_insns);
  178. pr_debug("Synthesized NMI stage 1 handler (%d instructions).\n", len);
  179. pr_debug("\t.set push\n");
  180. pr_debug("\t.set noreorder\n");
  181. for (i = 0; i < len; i++)
  182. pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
  183. pr_debug("\t.set pop\n");
  184. if (len > 32)
  185. panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
  186. }
  187. static int cpu2core(int cpu)
  188. {
  189. #ifdef CONFIG_SMP
  190. return cpu_logical_map(cpu);
  191. #else
  192. return cvmx_get_core_num();
  193. #endif
  194. }
  195. static int core2cpu(int coreid)
  196. {
  197. #ifdef CONFIG_SMP
  198. return cpu_number_map(coreid);
  199. #else
  200. return 0;
  201. #endif
  202. }
  203. /**
  204. * Poke the watchdog when an interrupt is received
  205. *
  206. * @cpl:
  207. * @dev_id:
  208. *
  209. * Returns
  210. */
  211. static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
  212. {
  213. unsigned int core = cvmx_get_core_num();
  214. int cpu = core2cpu(core);
  215. if (do_coundown) {
  216. if (per_cpu_countdown[cpu] > 0) {
  217. /* We're alive, poke the watchdog */
  218. cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
  219. per_cpu_countdown[cpu]--;
  220. } else {
  221. /* Bad news, you are about to reboot. */
  222. disable_irq_nosync(cpl);
  223. cpumask_clear_cpu(cpu, &irq_enabled_cpus);
  224. }
  225. } else {
  226. /* Not open, just ping away... */
  227. cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
  228. }
  229. return IRQ_HANDLED;
  230. }
  231. /* From setup.c */
  232. extern int prom_putchar(char c);
  233. /**
  234. * Write a string to the uart
  235. *
  236. * @str: String to write
  237. */
  238. static void octeon_wdt_write_string(const char *str)
  239. {
  240. /* Just loop writing one byte at a time */
  241. while (*str)
  242. prom_putchar(*str++);
  243. }
  244. /**
  245. * Write a hex number out of the uart
  246. *
  247. * @value: Number to display
  248. * @digits: Number of digits to print (1 to 16)
  249. */
  250. static void octeon_wdt_write_hex(u64 value, int digits)
  251. {
  252. int d;
  253. int v;
  254. for (d = 0; d < digits; d++) {
  255. v = (value >> ((digits - d - 1) * 4)) & 0xf;
  256. if (v >= 10)
  257. prom_putchar('a' + v - 10);
  258. else
  259. prom_putchar('0' + v);
  260. }
  261. }
  262. const char *reg_name[] = {
  263. "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
  264. "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
  265. "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
  266. "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
  267. };
  268. /**
  269. * NMI stage 3 handler. NMIs are handled in the following manner:
  270. * 1) The first NMI handler enables CVMSEG and transfers from
  271. * the bootbus region into normal memory. It is careful to not
  272. * destroy any registers.
  273. * 2) The second stage handler uses CVMSEG to save the registers
  274. * and create a stack for C code. It then calls the third level
  275. * handler with one argument, a pointer to the register values.
  276. * 3) The third, and final, level handler is the following C
  277. * function that prints out some useful infomration.
  278. *
  279. * @reg: Pointer to register state before the NMI
  280. */
  281. void octeon_wdt_nmi_stage3(u64 reg[32])
  282. {
  283. u64 i;
  284. unsigned int coreid = cvmx_get_core_num();
  285. /*
  286. * Save status and cause early to get them before any changes
  287. * might happen.
  288. */
  289. u64 cp0_cause = read_c0_cause();
  290. u64 cp0_status = read_c0_status();
  291. u64 cp0_error_epc = read_c0_errorepc();
  292. u64 cp0_epc = read_c0_epc();
  293. /* Delay so output from all cores output is not jumbled together. */
  294. __delay(100000000ull * coreid);
  295. octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
  296. octeon_wdt_write_hex(coreid, 1);
  297. octeon_wdt_write_string(" ***\r\n");
  298. for (i = 0; i < 32; i++) {
  299. octeon_wdt_write_string("\t");
  300. octeon_wdt_write_string(reg_name[i]);
  301. octeon_wdt_write_string("\t0x");
  302. octeon_wdt_write_hex(reg[i], 16);
  303. if (i & 1)
  304. octeon_wdt_write_string("\r\n");
  305. }
  306. octeon_wdt_write_string("\terr_epc\t0x");
  307. octeon_wdt_write_hex(cp0_error_epc, 16);
  308. octeon_wdt_write_string("\tepc\t0x");
  309. octeon_wdt_write_hex(cp0_epc, 16);
  310. octeon_wdt_write_string("\r\n");
  311. octeon_wdt_write_string("\tstatus\t0x");
  312. octeon_wdt_write_hex(cp0_status, 16);
  313. octeon_wdt_write_string("\tcause\t0x");
  314. octeon_wdt_write_hex(cp0_cause, 16);
  315. octeon_wdt_write_string("\r\n");
  316. octeon_wdt_write_string("\tsum0\t0x");
  317. octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
  318. octeon_wdt_write_string("\ten0\t0x");
  319. octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
  320. octeon_wdt_write_string("\r\n");
  321. octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
  322. }
  323. static void octeon_wdt_disable_interrupt(int cpu)
  324. {
  325. unsigned int core;
  326. unsigned int irq;
  327. union cvmx_ciu_wdogx ciu_wdog;
  328. core = cpu2core(cpu);
  329. irq = OCTEON_IRQ_WDOG0 + core;
  330. /* Poke the watchdog to clear out its state */
  331. cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
  332. /* Disable the hardware. */
  333. ciu_wdog.u64 = 0;
  334. cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
  335. free_irq(irq, octeon_wdt_poke_irq);
  336. }
  337. static void octeon_wdt_setup_interrupt(int cpu)
  338. {
  339. unsigned int core;
  340. unsigned int irq;
  341. union cvmx_ciu_wdogx ciu_wdog;
  342. core = cpu2core(cpu);
  343. /* Disable it before doing anything with the interrupts. */
  344. ciu_wdog.u64 = 0;
  345. cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
  346. per_cpu_countdown[cpu] = countdown_reset;
  347. irq = OCTEON_IRQ_WDOG0 + core;
  348. if (request_irq(irq, octeon_wdt_poke_irq,
  349. IRQF_DISABLED, "octeon_wdt", octeon_wdt_poke_irq))
  350. panic("octeon_wdt: Couldn't obtain irq %d", irq);
  351. cpumask_set_cpu(cpu, &irq_enabled_cpus);
  352. /* Poke the watchdog to clear out its state */
  353. cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
  354. /* Finally enable the watchdog now that all handlers are installed */
  355. ciu_wdog.u64 = 0;
  356. ciu_wdog.s.len = timeout_cnt;
  357. ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
  358. cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
  359. }
  360. static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
  361. unsigned long action, void *hcpu)
  362. {
  363. unsigned int cpu = (unsigned long)hcpu;
  364. switch (action) {
  365. case CPU_DOWN_PREPARE:
  366. octeon_wdt_disable_interrupt(cpu);
  367. break;
  368. case CPU_ONLINE:
  369. case CPU_DOWN_FAILED:
  370. octeon_wdt_setup_interrupt(cpu);
  371. break;
  372. default:
  373. break;
  374. }
  375. return NOTIFY_OK;
  376. }
  377. static void octeon_wdt_ping(void)
  378. {
  379. int cpu;
  380. int coreid;
  381. for_each_online_cpu(cpu) {
  382. coreid = cpu2core(cpu);
  383. cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
  384. per_cpu_countdown[cpu] = countdown_reset;
  385. if ((countdown_reset || !do_coundown) &&
  386. !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
  387. /* We have to enable the irq */
  388. int irq = OCTEON_IRQ_WDOG0 + coreid;
  389. enable_irq(irq);
  390. cpumask_set_cpu(cpu, &irq_enabled_cpus);
  391. }
  392. }
  393. }
  394. static void octeon_wdt_calc_parameters(int t)
  395. {
  396. unsigned int periods;
  397. timeout_sec = max_timeout_sec;
  398. /*
  399. * Find the largest interrupt period, that can evenly divide
  400. * the requested heartbeat time.
  401. */
  402. while ((t % timeout_sec) != 0)
  403. timeout_sec--;
  404. periods = t / timeout_sec;
  405. /*
  406. * The last two periods are after the irq is disabled, and
  407. * then to the nmi, so we subtract them off.
  408. */
  409. countdown_reset = periods > 2 ? periods - 2 : 0;
  410. heartbeat = t;
  411. timeout_cnt = ((octeon_get_clock_rate() >> 8) * timeout_sec) >> 8;
  412. }
  413. static int octeon_wdt_set_heartbeat(int t)
  414. {
  415. int cpu;
  416. int coreid;
  417. union cvmx_ciu_wdogx ciu_wdog;
  418. if (t <= 0)
  419. return -1;
  420. octeon_wdt_calc_parameters(t);
  421. for_each_online_cpu(cpu) {
  422. coreid = cpu2core(cpu);
  423. cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
  424. ciu_wdog.u64 = 0;
  425. ciu_wdog.s.len = timeout_cnt;
  426. ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
  427. cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
  428. cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
  429. }
  430. octeon_wdt_ping(); /* Get the irqs back on. */
  431. return 0;
  432. }
  433. /**
  434. * octeon_wdt_write:
  435. * @file: file handle to the watchdog
  436. * @buf: buffer to write (unused as data does not matter here
  437. * @count: count of bytes
  438. * @ppos: pointer to the position to write. No seeks allowed
  439. *
  440. * A write to a watchdog device is defined as a keepalive signal. Any
  441. * write of data will do, as we we don't define content meaning.
  442. */
  443. static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
  444. size_t count, loff_t *ppos)
  445. {
  446. if (count) {
  447. if (!nowayout) {
  448. size_t i;
  449. /* In case it was set long ago */
  450. expect_close = 0;
  451. for (i = 0; i != count; i++) {
  452. char c;
  453. if (get_user(c, buf + i))
  454. return -EFAULT;
  455. if (c == 'V')
  456. expect_close = 1;
  457. }
  458. }
  459. octeon_wdt_ping();
  460. }
  461. return count;
  462. }
  463. /**
  464. * octeon_wdt_ioctl:
  465. * @file: file handle to the device
  466. * @cmd: watchdog command
  467. * @arg: argument pointer
  468. *
  469. * The watchdog API defines a common set of functions for all
  470. * watchdogs according to their available features. We only
  471. * actually usefully support querying capabilities and setting
  472. * the timeout.
  473. */
  474. static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
  475. unsigned long arg)
  476. {
  477. void __user *argp = (void __user *)arg;
  478. int __user *p = argp;
  479. int new_heartbeat;
  480. static struct watchdog_info ident = {
  481. .options = WDIOF_SETTIMEOUT|
  482. WDIOF_MAGICCLOSE|
  483. WDIOF_KEEPALIVEPING,
  484. .firmware_version = 1,
  485. .identity = "OCTEON",
  486. };
  487. switch (cmd) {
  488. case WDIOC_GETSUPPORT:
  489. return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
  490. case WDIOC_GETSTATUS:
  491. case WDIOC_GETBOOTSTATUS:
  492. return put_user(0, p);
  493. case WDIOC_KEEPALIVE:
  494. octeon_wdt_ping();
  495. return 0;
  496. case WDIOC_SETTIMEOUT:
  497. if (get_user(new_heartbeat, p))
  498. return -EFAULT;
  499. if (octeon_wdt_set_heartbeat(new_heartbeat))
  500. return -EINVAL;
  501. /* Fall through. */
  502. case WDIOC_GETTIMEOUT:
  503. return put_user(heartbeat, p);
  504. default:
  505. return -ENOTTY;
  506. }
  507. }
  508. /**
  509. * octeon_wdt_open:
  510. * @inode: inode of device
  511. * @file: file handle to device
  512. *
  513. * The watchdog device has been opened. The watchdog device is single
  514. * open and on opening we do a ping to reset the counters.
  515. */
  516. static int octeon_wdt_open(struct inode *inode, struct file *file)
  517. {
  518. if (test_and_set_bit(0, &octeon_wdt_is_open))
  519. return -EBUSY;
  520. /*
  521. * Activate
  522. */
  523. octeon_wdt_ping();
  524. do_coundown = 1;
  525. return nonseekable_open(inode, file);
  526. }
  527. /**
  528. * octeon_wdt_release:
  529. * @inode: inode to board
  530. * @file: file handle to board
  531. *
  532. * The watchdog has a configurable API. There is a religious dispute
  533. * between people who want their watchdog to be able to shut down and
  534. * those who want to be sure if the watchdog manager dies the machine
  535. * reboots. In the former case we disable the counters, in the latter
  536. * case you have to open it again very soon.
  537. */
  538. static int octeon_wdt_release(struct inode *inode, struct file *file)
  539. {
  540. if (expect_close) {
  541. do_coundown = 0;
  542. octeon_wdt_ping();
  543. } else {
  544. pr_crit("octeon_wdt: WDT device closed unexpectedly. WDT will not stop!\n");
  545. }
  546. clear_bit(0, &octeon_wdt_is_open);
  547. expect_close = 0;
  548. return 0;
  549. }
  550. static const struct file_operations octeon_wdt_fops = {
  551. .owner = THIS_MODULE,
  552. .llseek = no_llseek,
  553. .write = octeon_wdt_write,
  554. .unlocked_ioctl = octeon_wdt_ioctl,
  555. .open = octeon_wdt_open,
  556. .release = octeon_wdt_release,
  557. };
  558. static struct miscdevice octeon_wdt_miscdev = {
  559. .minor = WATCHDOG_MINOR,
  560. .name = "watchdog",
  561. .fops = &octeon_wdt_fops,
  562. };
  563. static struct notifier_block octeon_wdt_cpu_notifier = {
  564. .notifier_call = octeon_wdt_cpu_callback,
  565. };
  566. /**
  567. * Module/ driver initialization.
  568. *
  569. * Returns Zero on success
  570. */
  571. static int __init octeon_wdt_init(void)
  572. {
  573. int i;
  574. int ret;
  575. int cpu;
  576. u64 *ptr;
  577. /*
  578. * Watchdog time expiration length = The 16 bits of LEN
  579. * represent the most significant bits of a 24 bit decrementer
  580. * that decrements every 256 cycles.
  581. *
  582. * Try for a timeout of 5 sec, if that fails a smaller number
  583. * of even seconds,
  584. */
  585. max_timeout_sec = 6;
  586. do {
  587. max_timeout_sec--;
  588. timeout_cnt = ((octeon_get_clock_rate() >> 8) * max_timeout_sec) >> 8;
  589. } while (timeout_cnt > 65535);
  590. BUG_ON(timeout_cnt == 0);
  591. octeon_wdt_calc_parameters(heartbeat);
  592. pr_info("octeon_wdt: Initial granularity %d Sec.\n", timeout_sec);
  593. ret = misc_register(&octeon_wdt_miscdev);
  594. if (ret) {
  595. pr_err("octeon_wdt: cannot register miscdev on minor=%d (err=%d)\n",
  596. WATCHDOG_MINOR, ret);
  597. goto out;
  598. }
  599. /* Build the NMI handler ... */
  600. octeon_wdt_build_stage1();
  601. /* ... and install it. */
  602. ptr = (u64 *) nmi_stage1_insns;
  603. for (i = 0; i < 16; i++) {
  604. cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
  605. cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
  606. }
  607. cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
  608. cpumask_clear(&irq_enabled_cpus);
  609. for_each_online_cpu(cpu)
  610. octeon_wdt_setup_interrupt(cpu);
  611. register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
  612. out:
  613. return ret;
  614. }
  615. /**
  616. * Module / driver shutdown
  617. */
  618. static void __exit octeon_wdt_cleanup(void)
  619. {
  620. int cpu;
  621. misc_deregister(&octeon_wdt_miscdev);
  622. unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
  623. for_each_online_cpu(cpu) {
  624. int core = cpu2core(cpu);
  625. /* Disable the watchdog */
  626. cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
  627. /* Free the interrupt handler */
  628. free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
  629. }
  630. /*
  631. * Disable the boot-bus memory, the code it points to is soon
  632. * to go missing.
  633. */
  634. cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
  635. }
  636. MODULE_LICENSE("GPL");
  637. MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
  638. MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
  639. module_init(octeon_wdt_init);
  640. module_exit(octeon_wdt_cleanup);