dispc.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189
  1. /*
  2. * linux/drivers/video/omap2/dss/dispc.c
  3. *
  4. * Copyright (C) 2009 Nokia Corporation
  5. * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
  6. *
  7. * Some code and ideas taken from drivers/video/omap/ driver
  8. * by Imre Deak.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published by
  12. * the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #define DSS_SUBSYS_NAME "DISPC"
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/delay.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/hardirq.h>
  33. #include <plat/sram.h>
  34. #include <plat/clock.h>
  35. #include <plat/display.h>
  36. #include "dss.h"
  37. /* DISPC */
  38. #define DISPC_BASE 0x48050400
  39. #define DISPC_SZ_REGS SZ_1K
  40. struct dispc_reg { u16 idx; };
  41. #define DISPC_REG(idx) ((const struct dispc_reg) { idx })
  42. /* DISPC common */
  43. #define DISPC_REVISION DISPC_REG(0x0000)
  44. #define DISPC_SYSCONFIG DISPC_REG(0x0010)
  45. #define DISPC_SYSSTATUS DISPC_REG(0x0014)
  46. #define DISPC_IRQSTATUS DISPC_REG(0x0018)
  47. #define DISPC_IRQENABLE DISPC_REG(0x001C)
  48. #define DISPC_CONTROL DISPC_REG(0x0040)
  49. #define DISPC_CONFIG DISPC_REG(0x0044)
  50. #define DISPC_CAPABLE DISPC_REG(0x0048)
  51. #define DISPC_DEFAULT_COLOR0 DISPC_REG(0x004C)
  52. #define DISPC_DEFAULT_COLOR1 DISPC_REG(0x0050)
  53. #define DISPC_TRANS_COLOR0 DISPC_REG(0x0054)
  54. #define DISPC_TRANS_COLOR1 DISPC_REG(0x0058)
  55. #define DISPC_LINE_STATUS DISPC_REG(0x005C)
  56. #define DISPC_LINE_NUMBER DISPC_REG(0x0060)
  57. #define DISPC_TIMING_H DISPC_REG(0x0064)
  58. #define DISPC_TIMING_V DISPC_REG(0x0068)
  59. #define DISPC_POL_FREQ DISPC_REG(0x006C)
  60. #define DISPC_DIVISOR DISPC_REG(0x0070)
  61. #define DISPC_GLOBAL_ALPHA DISPC_REG(0x0074)
  62. #define DISPC_SIZE_DIG DISPC_REG(0x0078)
  63. #define DISPC_SIZE_LCD DISPC_REG(0x007C)
  64. /* DISPC GFX plane */
  65. #define DISPC_GFX_BA0 DISPC_REG(0x0080)
  66. #define DISPC_GFX_BA1 DISPC_REG(0x0084)
  67. #define DISPC_GFX_POSITION DISPC_REG(0x0088)
  68. #define DISPC_GFX_SIZE DISPC_REG(0x008C)
  69. #define DISPC_GFX_ATTRIBUTES DISPC_REG(0x00A0)
  70. #define DISPC_GFX_FIFO_THRESHOLD DISPC_REG(0x00A4)
  71. #define DISPC_GFX_FIFO_SIZE_STATUS DISPC_REG(0x00A8)
  72. #define DISPC_GFX_ROW_INC DISPC_REG(0x00AC)
  73. #define DISPC_GFX_PIXEL_INC DISPC_REG(0x00B0)
  74. #define DISPC_GFX_WINDOW_SKIP DISPC_REG(0x00B4)
  75. #define DISPC_GFX_TABLE_BA DISPC_REG(0x00B8)
  76. #define DISPC_DATA_CYCLE1 DISPC_REG(0x01D4)
  77. #define DISPC_DATA_CYCLE2 DISPC_REG(0x01D8)
  78. #define DISPC_DATA_CYCLE3 DISPC_REG(0x01DC)
  79. #define DISPC_CPR_COEF_R DISPC_REG(0x0220)
  80. #define DISPC_CPR_COEF_G DISPC_REG(0x0224)
  81. #define DISPC_CPR_COEF_B DISPC_REG(0x0228)
  82. #define DISPC_GFX_PRELOAD DISPC_REG(0x022C)
  83. /* DISPC Video plane, n = 0 for VID1 and n = 1 for VID2 */
  84. #define DISPC_VID_REG(n, idx) DISPC_REG(0x00BC + (n)*0x90 + idx)
  85. #define DISPC_VID_BA0(n) DISPC_VID_REG(n, 0x0000)
  86. #define DISPC_VID_BA1(n) DISPC_VID_REG(n, 0x0004)
  87. #define DISPC_VID_POSITION(n) DISPC_VID_REG(n, 0x0008)
  88. #define DISPC_VID_SIZE(n) DISPC_VID_REG(n, 0x000C)
  89. #define DISPC_VID_ATTRIBUTES(n) DISPC_VID_REG(n, 0x0010)
  90. #define DISPC_VID_FIFO_THRESHOLD(n) DISPC_VID_REG(n, 0x0014)
  91. #define DISPC_VID_FIFO_SIZE_STATUS(n) DISPC_VID_REG(n, 0x0018)
  92. #define DISPC_VID_ROW_INC(n) DISPC_VID_REG(n, 0x001C)
  93. #define DISPC_VID_PIXEL_INC(n) DISPC_VID_REG(n, 0x0020)
  94. #define DISPC_VID_FIR(n) DISPC_VID_REG(n, 0x0024)
  95. #define DISPC_VID_PICTURE_SIZE(n) DISPC_VID_REG(n, 0x0028)
  96. #define DISPC_VID_ACCU0(n) DISPC_VID_REG(n, 0x002C)
  97. #define DISPC_VID_ACCU1(n) DISPC_VID_REG(n, 0x0030)
  98. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  99. #define DISPC_VID_FIR_COEF_H(n, i) DISPC_REG(0x00F0 + (n)*0x90 + (i)*0x8)
  100. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  101. #define DISPC_VID_FIR_COEF_HV(n, i) DISPC_REG(0x00F4 + (n)*0x90 + (i)*0x8)
  102. /* coef index i = {0, 1, 2, 3, 4} */
  103. #define DISPC_VID_CONV_COEF(n, i) DISPC_REG(0x0130 + (n)*0x90 + (i)*0x4)
  104. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  105. #define DISPC_VID_FIR_COEF_V(n, i) DISPC_REG(0x01E0 + (n)*0x20 + (i)*0x4)
  106. #define DISPC_VID_PRELOAD(n) DISPC_REG(0x230 + (n)*0x04)
  107. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  108. DISPC_IRQ_OCP_ERR | \
  109. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  110. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  111. DISPC_IRQ_SYNC_LOST | \
  112. DISPC_IRQ_SYNC_LOST_DIGIT)
  113. #define DISPC_MAX_NR_ISRS 8
  114. struct omap_dispc_isr_data {
  115. omap_dispc_isr_t isr;
  116. void *arg;
  117. u32 mask;
  118. };
  119. #define REG_GET(idx, start, end) \
  120. FLD_GET(dispc_read_reg(idx), start, end)
  121. #define REG_FLD_MOD(idx, val, start, end) \
  122. dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
  123. static const struct dispc_reg dispc_reg_att[] = { DISPC_GFX_ATTRIBUTES,
  124. DISPC_VID_ATTRIBUTES(0),
  125. DISPC_VID_ATTRIBUTES(1) };
  126. struct dispc_irq_stats {
  127. unsigned long last_reset;
  128. unsigned irq_count;
  129. unsigned irqs[32];
  130. };
  131. static struct {
  132. void __iomem *base;
  133. u32 fifo_size[3];
  134. spinlock_t irq_lock;
  135. u32 irq_error_mask;
  136. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  137. u32 error_irqs;
  138. struct work_struct error_work;
  139. u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
  140. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  141. spinlock_t irq_stats_lock;
  142. struct dispc_irq_stats irq_stats;
  143. #endif
  144. } dispc;
  145. static void _omap_dispc_set_irqs(void);
  146. static inline void dispc_write_reg(const struct dispc_reg idx, u32 val)
  147. {
  148. __raw_writel(val, dispc.base + idx.idx);
  149. }
  150. static inline u32 dispc_read_reg(const struct dispc_reg idx)
  151. {
  152. return __raw_readl(dispc.base + idx.idx);
  153. }
  154. #define SR(reg) \
  155. dispc.ctx[(DISPC_##reg).idx / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
  156. #define RR(reg) \
  157. dispc_write_reg(DISPC_##reg, dispc.ctx[(DISPC_##reg).idx / sizeof(u32)])
  158. void dispc_save_context(void)
  159. {
  160. if (cpu_is_omap24xx())
  161. return;
  162. SR(SYSCONFIG);
  163. SR(IRQENABLE);
  164. SR(CONTROL);
  165. SR(CONFIG);
  166. SR(DEFAULT_COLOR0);
  167. SR(DEFAULT_COLOR1);
  168. SR(TRANS_COLOR0);
  169. SR(TRANS_COLOR1);
  170. SR(LINE_NUMBER);
  171. SR(TIMING_H);
  172. SR(TIMING_V);
  173. SR(POL_FREQ);
  174. SR(DIVISOR);
  175. SR(GLOBAL_ALPHA);
  176. SR(SIZE_DIG);
  177. SR(SIZE_LCD);
  178. SR(GFX_BA0);
  179. SR(GFX_BA1);
  180. SR(GFX_POSITION);
  181. SR(GFX_SIZE);
  182. SR(GFX_ATTRIBUTES);
  183. SR(GFX_FIFO_THRESHOLD);
  184. SR(GFX_ROW_INC);
  185. SR(GFX_PIXEL_INC);
  186. SR(GFX_WINDOW_SKIP);
  187. SR(GFX_TABLE_BA);
  188. SR(DATA_CYCLE1);
  189. SR(DATA_CYCLE2);
  190. SR(DATA_CYCLE3);
  191. SR(CPR_COEF_R);
  192. SR(CPR_COEF_G);
  193. SR(CPR_COEF_B);
  194. SR(GFX_PRELOAD);
  195. /* VID1 */
  196. SR(VID_BA0(0));
  197. SR(VID_BA1(0));
  198. SR(VID_POSITION(0));
  199. SR(VID_SIZE(0));
  200. SR(VID_ATTRIBUTES(0));
  201. SR(VID_FIFO_THRESHOLD(0));
  202. SR(VID_ROW_INC(0));
  203. SR(VID_PIXEL_INC(0));
  204. SR(VID_FIR(0));
  205. SR(VID_PICTURE_SIZE(0));
  206. SR(VID_ACCU0(0));
  207. SR(VID_ACCU1(0));
  208. SR(VID_FIR_COEF_H(0, 0));
  209. SR(VID_FIR_COEF_H(0, 1));
  210. SR(VID_FIR_COEF_H(0, 2));
  211. SR(VID_FIR_COEF_H(0, 3));
  212. SR(VID_FIR_COEF_H(0, 4));
  213. SR(VID_FIR_COEF_H(0, 5));
  214. SR(VID_FIR_COEF_H(0, 6));
  215. SR(VID_FIR_COEF_H(0, 7));
  216. SR(VID_FIR_COEF_HV(0, 0));
  217. SR(VID_FIR_COEF_HV(0, 1));
  218. SR(VID_FIR_COEF_HV(0, 2));
  219. SR(VID_FIR_COEF_HV(0, 3));
  220. SR(VID_FIR_COEF_HV(0, 4));
  221. SR(VID_FIR_COEF_HV(0, 5));
  222. SR(VID_FIR_COEF_HV(0, 6));
  223. SR(VID_FIR_COEF_HV(0, 7));
  224. SR(VID_CONV_COEF(0, 0));
  225. SR(VID_CONV_COEF(0, 1));
  226. SR(VID_CONV_COEF(0, 2));
  227. SR(VID_CONV_COEF(0, 3));
  228. SR(VID_CONV_COEF(0, 4));
  229. SR(VID_FIR_COEF_V(0, 0));
  230. SR(VID_FIR_COEF_V(0, 1));
  231. SR(VID_FIR_COEF_V(0, 2));
  232. SR(VID_FIR_COEF_V(0, 3));
  233. SR(VID_FIR_COEF_V(0, 4));
  234. SR(VID_FIR_COEF_V(0, 5));
  235. SR(VID_FIR_COEF_V(0, 6));
  236. SR(VID_FIR_COEF_V(0, 7));
  237. SR(VID_PRELOAD(0));
  238. /* VID2 */
  239. SR(VID_BA0(1));
  240. SR(VID_BA1(1));
  241. SR(VID_POSITION(1));
  242. SR(VID_SIZE(1));
  243. SR(VID_ATTRIBUTES(1));
  244. SR(VID_FIFO_THRESHOLD(1));
  245. SR(VID_ROW_INC(1));
  246. SR(VID_PIXEL_INC(1));
  247. SR(VID_FIR(1));
  248. SR(VID_PICTURE_SIZE(1));
  249. SR(VID_ACCU0(1));
  250. SR(VID_ACCU1(1));
  251. SR(VID_FIR_COEF_H(1, 0));
  252. SR(VID_FIR_COEF_H(1, 1));
  253. SR(VID_FIR_COEF_H(1, 2));
  254. SR(VID_FIR_COEF_H(1, 3));
  255. SR(VID_FIR_COEF_H(1, 4));
  256. SR(VID_FIR_COEF_H(1, 5));
  257. SR(VID_FIR_COEF_H(1, 6));
  258. SR(VID_FIR_COEF_H(1, 7));
  259. SR(VID_FIR_COEF_HV(1, 0));
  260. SR(VID_FIR_COEF_HV(1, 1));
  261. SR(VID_FIR_COEF_HV(1, 2));
  262. SR(VID_FIR_COEF_HV(1, 3));
  263. SR(VID_FIR_COEF_HV(1, 4));
  264. SR(VID_FIR_COEF_HV(1, 5));
  265. SR(VID_FIR_COEF_HV(1, 6));
  266. SR(VID_FIR_COEF_HV(1, 7));
  267. SR(VID_CONV_COEF(1, 0));
  268. SR(VID_CONV_COEF(1, 1));
  269. SR(VID_CONV_COEF(1, 2));
  270. SR(VID_CONV_COEF(1, 3));
  271. SR(VID_CONV_COEF(1, 4));
  272. SR(VID_FIR_COEF_V(1, 0));
  273. SR(VID_FIR_COEF_V(1, 1));
  274. SR(VID_FIR_COEF_V(1, 2));
  275. SR(VID_FIR_COEF_V(1, 3));
  276. SR(VID_FIR_COEF_V(1, 4));
  277. SR(VID_FIR_COEF_V(1, 5));
  278. SR(VID_FIR_COEF_V(1, 6));
  279. SR(VID_FIR_COEF_V(1, 7));
  280. SR(VID_PRELOAD(1));
  281. }
  282. void dispc_restore_context(void)
  283. {
  284. RR(SYSCONFIG);
  285. /*RR(IRQENABLE);*/
  286. /*RR(CONTROL);*/
  287. RR(CONFIG);
  288. RR(DEFAULT_COLOR0);
  289. RR(DEFAULT_COLOR1);
  290. RR(TRANS_COLOR0);
  291. RR(TRANS_COLOR1);
  292. RR(LINE_NUMBER);
  293. RR(TIMING_H);
  294. RR(TIMING_V);
  295. RR(POL_FREQ);
  296. RR(DIVISOR);
  297. RR(GLOBAL_ALPHA);
  298. RR(SIZE_DIG);
  299. RR(SIZE_LCD);
  300. RR(GFX_BA0);
  301. RR(GFX_BA1);
  302. RR(GFX_POSITION);
  303. RR(GFX_SIZE);
  304. RR(GFX_ATTRIBUTES);
  305. RR(GFX_FIFO_THRESHOLD);
  306. RR(GFX_ROW_INC);
  307. RR(GFX_PIXEL_INC);
  308. RR(GFX_WINDOW_SKIP);
  309. RR(GFX_TABLE_BA);
  310. RR(DATA_CYCLE1);
  311. RR(DATA_CYCLE2);
  312. RR(DATA_CYCLE3);
  313. RR(CPR_COEF_R);
  314. RR(CPR_COEF_G);
  315. RR(CPR_COEF_B);
  316. RR(GFX_PRELOAD);
  317. /* VID1 */
  318. RR(VID_BA0(0));
  319. RR(VID_BA1(0));
  320. RR(VID_POSITION(0));
  321. RR(VID_SIZE(0));
  322. RR(VID_ATTRIBUTES(0));
  323. RR(VID_FIFO_THRESHOLD(0));
  324. RR(VID_ROW_INC(0));
  325. RR(VID_PIXEL_INC(0));
  326. RR(VID_FIR(0));
  327. RR(VID_PICTURE_SIZE(0));
  328. RR(VID_ACCU0(0));
  329. RR(VID_ACCU1(0));
  330. RR(VID_FIR_COEF_H(0, 0));
  331. RR(VID_FIR_COEF_H(0, 1));
  332. RR(VID_FIR_COEF_H(0, 2));
  333. RR(VID_FIR_COEF_H(0, 3));
  334. RR(VID_FIR_COEF_H(0, 4));
  335. RR(VID_FIR_COEF_H(0, 5));
  336. RR(VID_FIR_COEF_H(0, 6));
  337. RR(VID_FIR_COEF_H(0, 7));
  338. RR(VID_FIR_COEF_HV(0, 0));
  339. RR(VID_FIR_COEF_HV(0, 1));
  340. RR(VID_FIR_COEF_HV(0, 2));
  341. RR(VID_FIR_COEF_HV(0, 3));
  342. RR(VID_FIR_COEF_HV(0, 4));
  343. RR(VID_FIR_COEF_HV(0, 5));
  344. RR(VID_FIR_COEF_HV(0, 6));
  345. RR(VID_FIR_COEF_HV(0, 7));
  346. RR(VID_CONV_COEF(0, 0));
  347. RR(VID_CONV_COEF(0, 1));
  348. RR(VID_CONV_COEF(0, 2));
  349. RR(VID_CONV_COEF(0, 3));
  350. RR(VID_CONV_COEF(0, 4));
  351. RR(VID_FIR_COEF_V(0, 0));
  352. RR(VID_FIR_COEF_V(0, 1));
  353. RR(VID_FIR_COEF_V(0, 2));
  354. RR(VID_FIR_COEF_V(0, 3));
  355. RR(VID_FIR_COEF_V(0, 4));
  356. RR(VID_FIR_COEF_V(0, 5));
  357. RR(VID_FIR_COEF_V(0, 6));
  358. RR(VID_FIR_COEF_V(0, 7));
  359. RR(VID_PRELOAD(0));
  360. /* VID2 */
  361. RR(VID_BA0(1));
  362. RR(VID_BA1(1));
  363. RR(VID_POSITION(1));
  364. RR(VID_SIZE(1));
  365. RR(VID_ATTRIBUTES(1));
  366. RR(VID_FIFO_THRESHOLD(1));
  367. RR(VID_ROW_INC(1));
  368. RR(VID_PIXEL_INC(1));
  369. RR(VID_FIR(1));
  370. RR(VID_PICTURE_SIZE(1));
  371. RR(VID_ACCU0(1));
  372. RR(VID_ACCU1(1));
  373. RR(VID_FIR_COEF_H(1, 0));
  374. RR(VID_FIR_COEF_H(1, 1));
  375. RR(VID_FIR_COEF_H(1, 2));
  376. RR(VID_FIR_COEF_H(1, 3));
  377. RR(VID_FIR_COEF_H(1, 4));
  378. RR(VID_FIR_COEF_H(1, 5));
  379. RR(VID_FIR_COEF_H(1, 6));
  380. RR(VID_FIR_COEF_H(1, 7));
  381. RR(VID_FIR_COEF_HV(1, 0));
  382. RR(VID_FIR_COEF_HV(1, 1));
  383. RR(VID_FIR_COEF_HV(1, 2));
  384. RR(VID_FIR_COEF_HV(1, 3));
  385. RR(VID_FIR_COEF_HV(1, 4));
  386. RR(VID_FIR_COEF_HV(1, 5));
  387. RR(VID_FIR_COEF_HV(1, 6));
  388. RR(VID_FIR_COEF_HV(1, 7));
  389. RR(VID_CONV_COEF(1, 0));
  390. RR(VID_CONV_COEF(1, 1));
  391. RR(VID_CONV_COEF(1, 2));
  392. RR(VID_CONV_COEF(1, 3));
  393. RR(VID_CONV_COEF(1, 4));
  394. RR(VID_FIR_COEF_V(1, 0));
  395. RR(VID_FIR_COEF_V(1, 1));
  396. RR(VID_FIR_COEF_V(1, 2));
  397. RR(VID_FIR_COEF_V(1, 3));
  398. RR(VID_FIR_COEF_V(1, 4));
  399. RR(VID_FIR_COEF_V(1, 5));
  400. RR(VID_FIR_COEF_V(1, 6));
  401. RR(VID_FIR_COEF_V(1, 7));
  402. RR(VID_PRELOAD(1));
  403. /* enable last, because LCD & DIGIT enable are here */
  404. RR(CONTROL);
  405. /* clear spurious SYNC_LOST_DIGIT interrupts */
  406. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  407. /*
  408. * enable last so IRQs won't trigger before
  409. * the context is fully restored
  410. */
  411. RR(IRQENABLE);
  412. }
  413. #undef SR
  414. #undef RR
  415. static inline void enable_clocks(bool enable)
  416. {
  417. if (enable)
  418. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  419. else
  420. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  421. }
  422. bool dispc_go_busy(enum omap_channel channel)
  423. {
  424. int bit;
  425. if (channel == OMAP_DSS_CHANNEL_LCD)
  426. bit = 5; /* GOLCD */
  427. else
  428. bit = 6; /* GODIGIT */
  429. return REG_GET(DISPC_CONTROL, bit, bit) == 1;
  430. }
  431. void dispc_go(enum omap_channel channel)
  432. {
  433. int bit;
  434. enable_clocks(1);
  435. if (channel == OMAP_DSS_CHANNEL_LCD)
  436. bit = 0; /* LCDENABLE */
  437. else
  438. bit = 1; /* DIGITALENABLE */
  439. /* if the channel is not enabled, we don't need GO */
  440. if (REG_GET(DISPC_CONTROL, bit, bit) == 0)
  441. goto end;
  442. if (channel == OMAP_DSS_CHANNEL_LCD)
  443. bit = 5; /* GOLCD */
  444. else
  445. bit = 6; /* GODIGIT */
  446. if (REG_GET(DISPC_CONTROL, bit, bit) == 1) {
  447. DSSERR("GO bit not down for channel %d\n", channel);
  448. goto end;
  449. }
  450. DSSDBG("GO %s\n", channel == OMAP_DSS_CHANNEL_LCD ? "LCD" : "DIGIT");
  451. REG_FLD_MOD(DISPC_CONTROL, 1, bit, bit);
  452. end:
  453. enable_clocks(0);
  454. }
  455. static void _dispc_write_firh_reg(enum omap_plane plane, int reg, u32 value)
  456. {
  457. BUG_ON(plane == OMAP_DSS_GFX);
  458. dispc_write_reg(DISPC_VID_FIR_COEF_H(plane-1, reg), value);
  459. }
  460. static void _dispc_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
  461. {
  462. BUG_ON(plane == OMAP_DSS_GFX);
  463. dispc_write_reg(DISPC_VID_FIR_COEF_HV(plane-1, reg), value);
  464. }
  465. static void _dispc_write_firv_reg(enum omap_plane plane, int reg, u32 value)
  466. {
  467. BUG_ON(plane == OMAP_DSS_GFX);
  468. dispc_write_reg(DISPC_VID_FIR_COEF_V(plane-1, reg), value);
  469. }
  470. static void _dispc_set_scale_coef(enum omap_plane plane, int hscaleup,
  471. int vscaleup, int five_taps)
  472. {
  473. /* Coefficients for horizontal up-sampling */
  474. static const u32 coef_hup[8] = {
  475. 0x00800000,
  476. 0x0D7CF800,
  477. 0x1E70F5FF,
  478. 0x335FF5FE,
  479. 0xF74949F7,
  480. 0xF55F33FB,
  481. 0xF5701EFE,
  482. 0xF87C0DFF,
  483. };
  484. /* Coefficients for horizontal down-sampling */
  485. static const u32 coef_hdown[8] = {
  486. 0x24382400,
  487. 0x28371FFE,
  488. 0x2C361BFB,
  489. 0x303516F9,
  490. 0x11343311,
  491. 0x1635300C,
  492. 0x1B362C08,
  493. 0x1F372804,
  494. };
  495. /* Coefficients for horizontal and vertical up-sampling */
  496. static const u32 coef_hvup[2][8] = {
  497. {
  498. 0x00800000,
  499. 0x037B02FF,
  500. 0x0C6F05FE,
  501. 0x205907FB,
  502. 0x00404000,
  503. 0x075920FE,
  504. 0x056F0CFF,
  505. 0x027B0300,
  506. },
  507. {
  508. 0x00800000,
  509. 0x0D7CF8FF,
  510. 0x1E70F5FE,
  511. 0x335FF5FB,
  512. 0xF7404000,
  513. 0xF55F33FE,
  514. 0xF5701EFF,
  515. 0xF87C0D00,
  516. },
  517. };
  518. /* Coefficients for horizontal and vertical down-sampling */
  519. static const u32 coef_hvdown[2][8] = {
  520. {
  521. 0x24382400,
  522. 0x28391F04,
  523. 0x2D381B08,
  524. 0x3237170C,
  525. 0x123737F7,
  526. 0x173732F9,
  527. 0x1B382DFB,
  528. 0x1F3928FE,
  529. },
  530. {
  531. 0x24382400,
  532. 0x28371F04,
  533. 0x2C361B08,
  534. 0x3035160C,
  535. 0x113433F7,
  536. 0x163530F9,
  537. 0x1B362CFB,
  538. 0x1F3728FE,
  539. },
  540. };
  541. /* Coefficients for vertical up-sampling */
  542. static const u32 coef_vup[8] = {
  543. 0x00000000,
  544. 0x0000FF00,
  545. 0x0000FEFF,
  546. 0x0000FBFE,
  547. 0x000000F7,
  548. 0x0000FEFB,
  549. 0x0000FFFE,
  550. 0x000000FF,
  551. };
  552. /* Coefficients for vertical down-sampling */
  553. static const u32 coef_vdown[8] = {
  554. 0x00000000,
  555. 0x000004FE,
  556. 0x000008FB,
  557. 0x00000CF9,
  558. 0x0000F711,
  559. 0x0000F90C,
  560. 0x0000FB08,
  561. 0x0000FE04,
  562. };
  563. const u32 *h_coef;
  564. const u32 *hv_coef;
  565. const u32 *hv_coef_mod;
  566. const u32 *v_coef;
  567. int i;
  568. if (hscaleup)
  569. h_coef = coef_hup;
  570. else
  571. h_coef = coef_hdown;
  572. if (vscaleup) {
  573. hv_coef = coef_hvup[five_taps];
  574. v_coef = coef_vup;
  575. if (hscaleup)
  576. hv_coef_mod = NULL;
  577. else
  578. hv_coef_mod = coef_hvdown[five_taps];
  579. } else {
  580. hv_coef = coef_hvdown[five_taps];
  581. v_coef = coef_vdown;
  582. if (hscaleup)
  583. hv_coef_mod = coef_hvup[five_taps];
  584. else
  585. hv_coef_mod = NULL;
  586. }
  587. for (i = 0; i < 8; i++) {
  588. u32 h, hv;
  589. h = h_coef[i];
  590. hv = hv_coef[i];
  591. if (hv_coef_mod) {
  592. hv &= 0xffffff00;
  593. hv |= (hv_coef_mod[i] & 0xff);
  594. }
  595. _dispc_write_firh_reg(plane, i, h);
  596. _dispc_write_firhv_reg(plane, i, hv);
  597. }
  598. if (!five_taps)
  599. return;
  600. for (i = 0; i < 8; i++) {
  601. u32 v;
  602. v = v_coef[i];
  603. _dispc_write_firv_reg(plane, i, v);
  604. }
  605. }
  606. static void _dispc_setup_color_conv_coef(void)
  607. {
  608. const struct color_conv_coef {
  609. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  610. int full_range;
  611. } ctbl_bt601_5 = {
  612. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  613. };
  614. const struct color_conv_coef *ct;
  615. #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
  616. ct = &ctbl_bt601_5;
  617. dispc_write_reg(DISPC_VID_CONV_COEF(0, 0), CVAL(ct->rcr, ct->ry));
  618. dispc_write_reg(DISPC_VID_CONV_COEF(0, 1), CVAL(ct->gy, ct->rcb));
  619. dispc_write_reg(DISPC_VID_CONV_COEF(0, 2), CVAL(ct->gcb, ct->gcr));
  620. dispc_write_reg(DISPC_VID_CONV_COEF(0, 3), CVAL(ct->bcr, ct->by));
  621. dispc_write_reg(DISPC_VID_CONV_COEF(0, 4), CVAL(0, ct->bcb));
  622. dispc_write_reg(DISPC_VID_CONV_COEF(1, 0), CVAL(ct->rcr, ct->ry));
  623. dispc_write_reg(DISPC_VID_CONV_COEF(1, 1), CVAL(ct->gy, ct->rcb));
  624. dispc_write_reg(DISPC_VID_CONV_COEF(1, 2), CVAL(ct->gcb, ct->gcr));
  625. dispc_write_reg(DISPC_VID_CONV_COEF(1, 3), CVAL(ct->bcr, ct->by));
  626. dispc_write_reg(DISPC_VID_CONV_COEF(1, 4), CVAL(0, ct->bcb));
  627. #undef CVAL
  628. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(0), ct->full_range, 11, 11);
  629. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(1), ct->full_range, 11, 11);
  630. }
  631. static void _dispc_set_plane_ba0(enum omap_plane plane, u32 paddr)
  632. {
  633. const struct dispc_reg ba0_reg[] = { DISPC_GFX_BA0,
  634. DISPC_VID_BA0(0),
  635. DISPC_VID_BA0(1) };
  636. dispc_write_reg(ba0_reg[plane], paddr);
  637. }
  638. static void _dispc_set_plane_ba1(enum omap_plane plane, u32 paddr)
  639. {
  640. const struct dispc_reg ba1_reg[] = { DISPC_GFX_BA1,
  641. DISPC_VID_BA1(0),
  642. DISPC_VID_BA1(1) };
  643. dispc_write_reg(ba1_reg[plane], paddr);
  644. }
  645. static void _dispc_set_plane_pos(enum omap_plane plane, int x, int y)
  646. {
  647. const struct dispc_reg pos_reg[] = { DISPC_GFX_POSITION,
  648. DISPC_VID_POSITION(0),
  649. DISPC_VID_POSITION(1) };
  650. u32 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
  651. dispc_write_reg(pos_reg[plane], val);
  652. }
  653. static void _dispc_set_pic_size(enum omap_plane plane, int width, int height)
  654. {
  655. const struct dispc_reg siz_reg[] = { DISPC_GFX_SIZE,
  656. DISPC_VID_PICTURE_SIZE(0),
  657. DISPC_VID_PICTURE_SIZE(1) };
  658. u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  659. dispc_write_reg(siz_reg[plane], val);
  660. }
  661. static void _dispc_set_vid_size(enum omap_plane plane, int width, int height)
  662. {
  663. u32 val;
  664. const struct dispc_reg vsi_reg[] = { DISPC_VID_SIZE(0),
  665. DISPC_VID_SIZE(1) };
  666. BUG_ON(plane == OMAP_DSS_GFX);
  667. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  668. dispc_write_reg(vsi_reg[plane-1], val);
  669. }
  670. static void _dispc_setup_global_alpha(enum omap_plane plane, u8 global_alpha)
  671. {
  672. BUG_ON(plane == OMAP_DSS_VIDEO1);
  673. if (cpu_is_omap24xx())
  674. return;
  675. if (plane == OMAP_DSS_GFX)
  676. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 7, 0);
  677. else if (plane == OMAP_DSS_VIDEO2)
  678. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 23, 16);
  679. }
  680. static void _dispc_set_pix_inc(enum omap_plane plane, s32 inc)
  681. {
  682. const struct dispc_reg ri_reg[] = { DISPC_GFX_PIXEL_INC,
  683. DISPC_VID_PIXEL_INC(0),
  684. DISPC_VID_PIXEL_INC(1) };
  685. dispc_write_reg(ri_reg[plane], inc);
  686. }
  687. static void _dispc_set_row_inc(enum omap_plane plane, s32 inc)
  688. {
  689. const struct dispc_reg ri_reg[] = { DISPC_GFX_ROW_INC,
  690. DISPC_VID_ROW_INC(0),
  691. DISPC_VID_ROW_INC(1) };
  692. dispc_write_reg(ri_reg[plane], inc);
  693. }
  694. static void _dispc_set_color_mode(enum omap_plane plane,
  695. enum omap_color_mode color_mode)
  696. {
  697. u32 m = 0;
  698. switch (color_mode) {
  699. case OMAP_DSS_COLOR_CLUT1:
  700. m = 0x0; break;
  701. case OMAP_DSS_COLOR_CLUT2:
  702. m = 0x1; break;
  703. case OMAP_DSS_COLOR_CLUT4:
  704. m = 0x2; break;
  705. case OMAP_DSS_COLOR_CLUT8:
  706. m = 0x3; break;
  707. case OMAP_DSS_COLOR_RGB12U:
  708. m = 0x4; break;
  709. case OMAP_DSS_COLOR_ARGB16:
  710. m = 0x5; break;
  711. case OMAP_DSS_COLOR_RGB16:
  712. m = 0x6; break;
  713. case OMAP_DSS_COLOR_RGB24U:
  714. m = 0x8; break;
  715. case OMAP_DSS_COLOR_RGB24P:
  716. m = 0x9; break;
  717. case OMAP_DSS_COLOR_YUV2:
  718. m = 0xa; break;
  719. case OMAP_DSS_COLOR_UYVY:
  720. m = 0xb; break;
  721. case OMAP_DSS_COLOR_ARGB32:
  722. m = 0xc; break;
  723. case OMAP_DSS_COLOR_RGBA32:
  724. m = 0xd; break;
  725. case OMAP_DSS_COLOR_RGBX32:
  726. m = 0xe; break;
  727. default:
  728. BUG(); break;
  729. }
  730. REG_FLD_MOD(dispc_reg_att[plane], m, 4, 1);
  731. }
  732. static void _dispc_set_channel_out(enum omap_plane plane,
  733. enum omap_channel channel)
  734. {
  735. int shift;
  736. u32 val;
  737. switch (plane) {
  738. case OMAP_DSS_GFX:
  739. shift = 8;
  740. break;
  741. case OMAP_DSS_VIDEO1:
  742. case OMAP_DSS_VIDEO2:
  743. shift = 16;
  744. break;
  745. default:
  746. BUG();
  747. return;
  748. }
  749. val = dispc_read_reg(dispc_reg_att[plane]);
  750. val = FLD_MOD(val, channel, shift, shift);
  751. dispc_write_reg(dispc_reg_att[plane], val);
  752. }
  753. void dispc_set_burst_size(enum omap_plane plane,
  754. enum omap_burst_size burst_size)
  755. {
  756. int shift;
  757. u32 val;
  758. enable_clocks(1);
  759. switch (plane) {
  760. case OMAP_DSS_GFX:
  761. shift = 6;
  762. break;
  763. case OMAP_DSS_VIDEO1:
  764. case OMAP_DSS_VIDEO2:
  765. shift = 14;
  766. break;
  767. default:
  768. BUG();
  769. return;
  770. }
  771. val = dispc_read_reg(dispc_reg_att[plane]);
  772. val = FLD_MOD(val, burst_size, shift+1, shift);
  773. dispc_write_reg(dispc_reg_att[plane], val);
  774. enable_clocks(0);
  775. }
  776. static void _dispc_set_vid_color_conv(enum omap_plane plane, bool enable)
  777. {
  778. u32 val;
  779. BUG_ON(plane == OMAP_DSS_GFX);
  780. val = dispc_read_reg(dispc_reg_att[plane]);
  781. val = FLD_MOD(val, enable, 9, 9);
  782. dispc_write_reg(dispc_reg_att[plane], val);
  783. }
  784. void dispc_enable_replication(enum omap_plane plane, bool enable)
  785. {
  786. int bit;
  787. if (plane == OMAP_DSS_GFX)
  788. bit = 5;
  789. else
  790. bit = 10;
  791. enable_clocks(1);
  792. REG_FLD_MOD(dispc_reg_att[plane], enable, bit, bit);
  793. enable_clocks(0);
  794. }
  795. void dispc_set_lcd_size(u16 width, u16 height)
  796. {
  797. u32 val;
  798. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  799. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  800. enable_clocks(1);
  801. dispc_write_reg(DISPC_SIZE_LCD, val);
  802. enable_clocks(0);
  803. }
  804. void dispc_set_digit_size(u16 width, u16 height)
  805. {
  806. u32 val;
  807. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  808. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  809. enable_clocks(1);
  810. dispc_write_reg(DISPC_SIZE_DIG, val);
  811. enable_clocks(0);
  812. }
  813. static void dispc_read_plane_fifo_sizes(void)
  814. {
  815. const struct dispc_reg fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  816. DISPC_VID_FIFO_SIZE_STATUS(0),
  817. DISPC_VID_FIFO_SIZE_STATUS(1) };
  818. u32 size;
  819. int plane;
  820. enable_clocks(1);
  821. for (plane = 0; plane < ARRAY_SIZE(dispc.fifo_size); ++plane) {
  822. if (cpu_is_omap24xx())
  823. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 8, 0);
  824. else if (cpu_is_omap34xx())
  825. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 10, 0);
  826. else
  827. BUG();
  828. dispc.fifo_size[plane] = size;
  829. }
  830. enable_clocks(0);
  831. }
  832. u32 dispc_get_plane_fifo_size(enum omap_plane plane)
  833. {
  834. return dispc.fifo_size[plane];
  835. }
  836. void dispc_setup_plane_fifo(enum omap_plane plane, u32 low, u32 high)
  837. {
  838. const struct dispc_reg ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  839. DISPC_VID_FIFO_THRESHOLD(0),
  840. DISPC_VID_FIFO_THRESHOLD(1) };
  841. enable_clocks(1);
  842. DSSDBG("fifo(%d) low/high old %u/%u, new %u/%u\n",
  843. plane,
  844. REG_GET(ftrs_reg[plane], 11, 0),
  845. REG_GET(ftrs_reg[plane], 27, 16),
  846. low, high);
  847. if (cpu_is_omap24xx())
  848. dispc_write_reg(ftrs_reg[plane],
  849. FLD_VAL(high, 24, 16) | FLD_VAL(low, 8, 0));
  850. else
  851. dispc_write_reg(ftrs_reg[plane],
  852. FLD_VAL(high, 27, 16) | FLD_VAL(low, 11, 0));
  853. enable_clocks(0);
  854. }
  855. void dispc_enable_fifomerge(bool enable)
  856. {
  857. enable_clocks(1);
  858. DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
  859. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
  860. enable_clocks(0);
  861. }
  862. static void _dispc_set_fir(enum omap_plane plane, int hinc, int vinc)
  863. {
  864. u32 val;
  865. const struct dispc_reg fir_reg[] = { DISPC_VID_FIR(0),
  866. DISPC_VID_FIR(1) };
  867. BUG_ON(plane == OMAP_DSS_GFX);
  868. if (cpu_is_omap24xx())
  869. val = FLD_VAL(vinc, 27, 16) | FLD_VAL(hinc, 11, 0);
  870. else
  871. val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
  872. dispc_write_reg(fir_reg[plane-1], val);
  873. }
  874. static void _dispc_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
  875. {
  876. u32 val;
  877. const struct dispc_reg ac0_reg[] = { DISPC_VID_ACCU0(0),
  878. DISPC_VID_ACCU0(1) };
  879. BUG_ON(plane == OMAP_DSS_GFX);
  880. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  881. dispc_write_reg(ac0_reg[plane-1], val);
  882. }
  883. static void _dispc_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
  884. {
  885. u32 val;
  886. const struct dispc_reg ac1_reg[] = { DISPC_VID_ACCU1(0),
  887. DISPC_VID_ACCU1(1) };
  888. BUG_ON(plane == OMAP_DSS_GFX);
  889. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  890. dispc_write_reg(ac1_reg[plane-1], val);
  891. }
  892. static void _dispc_set_scaling(enum omap_plane plane,
  893. u16 orig_width, u16 orig_height,
  894. u16 out_width, u16 out_height,
  895. bool ilace, bool five_taps,
  896. bool fieldmode)
  897. {
  898. int fir_hinc;
  899. int fir_vinc;
  900. int hscaleup, vscaleup;
  901. int accu0 = 0;
  902. int accu1 = 0;
  903. u32 l;
  904. BUG_ON(plane == OMAP_DSS_GFX);
  905. hscaleup = orig_width <= out_width;
  906. vscaleup = orig_height <= out_height;
  907. _dispc_set_scale_coef(plane, hscaleup, vscaleup, five_taps);
  908. if (!orig_width || orig_width == out_width)
  909. fir_hinc = 0;
  910. else
  911. fir_hinc = 1024 * orig_width / out_width;
  912. if (!orig_height || orig_height == out_height)
  913. fir_vinc = 0;
  914. else
  915. fir_vinc = 1024 * orig_height / out_height;
  916. _dispc_set_fir(plane, fir_hinc, fir_vinc);
  917. l = dispc_read_reg(dispc_reg_att[plane]);
  918. l &= ~((0x0f << 5) | (0x3 << 21));
  919. l |= fir_hinc ? (1 << 5) : 0;
  920. l |= fir_vinc ? (1 << 6) : 0;
  921. l |= hscaleup ? 0 : (1 << 7);
  922. l |= vscaleup ? 0 : (1 << 8);
  923. l |= five_taps ? (1 << 21) : 0;
  924. l |= five_taps ? (1 << 22) : 0;
  925. dispc_write_reg(dispc_reg_att[plane], l);
  926. /*
  927. * field 0 = even field = bottom field
  928. * field 1 = odd field = top field
  929. */
  930. if (ilace && !fieldmode) {
  931. accu1 = 0;
  932. accu0 = (fir_vinc / 2) & 0x3ff;
  933. if (accu0 >= 1024/2) {
  934. accu1 = 1024/2;
  935. accu0 -= accu1;
  936. }
  937. }
  938. _dispc_set_vid_accu0(plane, 0, accu0);
  939. _dispc_set_vid_accu1(plane, 0, accu1);
  940. }
  941. static void _dispc_set_rotation_attrs(enum omap_plane plane, u8 rotation,
  942. bool mirroring, enum omap_color_mode color_mode)
  943. {
  944. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  945. color_mode == OMAP_DSS_COLOR_UYVY) {
  946. int vidrot = 0;
  947. if (mirroring) {
  948. switch (rotation) {
  949. case OMAP_DSS_ROT_0:
  950. vidrot = 2;
  951. break;
  952. case OMAP_DSS_ROT_90:
  953. vidrot = 1;
  954. break;
  955. case OMAP_DSS_ROT_180:
  956. vidrot = 0;
  957. break;
  958. case OMAP_DSS_ROT_270:
  959. vidrot = 3;
  960. break;
  961. }
  962. } else {
  963. switch (rotation) {
  964. case OMAP_DSS_ROT_0:
  965. vidrot = 0;
  966. break;
  967. case OMAP_DSS_ROT_90:
  968. vidrot = 1;
  969. break;
  970. case OMAP_DSS_ROT_180:
  971. vidrot = 2;
  972. break;
  973. case OMAP_DSS_ROT_270:
  974. vidrot = 3;
  975. break;
  976. }
  977. }
  978. REG_FLD_MOD(dispc_reg_att[plane], vidrot, 13, 12);
  979. if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
  980. REG_FLD_MOD(dispc_reg_att[plane], 0x1, 18, 18);
  981. else
  982. REG_FLD_MOD(dispc_reg_att[plane], 0x0, 18, 18);
  983. } else {
  984. REG_FLD_MOD(dispc_reg_att[plane], 0, 13, 12);
  985. REG_FLD_MOD(dispc_reg_att[plane], 0, 18, 18);
  986. }
  987. }
  988. static int color_mode_to_bpp(enum omap_color_mode color_mode)
  989. {
  990. switch (color_mode) {
  991. case OMAP_DSS_COLOR_CLUT1:
  992. return 1;
  993. case OMAP_DSS_COLOR_CLUT2:
  994. return 2;
  995. case OMAP_DSS_COLOR_CLUT4:
  996. return 4;
  997. case OMAP_DSS_COLOR_CLUT8:
  998. return 8;
  999. case OMAP_DSS_COLOR_RGB12U:
  1000. case OMAP_DSS_COLOR_RGB16:
  1001. case OMAP_DSS_COLOR_ARGB16:
  1002. case OMAP_DSS_COLOR_YUV2:
  1003. case OMAP_DSS_COLOR_UYVY:
  1004. return 16;
  1005. case OMAP_DSS_COLOR_RGB24P:
  1006. return 24;
  1007. case OMAP_DSS_COLOR_RGB24U:
  1008. case OMAP_DSS_COLOR_ARGB32:
  1009. case OMAP_DSS_COLOR_RGBA32:
  1010. case OMAP_DSS_COLOR_RGBX32:
  1011. return 32;
  1012. default:
  1013. BUG();
  1014. }
  1015. }
  1016. static s32 pixinc(int pixels, u8 ps)
  1017. {
  1018. if (pixels == 1)
  1019. return 1;
  1020. else if (pixels > 1)
  1021. return 1 + (pixels - 1) * ps;
  1022. else if (pixels < 0)
  1023. return 1 - (-pixels + 1) * ps;
  1024. else
  1025. BUG();
  1026. }
  1027. static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
  1028. u16 screen_width,
  1029. u16 width, u16 height,
  1030. enum omap_color_mode color_mode, bool fieldmode,
  1031. unsigned int field_offset,
  1032. unsigned *offset0, unsigned *offset1,
  1033. s32 *row_inc, s32 *pix_inc)
  1034. {
  1035. u8 ps;
  1036. /* FIXME CLUT formats */
  1037. switch (color_mode) {
  1038. case OMAP_DSS_COLOR_CLUT1:
  1039. case OMAP_DSS_COLOR_CLUT2:
  1040. case OMAP_DSS_COLOR_CLUT4:
  1041. case OMAP_DSS_COLOR_CLUT8:
  1042. BUG();
  1043. return;
  1044. case OMAP_DSS_COLOR_YUV2:
  1045. case OMAP_DSS_COLOR_UYVY:
  1046. ps = 4;
  1047. break;
  1048. default:
  1049. ps = color_mode_to_bpp(color_mode) / 8;
  1050. break;
  1051. }
  1052. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1053. width, height);
  1054. /*
  1055. * field 0 = even field = bottom field
  1056. * field 1 = odd field = top field
  1057. */
  1058. switch (rotation + mirror * 4) {
  1059. case OMAP_DSS_ROT_0:
  1060. case OMAP_DSS_ROT_180:
  1061. /*
  1062. * If the pixel format is YUV or UYVY divide the width
  1063. * of the image by 2 for 0 and 180 degree rotation.
  1064. */
  1065. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1066. color_mode == OMAP_DSS_COLOR_UYVY)
  1067. width = width >> 1;
  1068. case OMAP_DSS_ROT_90:
  1069. case OMAP_DSS_ROT_270:
  1070. *offset1 = 0;
  1071. if (field_offset)
  1072. *offset0 = field_offset * screen_width * ps;
  1073. else
  1074. *offset0 = 0;
  1075. *row_inc = pixinc(1 + (screen_width - width) +
  1076. (fieldmode ? screen_width : 0),
  1077. ps);
  1078. *pix_inc = pixinc(1, ps);
  1079. break;
  1080. case OMAP_DSS_ROT_0 + 4:
  1081. case OMAP_DSS_ROT_180 + 4:
  1082. /* If the pixel format is YUV or UYVY divide the width
  1083. * of the image by 2 for 0 degree and 180 degree
  1084. */
  1085. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1086. color_mode == OMAP_DSS_COLOR_UYVY)
  1087. width = width >> 1;
  1088. case OMAP_DSS_ROT_90 + 4:
  1089. case OMAP_DSS_ROT_270 + 4:
  1090. *offset1 = 0;
  1091. if (field_offset)
  1092. *offset0 = field_offset * screen_width * ps;
  1093. else
  1094. *offset0 = 0;
  1095. *row_inc = pixinc(1 - (screen_width + width) -
  1096. (fieldmode ? screen_width : 0),
  1097. ps);
  1098. *pix_inc = pixinc(1, ps);
  1099. break;
  1100. default:
  1101. BUG();
  1102. }
  1103. }
  1104. static void calc_dma_rotation_offset(u8 rotation, bool mirror,
  1105. u16 screen_width,
  1106. u16 width, u16 height,
  1107. enum omap_color_mode color_mode, bool fieldmode,
  1108. unsigned int field_offset,
  1109. unsigned *offset0, unsigned *offset1,
  1110. s32 *row_inc, s32 *pix_inc)
  1111. {
  1112. u8 ps;
  1113. u16 fbw, fbh;
  1114. /* FIXME CLUT formats */
  1115. switch (color_mode) {
  1116. case OMAP_DSS_COLOR_CLUT1:
  1117. case OMAP_DSS_COLOR_CLUT2:
  1118. case OMAP_DSS_COLOR_CLUT4:
  1119. case OMAP_DSS_COLOR_CLUT8:
  1120. BUG();
  1121. return;
  1122. default:
  1123. ps = color_mode_to_bpp(color_mode) / 8;
  1124. break;
  1125. }
  1126. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1127. width, height);
  1128. /* width & height are overlay sizes, convert to fb sizes */
  1129. if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
  1130. fbw = width;
  1131. fbh = height;
  1132. } else {
  1133. fbw = height;
  1134. fbh = width;
  1135. }
  1136. /*
  1137. * field 0 = even field = bottom field
  1138. * field 1 = odd field = top field
  1139. */
  1140. switch (rotation + mirror * 4) {
  1141. case OMAP_DSS_ROT_0:
  1142. *offset1 = 0;
  1143. if (field_offset)
  1144. *offset0 = *offset1 + field_offset * screen_width * ps;
  1145. else
  1146. *offset0 = *offset1;
  1147. *row_inc = pixinc(1 + (screen_width - fbw) +
  1148. (fieldmode ? screen_width : 0),
  1149. ps);
  1150. *pix_inc = pixinc(1, ps);
  1151. break;
  1152. case OMAP_DSS_ROT_90:
  1153. *offset1 = screen_width * (fbh - 1) * ps;
  1154. if (field_offset)
  1155. *offset0 = *offset1 + field_offset * ps;
  1156. else
  1157. *offset0 = *offset1;
  1158. *row_inc = pixinc(screen_width * (fbh - 1) + 1 +
  1159. (fieldmode ? 1 : 0), ps);
  1160. *pix_inc = pixinc(-screen_width, ps);
  1161. break;
  1162. case OMAP_DSS_ROT_180:
  1163. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1164. if (field_offset)
  1165. *offset0 = *offset1 - field_offset * screen_width * ps;
  1166. else
  1167. *offset0 = *offset1;
  1168. *row_inc = pixinc(-1 -
  1169. (screen_width - fbw) -
  1170. (fieldmode ? screen_width : 0),
  1171. ps);
  1172. *pix_inc = pixinc(-1, ps);
  1173. break;
  1174. case OMAP_DSS_ROT_270:
  1175. *offset1 = (fbw - 1) * ps;
  1176. if (field_offset)
  1177. *offset0 = *offset1 - field_offset * ps;
  1178. else
  1179. *offset0 = *offset1;
  1180. *row_inc = pixinc(-screen_width * (fbh - 1) - 1 -
  1181. (fieldmode ? 1 : 0), ps);
  1182. *pix_inc = pixinc(screen_width, ps);
  1183. break;
  1184. /* mirroring */
  1185. case OMAP_DSS_ROT_0 + 4:
  1186. *offset1 = (fbw - 1) * ps;
  1187. if (field_offset)
  1188. *offset0 = *offset1 + field_offset * screen_width * ps;
  1189. else
  1190. *offset0 = *offset1;
  1191. *row_inc = pixinc(screen_width * 2 - 1 +
  1192. (fieldmode ? screen_width : 0),
  1193. ps);
  1194. *pix_inc = pixinc(-1, ps);
  1195. break;
  1196. case OMAP_DSS_ROT_90 + 4:
  1197. *offset1 = 0;
  1198. if (field_offset)
  1199. *offset0 = *offset1 + field_offset * ps;
  1200. else
  1201. *offset0 = *offset1;
  1202. *row_inc = pixinc(-screen_width * (fbh - 1) + 1 +
  1203. (fieldmode ? 1 : 0),
  1204. ps);
  1205. *pix_inc = pixinc(screen_width, ps);
  1206. break;
  1207. case OMAP_DSS_ROT_180 + 4:
  1208. *offset1 = screen_width * (fbh - 1) * ps;
  1209. if (field_offset)
  1210. *offset0 = *offset1 - field_offset * screen_width * ps;
  1211. else
  1212. *offset0 = *offset1;
  1213. *row_inc = pixinc(1 - screen_width * 2 -
  1214. (fieldmode ? screen_width : 0),
  1215. ps);
  1216. *pix_inc = pixinc(1, ps);
  1217. break;
  1218. case OMAP_DSS_ROT_270 + 4:
  1219. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1220. if (field_offset)
  1221. *offset0 = *offset1 - field_offset * ps;
  1222. else
  1223. *offset0 = *offset1;
  1224. *row_inc = pixinc(screen_width * (fbh - 1) - 1 -
  1225. (fieldmode ? 1 : 0),
  1226. ps);
  1227. *pix_inc = pixinc(-screen_width, ps);
  1228. break;
  1229. default:
  1230. BUG();
  1231. }
  1232. }
  1233. static unsigned long calc_fclk_five_taps(u16 width, u16 height,
  1234. u16 out_width, u16 out_height, enum omap_color_mode color_mode)
  1235. {
  1236. u32 fclk = 0;
  1237. /* FIXME venc pclk? */
  1238. u64 tmp, pclk = dispc_pclk_rate();
  1239. if (height > out_height) {
  1240. /* FIXME get real display PPL */
  1241. unsigned int ppl = 800;
  1242. tmp = pclk * height * out_width;
  1243. do_div(tmp, 2 * out_height * ppl);
  1244. fclk = tmp;
  1245. if (height > 2 * out_height) {
  1246. if (ppl == out_width)
  1247. return 0;
  1248. tmp = pclk * (height - 2 * out_height) * out_width;
  1249. do_div(tmp, 2 * out_height * (ppl - out_width));
  1250. fclk = max(fclk, (u32) tmp);
  1251. }
  1252. }
  1253. if (width > out_width) {
  1254. tmp = pclk * width;
  1255. do_div(tmp, out_width);
  1256. fclk = max(fclk, (u32) tmp);
  1257. if (color_mode == OMAP_DSS_COLOR_RGB24U)
  1258. fclk <<= 1;
  1259. }
  1260. return fclk;
  1261. }
  1262. static unsigned long calc_fclk(u16 width, u16 height,
  1263. u16 out_width, u16 out_height)
  1264. {
  1265. unsigned int hf, vf;
  1266. /*
  1267. * FIXME how to determine the 'A' factor
  1268. * for the no downscaling case ?
  1269. */
  1270. if (width > 3 * out_width)
  1271. hf = 4;
  1272. else if (width > 2 * out_width)
  1273. hf = 3;
  1274. else if (width > out_width)
  1275. hf = 2;
  1276. else
  1277. hf = 1;
  1278. if (height > out_height)
  1279. vf = 2;
  1280. else
  1281. vf = 1;
  1282. /* FIXME venc pclk? */
  1283. return dispc_pclk_rate() * vf * hf;
  1284. }
  1285. void dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel_out)
  1286. {
  1287. enable_clocks(1);
  1288. _dispc_set_channel_out(plane, channel_out);
  1289. enable_clocks(0);
  1290. }
  1291. static int _dispc_setup_plane(enum omap_plane plane,
  1292. u32 paddr, u16 screen_width,
  1293. u16 pos_x, u16 pos_y,
  1294. u16 width, u16 height,
  1295. u16 out_width, u16 out_height,
  1296. enum omap_color_mode color_mode,
  1297. bool ilace,
  1298. enum omap_dss_rotation_type rotation_type,
  1299. u8 rotation, int mirror,
  1300. u8 global_alpha)
  1301. {
  1302. const int maxdownscale = cpu_is_omap34xx() ? 4 : 2;
  1303. bool five_taps = 0;
  1304. bool fieldmode = 0;
  1305. int cconv = 0;
  1306. unsigned offset0, offset1;
  1307. s32 row_inc;
  1308. s32 pix_inc;
  1309. u16 frame_height = height;
  1310. unsigned int field_offset = 0;
  1311. if (paddr == 0)
  1312. return -EINVAL;
  1313. if (ilace && height == out_height)
  1314. fieldmode = 1;
  1315. if (ilace) {
  1316. if (fieldmode)
  1317. height /= 2;
  1318. pos_y /= 2;
  1319. out_height /= 2;
  1320. DSSDBG("adjusting for ilace: height %d, pos_y %d, "
  1321. "out_height %d\n",
  1322. height, pos_y, out_height);
  1323. }
  1324. if (plane == OMAP_DSS_GFX) {
  1325. if (width != out_width || height != out_height)
  1326. return -EINVAL;
  1327. switch (color_mode) {
  1328. case OMAP_DSS_COLOR_ARGB16:
  1329. case OMAP_DSS_COLOR_ARGB32:
  1330. case OMAP_DSS_COLOR_RGBA32:
  1331. case OMAP_DSS_COLOR_RGBX32:
  1332. if (cpu_is_omap24xx())
  1333. return -EINVAL;
  1334. /* fall through */
  1335. case OMAP_DSS_COLOR_RGB12U:
  1336. case OMAP_DSS_COLOR_RGB16:
  1337. case OMAP_DSS_COLOR_RGB24P:
  1338. case OMAP_DSS_COLOR_RGB24U:
  1339. break;
  1340. default:
  1341. return -EINVAL;
  1342. }
  1343. } else {
  1344. /* video plane */
  1345. unsigned long fclk = 0;
  1346. if (out_width < width / maxdownscale ||
  1347. out_width > width * 8)
  1348. return -EINVAL;
  1349. if (out_height < height / maxdownscale ||
  1350. out_height > height * 8)
  1351. return -EINVAL;
  1352. switch (color_mode) {
  1353. case OMAP_DSS_COLOR_RGBX32:
  1354. case OMAP_DSS_COLOR_RGB12U:
  1355. if (cpu_is_omap24xx())
  1356. return -EINVAL;
  1357. /* fall through */
  1358. case OMAP_DSS_COLOR_RGB16:
  1359. case OMAP_DSS_COLOR_RGB24P:
  1360. case OMAP_DSS_COLOR_RGB24U:
  1361. break;
  1362. case OMAP_DSS_COLOR_ARGB16:
  1363. case OMAP_DSS_COLOR_ARGB32:
  1364. case OMAP_DSS_COLOR_RGBA32:
  1365. if (cpu_is_omap24xx())
  1366. return -EINVAL;
  1367. if (plane == OMAP_DSS_VIDEO1)
  1368. return -EINVAL;
  1369. break;
  1370. case OMAP_DSS_COLOR_YUV2:
  1371. case OMAP_DSS_COLOR_UYVY:
  1372. cconv = 1;
  1373. break;
  1374. default:
  1375. return -EINVAL;
  1376. }
  1377. /* Must use 5-tap filter? */
  1378. five_taps = height > out_height * 2;
  1379. if (!five_taps) {
  1380. fclk = calc_fclk(width, height,
  1381. out_width, out_height);
  1382. /* Try 5-tap filter if 3-tap fclk is too high */
  1383. if (cpu_is_omap34xx() && height > out_height &&
  1384. fclk > dispc_fclk_rate())
  1385. five_taps = true;
  1386. }
  1387. if (width > (2048 >> five_taps)) {
  1388. DSSERR("failed to set up scaling, fclk too low\n");
  1389. return -EINVAL;
  1390. }
  1391. if (five_taps)
  1392. fclk = calc_fclk_five_taps(width, height,
  1393. out_width, out_height, color_mode);
  1394. DSSDBG("required fclk rate = %lu Hz\n", fclk);
  1395. DSSDBG("current fclk rate = %lu Hz\n", dispc_fclk_rate());
  1396. if (!fclk || fclk > dispc_fclk_rate()) {
  1397. DSSERR("failed to set up scaling, "
  1398. "required fclk rate = %lu Hz, "
  1399. "current fclk rate = %lu Hz\n",
  1400. fclk, dispc_fclk_rate());
  1401. return -EINVAL;
  1402. }
  1403. }
  1404. if (ilace && !fieldmode) {
  1405. /*
  1406. * when downscaling the bottom field may have to start several
  1407. * source lines below the top field. Unfortunately ACCUI
  1408. * registers will only hold the fractional part of the offset
  1409. * so the integer part must be added to the base address of the
  1410. * bottom field.
  1411. */
  1412. if (!height || height == out_height)
  1413. field_offset = 0;
  1414. else
  1415. field_offset = height / out_height / 2;
  1416. }
  1417. /* Fields are independent but interleaved in memory. */
  1418. if (fieldmode)
  1419. field_offset = 1;
  1420. if (rotation_type == OMAP_DSS_ROT_DMA)
  1421. calc_dma_rotation_offset(rotation, mirror,
  1422. screen_width, width, frame_height, color_mode,
  1423. fieldmode, field_offset,
  1424. &offset0, &offset1, &row_inc, &pix_inc);
  1425. else
  1426. calc_vrfb_rotation_offset(rotation, mirror,
  1427. screen_width, width, frame_height, color_mode,
  1428. fieldmode, field_offset,
  1429. &offset0, &offset1, &row_inc, &pix_inc);
  1430. DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
  1431. offset0, offset1, row_inc, pix_inc);
  1432. _dispc_set_color_mode(plane, color_mode);
  1433. _dispc_set_plane_ba0(plane, paddr + offset0);
  1434. _dispc_set_plane_ba1(plane, paddr + offset1);
  1435. _dispc_set_row_inc(plane, row_inc);
  1436. _dispc_set_pix_inc(plane, pix_inc);
  1437. DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, width, height,
  1438. out_width, out_height);
  1439. _dispc_set_plane_pos(plane, pos_x, pos_y);
  1440. _dispc_set_pic_size(plane, width, height);
  1441. if (plane != OMAP_DSS_GFX) {
  1442. _dispc_set_scaling(plane, width, height,
  1443. out_width, out_height,
  1444. ilace, five_taps, fieldmode);
  1445. _dispc_set_vid_size(plane, out_width, out_height);
  1446. _dispc_set_vid_color_conv(plane, cconv);
  1447. }
  1448. _dispc_set_rotation_attrs(plane, rotation, mirror, color_mode);
  1449. if (plane != OMAP_DSS_VIDEO1)
  1450. _dispc_setup_global_alpha(plane, global_alpha);
  1451. return 0;
  1452. }
  1453. static void _dispc_enable_plane(enum omap_plane plane, bool enable)
  1454. {
  1455. REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 0, 0);
  1456. }
  1457. static void dispc_disable_isr(void *data, u32 mask)
  1458. {
  1459. struct completion *compl = data;
  1460. complete(compl);
  1461. }
  1462. static void _enable_lcd_out(bool enable)
  1463. {
  1464. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 0, 0);
  1465. }
  1466. static void dispc_enable_lcd_out(bool enable)
  1467. {
  1468. struct completion frame_done_completion;
  1469. bool is_on;
  1470. int r;
  1471. enable_clocks(1);
  1472. /* When we disable LCD output, we need to wait until frame is done.
  1473. * Otherwise the DSS is still working, and turning off the clocks
  1474. * prevents DSS from going to OFF mode */
  1475. is_on = REG_GET(DISPC_CONTROL, 0, 0);
  1476. if (!enable && is_on) {
  1477. init_completion(&frame_done_completion);
  1478. r = omap_dispc_register_isr(dispc_disable_isr,
  1479. &frame_done_completion,
  1480. DISPC_IRQ_FRAMEDONE);
  1481. if (r)
  1482. DSSERR("failed to register FRAMEDONE isr\n");
  1483. }
  1484. _enable_lcd_out(enable);
  1485. if (!enable && is_on) {
  1486. if (!wait_for_completion_timeout(&frame_done_completion,
  1487. msecs_to_jiffies(100)))
  1488. DSSERR("timeout waiting for FRAME DONE\n");
  1489. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1490. &frame_done_completion,
  1491. DISPC_IRQ_FRAMEDONE);
  1492. if (r)
  1493. DSSERR("failed to unregister FRAMEDONE isr\n");
  1494. }
  1495. enable_clocks(0);
  1496. }
  1497. static void _enable_digit_out(bool enable)
  1498. {
  1499. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 1, 1);
  1500. }
  1501. static void dispc_enable_digit_out(bool enable)
  1502. {
  1503. struct completion frame_done_completion;
  1504. int r;
  1505. enable_clocks(1);
  1506. if (REG_GET(DISPC_CONTROL, 1, 1) == enable) {
  1507. enable_clocks(0);
  1508. return;
  1509. }
  1510. if (enable) {
  1511. unsigned long flags;
  1512. /* When we enable digit output, we'll get an extra digit
  1513. * sync lost interrupt, that we need to ignore */
  1514. spin_lock_irqsave(&dispc.irq_lock, flags);
  1515. dispc.irq_error_mask &= ~DISPC_IRQ_SYNC_LOST_DIGIT;
  1516. _omap_dispc_set_irqs();
  1517. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1518. }
  1519. /* When we disable digit output, we need to wait until fields are done.
  1520. * Otherwise the DSS is still working, and turning off the clocks
  1521. * prevents DSS from going to OFF mode. And when enabling, we need to
  1522. * wait for the extra sync losts */
  1523. init_completion(&frame_done_completion);
  1524. r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion,
  1525. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1526. if (r)
  1527. DSSERR("failed to register EVSYNC isr\n");
  1528. _enable_digit_out(enable);
  1529. /* XXX I understand from TRM that we should only wait for the
  1530. * current field to complete. But it seems we have to wait
  1531. * for both fields */
  1532. if (!wait_for_completion_timeout(&frame_done_completion,
  1533. msecs_to_jiffies(100)))
  1534. DSSERR("timeout waiting for EVSYNC\n");
  1535. if (!wait_for_completion_timeout(&frame_done_completion,
  1536. msecs_to_jiffies(100)))
  1537. DSSERR("timeout waiting for EVSYNC\n");
  1538. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1539. &frame_done_completion,
  1540. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1541. if (r)
  1542. DSSERR("failed to unregister EVSYNC isr\n");
  1543. if (enable) {
  1544. unsigned long flags;
  1545. spin_lock_irqsave(&dispc.irq_lock, flags);
  1546. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  1547. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  1548. _omap_dispc_set_irqs();
  1549. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1550. }
  1551. enable_clocks(0);
  1552. }
  1553. bool dispc_is_channel_enabled(enum omap_channel channel)
  1554. {
  1555. if (channel == OMAP_DSS_CHANNEL_LCD)
  1556. return !!REG_GET(DISPC_CONTROL, 0, 0);
  1557. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1558. return !!REG_GET(DISPC_CONTROL, 1, 1);
  1559. else
  1560. BUG();
  1561. }
  1562. void dispc_enable_channel(enum omap_channel channel, bool enable)
  1563. {
  1564. if (channel == OMAP_DSS_CHANNEL_LCD)
  1565. dispc_enable_lcd_out(enable);
  1566. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1567. dispc_enable_digit_out(enable);
  1568. else
  1569. BUG();
  1570. }
  1571. void dispc_lcd_enable_signal_polarity(bool act_high)
  1572. {
  1573. enable_clocks(1);
  1574. REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
  1575. enable_clocks(0);
  1576. }
  1577. void dispc_lcd_enable_signal(bool enable)
  1578. {
  1579. enable_clocks(1);
  1580. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
  1581. enable_clocks(0);
  1582. }
  1583. void dispc_pck_free_enable(bool enable)
  1584. {
  1585. enable_clocks(1);
  1586. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
  1587. enable_clocks(0);
  1588. }
  1589. void dispc_enable_fifohandcheck(bool enable)
  1590. {
  1591. enable_clocks(1);
  1592. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 16, 16);
  1593. enable_clocks(0);
  1594. }
  1595. void dispc_set_lcd_display_type(enum omap_lcd_display_type type)
  1596. {
  1597. int mode;
  1598. switch (type) {
  1599. case OMAP_DSS_LCD_DISPLAY_STN:
  1600. mode = 0;
  1601. break;
  1602. case OMAP_DSS_LCD_DISPLAY_TFT:
  1603. mode = 1;
  1604. break;
  1605. default:
  1606. BUG();
  1607. return;
  1608. }
  1609. enable_clocks(1);
  1610. REG_FLD_MOD(DISPC_CONTROL, mode, 3, 3);
  1611. enable_clocks(0);
  1612. }
  1613. void dispc_set_loadmode(enum omap_dss_load_mode mode)
  1614. {
  1615. enable_clocks(1);
  1616. REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
  1617. enable_clocks(0);
  1618. }
  1619. void dispc_set_default_color(enum omap_channel channel, u32 color)
  1620. {
  1621. const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
  1622. DISPC_DEFAULT_COLOR1 };
  1623. enable_clocks(1);
  1624. dispc_write_reg(def_reg[channel], color);
  1625. enable_clocks(0);
  1626. }
  1627. u32 dispc_get_default_color(enum omap_channel channel)
  1628. {
  1629. const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
  1630. DISPC_DEFAULT_COLOR1 };
  1631. u32 l;
  1632. BUG_ON(channel != OMAP_DSS_CHANNEL_DIGIT &&
  1633. channel != OMAP_DSS_CHANNEL_LCD);
  1634. enable_clocks(1);
  1635. l = dispc_read_reg(def_reg[channel]);
  1636. enable_clocks(0);
  1637. return l;
  1638. }
  1639. void dispc_set_trans_key(enum omap_channel ch,
  1640. enum omap_dss_trans_key_type type,
  1641. u32 trans_key)
  1642. {
  1643. const struct dispc_reg tr_reg[] = {
  1644. DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
  1645. enable_clocks(1);
  1646. if (ch == OMAP_DSS_CHANNEL_LCD)
  1647. REG_FLD_MOD(DISPC_CONFIG, type, 11, 11);
  1648. else /* OMAP_DSS_CHANNEL_DIGIT */
  1649. REG_FLD_MOD(DISPC_CONFIG, type, 13, 13);
  1650. dispc_write_reg(tr_reg[ch], trans_key);
  1651. enable_clocks(0);
  1652. }
  1653. void dispc_get_trans_key(enum omap_channel ch,
  1654. enum omap_dss_trans_key_type *type,
  1655. u32 *trans_key)
  1656. {
  1657. const struct dispc_reg tr_reg[] = {
  1658. DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
  1659. enable_clocks(1);
  1660. if (type) {
  1661. if (ch == OMAP_DSS_CHANNEL_LCD)
  1662. *type = REG_GET(DISPC_CONFIG, 11, 11);
  1663. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1664. *type = REG_GET(DISPC_CONFIG, 13, 13);
  1665. else
  1666. BUG();
  1667. }
  1668. if (trans_key)
  1669. *trans_key = dispc_read_reg(tr_reg[ch]);
  1670. enable_clocks(0);
  1671. }
  1672. void dispc_enable_trans_key(enum omap_channel ch, bool enable)
  1673. {
  1674. enable_clocks(1);
  1675. if (ch == OMAP_DSS_CHANNEL_LCD)
  1676. REG_FLD_MOD(DISPC_CONFIG, enable, 10, 10);
  1677. else /* OMAP_DSS_CHANNEL_DIGIT */
  1678. REG_FLD_MOD(DISPC_CONFIG, enable, 12, 12);
  1679. enable_clocks(0);
  1680. }
  1681. void dispc_enable_alpha_blending(enum omap_channel ch, bool enable)
  1682. {
  1683. if (cpu_is_omap24xx())
  1684. return;
  1685. enable_clocks(1);
  1686. if (ch == OMAP_DSS_CHANNEL_LCD)
  1687. REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
  1688. else /* OMAP_DSS_CHANNEL_DIGIT */
  1689. REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
  1690. enable_clocks(0);
  1691. }
  1692. bool dispc_alpha_blending_enabled(enum omap_channel ch)
  1693. {
  1694. bool enabled;
  1695. if (cpu_is_omap24xx())
  1696. return false;
  1697. enable_clocks(1);
  1698. if (ch == OMAP_DSS_CHANNEL_LCD)
  1699. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1700. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1701. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1702. else
  1703. BUG();
  1704. enable_clocks(0);
  1705. return enabled;
  1706. }
  1707. bool dispc_trans_key_enabled(enum omap_channel ch)
  1708. {
  1709. bool enabled;
  1710. enable_clocks(1);
  1711. if (ch == OMAP_DSS_CHANNEL_LCD)
  1712. enabled = REG_GET(DISPC_CONFIG, 10, 10);
  1713. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1714. enabled = REG_GET(DISPC_CONFIG, 12, 12);
  1715. else
  1716. BUG();
  1717. enable_clocks(0);
  1718. return enabled;
  1719. }
  1720. void dispc_set_tft_data_lines(u8 data_lines)
  1721. {
  1722. int code;
  1723. switch (data_lines) {
  1724. case 12:
  1725. code = 0;
  1726. break;
  1727. case 16:
  1728. code = 1;
  1729. break;
  1730. case 18:
  1731. code = 2;
  1732. break;
  1733. case 24:
  1734. code = 3;
  1735. break;
  1736. default:
  1737. BUG();
  1738. return;
  1739. }
  1740. enable_clocks(1);
  1741. REG_FLD_MOD(DISPC_CONTROL, code, 9, 8);
  1742. enable_clocks(0);
  1743. }
  1744. void dispc_set_parallel_interface_mode(enum omap_parallel_interface_mode mode)
  1745. {
  1746. u32 l;
  1747. int stallmode;
  1748. int gpout0 = 1;
  1749. int gpout1;
  1750. switch (mode) {
  1751. case OMAP_DSS_PARALLELMODE_BYPASS:
  1752. stallmode = 0;
  1753. gpout1 = 1;
  1754. break;
  1755. case OMAP_DSS_PARALLELMODE_RFBI:
  1756. stallmode = 1;
  1757. gpout1 = 0;
  1758. break;
  1759. case OMAP_DSS_PARALLELMODE_DSI:
  1760. stallmode = 1;
  1761. gpout1 = 1;
  1762. break;
  1763. default:
  1764. BUG();
  1765. return;
  1766. }
  1767. enable_clocks(1);
  1768. l = dispc_read_reg(DISPC_CONTROL);
  1769. l = FLD_MOD(l, stallmode, 11, 11);
  1770. l = FLD_MOD(l, gpout0, 15, 15);
  1771. l = FLD_MOD(l, gpout1, 16, 16);
  1772. dispc_write_reg(DISPC_CONTROL, l);
  1773. enable_clocks(0);
  1774. }
  1775. static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
  1776. int vsw, int vfp, int vbp)
  1777. {
  1778. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1779. if (hsw < 1 || hsw > 64 ||
  1780. hfp < 1 || hfp > 256 ||
  1781. hbp < 1 || hbp > 256 ||
  1782. vsw < 1 || vsw > 64 ||
  1783. vfp < 0 || vfp > 255 ||
  1784. vbp < 0 || vbp > 255)
  1785. return false;
  1786. } else {
  1787. if (hsw < 1 || hsw > 256 ||
  1788. hfp < 1 || hfp > 4096 ||
  1789. hbp < 1 || hbp > 4096 ||
  1790. vsw < 1 || vsw > 256 ||
  1791. vfp < 0 || vfp > 4095 ||
  1792. vbp < 0 || vbp > 4095)
  1793. return false;
  1794. }
  1795. return true;
  1796. }
  1797. bool dispc_lcd_timings_ok(struct omap_video_timings *timings)
  1798. {
  1799. return _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1800. timings->hbp, timings->vsw,
  1801. timings->vfp, timings->vbp);
  1802. }
  1803. static void _dispc_set_lcd_timings(int hsw, int hfp, int hbp,
  1804. int vsw, int vfp, int vbp)
  1805. {
  1806. u32 timing_h, timing_v;
  1807. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1808. timing_h = FLD_VAL(hsw-1, 5, 0) | FLD_VAL(hfp-1, 15, 8) |
  1809. FLD_VAL(hbp-1, 27, 20);
  1810. timing_v = FLD_VAL(vsw-1, 5, 0) | FLD_VAL(vfp, 15, 8) |
  1811. FLD_VAL(vbp, 27, 20);
  1812. } else {
  1813. timing_h = FLD_VAL(hsw-1, 7, 0) | FLD_VAL(hfp-1, 19, 8) |
  1814. FLD_VAL(hbp-1, 31, 20);
  1815. timing_v = FLD_VAL(vsw-1, 7, 0) | FLD_VAL(vfp, 19, 8) |
  1816. FLD_VAL(vbp, 31, 20);
  1817. }
  1818. enable_clocks(1);
  1819. dispc_write_reg(DISPC_TIMING_H, timing_h);
  1820. dispc_write_reg(DISPC_TIMING_V, timing_v);
  1821. enable_clocks(0);
  1822. }
  1823. /* change name to mode? */
  1824. void dispc_set_lcd_timings(struct omap_video_timings *timings)
  1825. {
  1826. unsigned xtot, ytot;
  1827. unsigned long ht, vt;
  1828. if (!_dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1829. timings->hbp, timings->vsw,
  1830. timings->vfp, timings->vbp))
  1831. BUG();
  1832. _dispc_set_lcd_timings(timings->hsw, timings->hfp, timings->hbp,
  1833. timings->vsw, timings->vfp, timings->vbp);
  1834. dispc_set_lcd_size(timings->x_res, timings->y_res);
  1835. xtot = timings->x_res + timings->hfp + timings->hsw + timings->hbp;
  1836. ytot = timings->y_res + timings->vfp + timings->vsw + timings->vbp;
  1837. ht = (timings->pixel_clock * 1000) / xtot;
  1838. vt = (timings->pixel_clock * 1000) / xtot / ytot;
  1839. DSSDBG("xres %u yres %u\n", timings->x_res, timings->y_res);
  1840. DSSDBG("pck %u\n", timings->pixel_clock);
  1841. DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
  1842. timings->hsw, timings->hfp, timings->hbp,
  1843. timings->vsw, timings->vfp, timings->vbp);
  1844. DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
  1845. }
  1846. static void dispc_set_lcd_divisor(u16 lck_div, u16 pck_div)
  1847. {
  1848. BUG_ON(lck_div < 1);
  1849. BUG_ON(pck_div < 2);
  1850. enable_clocks(1);
  1851. dispc_write_reg(DISPC_DIVISOR,
  1852. FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
  1853. enable_clocks(0);
  1854. }
  1855. static void dispc_get_lcd_divisor(int *lck_div, int *pck_div)
  1856. {
  1857. u32 l;
  1858. l = dispc_read_reg(DISPC_DIVISOR);
  1859. *lck_div = FLD_GET(l, 23, 16);
  1860. *pck_div = FLD_GET(l, 7, 0);
  1861. }
  1862. unsigned long dispc_fclk_rate(void)
  1863. {
  1864. unsigned long r = 0;
  1865. if (dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK)
  1866. r = dss_clk_get_rate(DSS_CLK_FCK1);
  1867. else
  1868. #ifdef CONFIG_OMAP2_DSS_DSI
  1869. r = dsi_get_dsi1_pll_rate();
  1870. #else
  1871. BUG();
  1872. #endif
  1873. return r;
  1874. }
  1875. unsigned long dispc_lclk_rate(void)
  1876. {
  1877. int lcd;
  1878. unsigned long r;
  1879. u32 l;
  1880. l = dispc_read_reg(DISPC_DIVISOR);
  1881. lcd = FLD_GET(l, 23, 16);
  1882. r = dispc_fclk_rate();
  1883. return r / lcd;
  1884. }
  1885. unsigned long dispc_pclk_rate(void)
  1886. {
  1887. int lcd, pcd;
  1888. unsigned long r;
  1889. u32 l;
  1890. l = dispc_read_reg(DISPC_DIVISOR);
  1891. lcd = FLD_GET(l, 23, 16);
  1892. pcd = FLD_GET(l, 7, 0);
  1893. r = dispc_fclk_rate();
  1894. return r / lcd / pcd;
  1895. }
  1896. void dispc_dump_clocks(struct seq_file *s)
  1897. {
  1898. int lcd, pcd;
  1899. enable_clocks(1);
  1900. dispc_get_lcd_divisor(&lcd, &pcd);
  1901. seq_printf(s, "- DISPC -\n");
  1902. seq_printf(s, "dispc fclk source = %s\n",
  1903. dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ?
  1904. "dss1_alwon_fclk" : "dsi1_pll_fclk");
  1905. seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
  1906. seq_printf(s, "lck\t\t%-16lulck div\t%u\n", dispc_lclk_rate(), lcd);
  1907. seq_printf(s, "pck\t\t%-16lupck div\t%u\n", dispc_pclk_rate(), pcd);
  1908. enable_clocks(0);
  1909. }
  1910. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  1911. void dispc_dump_irqs(struct seq_file *s)
  1912. {
  1913. unsigned long flags;
  1914. struct dispc_irq_stats stats;
  1915. spin_lock_irqsave(&dispc.irq_stats_lock, flags);
  1916. stats = dispc.irq_stats;
  1917. memset(&dispc.irq_stats, 0, sizeof(dispc.irq_stats));
  1918. dispc.irq_stats.last_reset = jiffies;
  1919. spin_unlock_irqrestore(&dispc.irq_stats_lock, flags);
  1920. seq_printf(s, "period %u ms\n",
  1921. jiffies_to_msecs(jiffies - stats.last_reset));
  1922. seq_printf(s, "irqs %d\n", stats.irq_count);
  1923. #define PIS(x) \
  1924. seq_printf(s, "%-20s %10d\n", #x, stats.irqs[ffs(DISPC_IRQ_##x)-1]);
  1925. PIS(FRAMEDONE);
  1926. PIS(VSYNC);
  1927. PIS(EVSYNC_EVEN);
  1928. PIS(EVSYNC_ODD);
  1929. PIS(ACBIAS_COUNT_STAT);
  1930. PIS(PROG_LINE_NUM);
  1931. PIS(GFX_FIFO_UNDERFLOW);
  1932. PIS(GFX_END_WIN);
  1933. PIS(PAL_GAMMA_MASK);
  1934. PIS(OCP_ERR);
  1935. PIS(VID1_FIFO_UNDERFLOW);
  1936. PIS(VID1_END_WIN);
  1937. PIS(VID2_FIFO_UNDERFLOW);
  1938. PIS(VID2_END_WIN);
  1939. PIS(SYNC_LOST);
  1940. PIS(SYNC_LOST_DIGIT);
  1941. PIS(WAKEUP);
  1942. #undef PIS
  1943. }
  1944. #endif
  1945. void dispc_dump_regs(struct seq_file *s)
  1946. {
  1947. #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dispc_read_reg(r))
  1948. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  1949. DUMPREG(DISPC_REVISION);
  1950. DUMPREG(DISPC_SYSCONFIG);
  1951. DUMPREG(DISPC_SYSSTATUS);
  1952. DUMPREG(DISPC_IRQSTATUS);
  1953. DUMPREG(DISPC_IRQENABLE);
  1954. DUMPREG(DISPC_CONTROL);
  1955. DUMPREG(DISPC_CONFIG);
  1956. DUMPREG(DISPC_CAPABLE);
  1957. DUMPREG(DISPC_DEFAULT_COLOR0);
  1958. DUMPREG(DISPC_DEFAULT_COLOR1);
  1959. DUMPREG(DISPC_TRANS_COLOR0);
  1960. DUMPREG(DISPC_TRANS_COLOR1);
  1961. DUMPREG(DISPC_LINE_STATUS);
  1962. DUMPREG(DISPC_LINE_NUMBER);
  1963. DUMPREG(DISPC_TIMING_H);
  1964. DUMPREG(DISPC_TIMING_V);
  1965. DUMPREG(DISPC_POL_FREQ);
  1966. DUMPREG(DISPC_DIVISOR);
  1967. DUMPREG(DISPC_GLOBAL_ALPHA);
  1968. DUMPREG(DISPC_SIZE_DIG);
  1969. DUMPREG(DISPC_SIZE_LCD);
  1970. DUMPREG(DISPC_GFX_BA0);
  1971. DUMPREG(DISPC_GFX_BA1);
  1972. DUMPREG(DISPC_GFX_POSITION);
  1973. DUMPREG(DISPC_GFX_SIZE);
  1974. DUMPREG(DISPC_GFX_ATTRIBUTES);
  1975. DUMPREG(DISPC_GFX_FIFO_THRESHOLD);
  1976. DUMPREG(DISPC_GFX_FIFO_SIZE_STATUS);
  1977. DUMPREG(DISPC_GFX_ROW_INC);
  1978. DUMPREG(DISPC_GFX_PIXEL_INC);
  1979. DUMPREG(DISPC_GFX_WINDOW_SKIP);
  1980. DUMPREG(DISPC_GFX_TABLE_BA);
  1981. DUMPREG(DISPC_DATA_CYCLE1);
  1982. DUMPREG(DISPC_DATA_CYCLE2);
  1983. DUMPREG(DISPC_DATA_CYCLE3);
  1984. DUMPREG(DISPC_CPR_COEF_R);
  1985. DUMPREG(DISPC_CPR_COEF_G);
  1986. DUMPREG(DISPC_CPR_COEF_B);
  1987. DUMPREG(DISPC_GFX_PRELOAD);
  1988. DUMPREG(DISPC_VID_BA0(0));
  1989. DUMPREG(DISPC_VID_BA1(0));
  1990. DUMPREG(DISPC_VID_POSITION(0));
  1991. DUMPREG(DISPC_VID_SIZE(0));
  1992. DUMPREG(DISPC_VID_ATTRIBUTES(0));
  1993. DUMPREG(DISPC_VID_FIFO_THRESHOLD(0));
  1994. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(0));
  1995. DUMPREG(DISPC_VID_ROW_INC(0));
  1996. DUMPREG(DISPC_VID_PIXEL_INC(0));
  1997. DUMPREG(DISPC_VID_FIR(0));
  1998. DUMPREG(DISPC_VID_PICTURE_SIZE(0));
  1999. DUMPREG(DISPC_VID_ACCU0(0));
  2000. DUMPREG(DISPC_VID_ACCU1(0));
  2001. DUMPREG(DISPC_VID_BA0(1));
  2002. DUMPREG(DISPC_VID_BA1(1));
  2003. DUMPREG(DISPC_VID_POSITION(1));
  2004. DUMPREG(DISPC_VID_SIZE(1));
  2005. DUMPREG(DISPC_VID_ATTRIBUTES(1));
  2006. DUMPREG(DISPC_VID_FIFO_THRESHOLD(1));
  2007. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(1));
  2008. DUMPREG(DISPC_VID_ROW_INC(1));
  2009. DUMPREG(DISPC_VID_PIXEL_INC(1));
  2010. DUMPREG(DISPC_VID_FIR(1));
  2011. DUMPREG(DISPC_VID_PICTURE_SIZE(1));
  2012. DUMPREG(DISPC_VID_ACCU0(1));
  2013. DUMPREG(DISPC_VID_ACCU1(1));
  2014. DUMPREG(DISPC_VID_FIR_COEF_H(0, 0));
  2015. DUMPREG(DISPC_VID_FIR_COEF_H(0, 1));
  2016. DUMPREG(DISPC_VID_FIR_COEF_H(0, 2));
  2017. DUMPREG(DISPC_VID_FIR_COEF_H(0, 3));
  2018. DUMPREG(DISPC_VID_FIR_COEF_H(0, 4));
  2019. DUMPREG(DISPC_VID_FIR_COEF_H(0, 5));
  2020. DUMPREG(DISPC_VID_FIR_COEF_H(0, 6));
  2021. DUMPREG(DISPC_VID_FIR_COEF_H(0, 7));
  2022. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 0));
  2023. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 1));
  2024. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 2));
  2025. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 3));
  2026. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 4));
  2027. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 5));
  2028. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 6));
  2029. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 7));
  2030. DUMPREG(DISPC_VID_CONV_COEF(0, 0));
  2031. DUMPREG(DISPC_VID_CONV_COEF(0, 1));
  2032. DUMPREG(DISPC_VID_CONV_COEF(0, 2));
  2033. DUMPREG(DISPC_VID_CONV_COEF(0, 3));
  2034. DUMPREG(DISPC_VID_CONV_COEF(0, 4));
  2035. DUMPREG(DISPC_VID_FIR_COEF_V(0, 0));
  2036. DUMPREG(DISPC_VID_FIR_COEF_V(0, 1));
  2037. DUMPREG(DISPC_VID_FIR_COEF_V(0, 2));
  2038. DUMPREG(DISPC_VID_FIR_COEF_V(0, 3));
  2039. DUMPREG(DISPC_VID_FIR_COEF_V(0, 4));
  2040. DUMPREG(DISPC_VID_FIR_COEF_V(0, 5));
  2041. DUMPREG(DISPC_VID_FIR_COEF_V(0, 6));
  2042. DUMPREG(DISPC_VID_FIR_COEF_V(0, 7));
  2043. DUMPREG(DISPC_VID_FIR_COEF_H(1, 0));
  2044. DUMPREG(DISPC_VID_FIR_COEF_H(1, 1));
  2045. DUMPREG(DISPC_VID_FIR_COEF_H(1, 2));
  2046. DUMPREG(DISPC_VID_FIR_COEF_H(1, 3));
  2047. DUMPREG(DISPC_VID_FIR_COEF_H(1, 4));
  2048. DUMPREG(DISPC_VID_FIR_COEF_H(1, 5));
  2049. DUMPREG(DISPC_VID_FIR_COEF_H(1, 6));
  2050. DUMPREG(DISPC_VID_FIR_COEF_H(1, 7));
  2051. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 0));
  2052. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 1));
  2053. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 2));
  2054. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 3));
  2055. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 4));
  2056. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 5));
  2057. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 6));
  2058. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 7));
  2059. DUMPREG(DISPC_VID_CONV_COEF(1, 0));
  2060. DUMPREG(DISPC_VID_CONV_COEF(1, 1));
  2061. DUMPREG(DISPC_VID_CONV_COEF(1, 2));
  2062. DUMPREG(DISPC_VID_CONV_COEF(1, 3));
  2063. DUMPREG(DISPC_VID_CONV_COEF(1, 4));
  2064. DUMPREG(DISPC_VID_FIR_COEF_V(1, 0));
  2065. DUMPREG(DISPC_VID_FIR_COEF_V(1, 1));
  2066. DUMPREG(DISPC_VID_FIR_COEF_V(1, 2));
  2067. DUMPREG(DISPC_VID_FIR_COEF_V(1, 3));
  2068. DUMPREG(DISPC_VID_FIR_COEF_V(1, 4));
  2069. DUMPREG(DISPC_VID_FIR_COEF_V(1, 5));
  2070. DUMPREG(DISPC_VID_FIR_COEF_V(1, 6));
  2071. DUMPREG(DISPC_VID_FIR_COEF_V(1, 7));
  2072. DUMPREG(DISPC_VID_PRELOAD(0));
  2073. DUMPREG(DISPC_VID_PRELOAD(1));
  2074. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  2075. #undef DUMPREG
  2076. }
  2077. static void _dispc_set_pol_freq(bool onoff, bool rf, bool ieo, bool ipc,
  2078. bool ihs, bool ivs, u8 acbi, u8 acb)
  2079. {
  2080. u32 l = 0;
  2081. DSSDBG("onoff %d rf %d ieo %d ipc %d ihs %d ivs %d acbi %d acb %d\n",
  2082. onoff, rf, ieo, ipc, ihs, ivs, acbi, acb);
  2083. l |= FLD_VAL(onoff, 17, 17);
  2084. l |= FLD_VAL(rf, 16, 16);
  2085. l |= FLD_VAL(ieo, 15, 15);
  2086. l |= FLD_VAL(ipc, 14, 14);
  2087. l |= FLD_VAL(ihs, 13, 13);
  2088. l |= FLD_VAL(ivs, 12, 12);
  2089. l |= FLD_VAL(acbi, 11, 8);
  2090. l |= FLD_VAL(acb, 7, 0);
  2091. enable_clocks(1);
  2092. dispc_write_reg(DISPC_POL_FREQ, l);
  2093. enable_clocks(0);
  2094. }
  2095. void dispc_set_pol_freq(enum omap_panel_config config, u8 acbi, u8 acb)
  2096. {
  2097. _dispc_set_pol_freq((config & OMAP_DSS_LCD_ONOFF) != 0,
  2098. (config & OMAP_DSS_LCD_RF) != 0,
  2099. (config & OMAP_DSS_LCD_IEO) != 0,
  2100. (config & OMAP_DSS_LCD_IPC) != 0,
  2101. (config & OMAP_DSS_LCD_IHS) != 0,
  2102. (config & OMAP_DSS_LCD_IVS) != 0,
  2103. acbi, acb);
  2104. }
  2105. /* with fck as input clock rate, find dispc dividers that produce req_pck */
  2106. void dispc_find_clk_divs(bool is_tft, unsigned long req_pck, unsigned long fck,
  2107. struct dispc_clock_info *cinfo)
  2108. {
  2109. u16 pcd_min = is_tft ? 2 : 3;
  2110. unsigned long best_pck;
  2111. u16 best_ld, cur_ld;
  2112. u16 best_pd, cur_pd;
  2113. best_pck = 0;
  2114. best_ld = 0;
  2115. best_pd = 0;
  2116. for (cur_ld = 1; cur_ld <= 255; ++cur_ld) {
  2117. unsigned long lck = fck / cur_ld;
  2118. for (cur_pd = pcd_min; cur_pd <= 255; ++cur_pd) {
  2119. unsigned long pck = lck / cur_pd;
  2120. long old_delta = abs(best_pck - req_pck);
  2121. long new_delta = abs(pck - req_pck);
  2122. if (best_pck == 0 || new_delta < old_delta) {
  2123. best_pck = pck;
  2124. best_ld = cur_ld;
  2125. best_pd = cur_pd;
  2126. if (pck == req_pck)
  2127. goto found;
  2128. }
  2129. if (pck < req_pck)
  2130. break;
  2131. }
  2132. if (lck / pcd_min < req_pck)
  2133. break;
  2134. }
  2135. found:
  2136. cinfo->lck_div = best_ld;
  2137. cinfo->pck_div = best_pd;
  2138. cinfo->lck = fck / cinfo->lck_div;
  2139. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2140. }
  2141. /* calculate clock rates using dividers in cinfo */
  2142. int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
  2143. struct dispc_clock_info *cinfo)
  2144. {
  2145. if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
  2146. return -EINVAL;
  2147. if (cinfo->pck_div < 2 || cinfo->pck_div > 255)
  2148. return -EINVAL;
  2149. cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
  2150. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2151. return 0;
  2152. }
  2153. int dispc_set_clock_div(struct dispc_clock_info *cinfo)
  2154. {
  2155. DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
  2156. DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
  2157. dispc_set_lcd_divisor(cinfo->lck_div, cinfo->pck_div);
  2158. return 0;
  2159. }
  2160. int dispc_get_clock_div(struct dispc_clock_info *cinfo)
  2161. {
  2162. unsigned long fck;
  2163. fck = dispc_fclk_rate();
  2164. cinfo->lck_div = REG_GET(DISPC_DIVISOR, 23, 16);
  2165. cinfo->pck_div = REG_GET(DISPC_DIVISOR, 7, 0);
  2166. cinfo->lck = fck / cinfo->lck_div;
  2167. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2168. return 0;
  2169. }
  2170. /* dispc.irq_lock has to be locked by the caller */
  2171. static void _omap_dispc_set_irqs(void)
  2172. {
  2173. u32 mask;
  2174. u32 old_mask;
  2175. int i;
  2176. struct omap_dispc_isr_data *isr_data;
  2177. mask = dispc.irq_error_mask;
  2178. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2179. isr_data = &dispc.registered_isr[i];
  2180. if (isr_data->isr == NULL)
  2181. continue;
  2182. mask |= isr_data->mask;
  2183. }
  2184. enable_clocks(1);
  2185. old_mask = dispc_read_reg(DISPC_IRQENABLE);
  2186. /* clear the irqstatus for newly enabled irqs */
  2187. dispc_write_reg(DISPC_IRQSTATUS, (mask ^ old_mask) & mask);
  2188. dispc_write_reg(DISPC_IRQENABLE, mask);
  2189. enable_clocks(0);
  2190. }
  2191. int omap_dispc_register_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2192. {
  2193. int i;
  2194. int ret;
  2195. unsigned long flags;
  2196. struct omap_dispc_isr_data *isr_data;
  2197. if (isr == NULL)
  2198. return -EINVAL;
  2199. spin_lock_irqsave(&dispc.irq_lock, flags);
  2200. /* check for duplicate entry */
  2201. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2202. isr_data = &dispc.registered_isr[i];
  2203. if (isr_data->isr == isr && isr_data->arg == arg &&
  2204. isr_data->mask == mask) {
  2205. ret = -EINVAL;
  2206. goto err;
  2207. }
  2208. }
  2209. isr_data = NULL;
  2210. ret = -EBUSY;
  2211. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2212. isr_data = &dispc.registered_isr[i];
  2213. if (isr_data->isr != NULL)
  2214. continue;
  2215. isr_data->isr = isr;
  2216. isr_data->arg = arg;
  2217. isr_data->mask = mask;
  2218. ret = 0;
  2219. break;
  2220. }
  2221. _omap_dispc_set_irqs();
  2222. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2223. return 0;
  2224. err:
  2225. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2226. return ret;
  2227. }
  2228. EXPORT_SYMBOL(omap_dispc_register_isr);
  2229. int omap_dispc_unregister_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2230. {
  2231. int i;
  2232. unsigned long flags;
  2233. int ret = -EINVAL;
  2234. struct omap_dispc_isr_data *isr_data;
  2235. spin_lock_irqsave(&dispc.irq_lock, flags);
  2236. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2237. isr_data = &dispc.registered_isr[i];
  2238. if (isr_data->isr != isr || isr_data->arg != arg ||
  2239. isr_data->mask != mask)
  2240. continue;
  2241. /* found the correct isr */
  2242. isr_data->isr = NULL;
  2243. isr_data->arg = NULL;
  2244. isr_data->mask = 0;
  2245. ret = 0;
  2246. break;
  2247. }
  2248. if (ret == 0)
  2249. _omap_dispc_set_irqs();
  2250. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2251. return ret;
  2252. }
  2253. EXPORT_SYMBOL(omap_dispc_unregister_isr);
  2254. #ifdef DEBUG
  2255. static void print_irq_status(u32 status)
  2256. {
  2257. if ((status & dispc.irq_error_mask) == 0)
  2258. return;
  2259. printk(KERN_DEBUG "DISPC IRQ: 0x%x: ", status);
  2260. #define PIS(x) \
  2261. if (status & DISPC_IRQ_##x) \
  2262. printk(#x " ");
  2263. PIS(GFX_FIFO_UNDERFLOW);
  2264. PIS(OCP_ERR);
  2265. PIS(VID1_FIFO_UNDERFLOW);
  2266. PIS(VID2_FIFO_UNDERFLOW);
  2267. PIS(SYNC_LOST);
  2268. PIS(SYNC_LOST_DIGIT);
  2269. #undef PIS
  2270. printk("\n");
  2271. }
  2272. #endif
  2273. /* Called from dss.c. Note that we don't touch clocks here,
  2274. * but we presume they are on because we got an IRQ. However,
  2275. * an irq handler may turn the clocks off, so we may not have
  2276. * clock later in the function. */
  2277. void dispc_irq_handler(void)
  2278. {
  2279. int i;
  2280. u32 irqstatus;
  2281. u32 handledirqs = 0;
  2282. u32 unhandled_errors;
  2283. struct omap_dispc_isr_data *isr_data;
  2284. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  2285. spin_lock(&dispc.irq_lock);
  2286. irqstatus = dispc_read_reg(DISPC_IRQSTATUS);
  2287. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2288. spin_lock(&dispc.irq_stats_lock);
  2289. dispc.irq_stats.irq_count++;
  2290. dss_collect_irq_stats(irqstatus, dispc.irq_stats.irqs);
  2291. spin_unlock(&dispc.irq_stats_lock);
  2292. #endif
  2293. #ifdef DEBUG
  2294. if (dss_debug)
  2295. print_irq_status(irqstatus);
  2296. #endif
  2297. /* Ack the interrupt. Do it here before clocks are possibly turned
  2298. * off */
  2299. dispc_write_reg(DISPC_IRQSTATUS, irqstatus);
  2300. /* flush posted write */
  2301. dispc_read_reg(DISPC_IRQSTATUS);
  2302. /* make a copy and unlock, so that isrs can unregister
  2303. * themselves */
  2304. memcpy(registered_isr, dispc.registered_isr,
  2305. sizeof(registered_isr));
  2306. spin_unlock(&dispc.irq_lock);
  2307. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2308. isr_data = &registered_isr[i];
  2309. if (!isr_data->isr)
  2310. continue;
  2311. if (isr_data->mask & irqstatus) {
  2312. isr_data->isr(isr_data->arg, irqstatus);
  2313. handledirqs |= isr_data->mask;
  2314. }
  2315. }
  2316. spin_lock(&dispc.irq_lock);
  2317. unhandled_errors = irqstatus & ~handledirqs & dispc.irq_error_mask;
  2318. if (unhandled_errors) {
  2319. dispc.error_irqs |= unhandled_errors;
  2320. dispc.irq_error_mask &= ~unhandled_errors;
  2321. _omap_dispc_set_irqs();
  2322. schedule_work(&dispc.error_work);
  2323. }
  2324. spin_unlock(&dispc.irq_lock);
  2325. }
  2326. static void dispc_error_worker(struct work_struct *work)
  2327. {
  2328. int i;
  2329. u32 errors;
  2330. unsigned long flags;
  2331. spin_lock_irqsave(&dispc.irq_lock, flags);
  2332. errors = dispc.error_irqs;
  2333. dispc.error_irqs = 0;
  2334. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2335. if (errors & DISPC_IRQ_GFX_FIFO_UNDERFLOW) {
  2336. DSSERR("GFX_FIFO_UNDERFLOW, disabling GFX\n");
  2337. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2338. struct omap_overlay *ovl;
  2339. ovl = omap_dss_get_overlay(i);
  2340. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2341. continue;
  2342. if (ovl->id == 0) {
  2343. dispc_enable_plane(ovl->id, 0);
  2344. dispc_go(ovl->manager->id);
  2345. mdelay(50);
  2346. break;
  2347. }
  2348. }
  2349. }
  2350. if (errors & DISPC_IRQ_VID1_FIFO_UNDERFLOW) {
  2351. DSSERR("VID1_FIFO_UNDERFLOW, disabling VID1\n");
  2352. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2353. struct omap_overlay *ovl;
  2354. ovl = omap_dss_get_overlay(i);
  2355. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2356. continue;
  2357. if (ovl->id == 1) {
  2358. dispc_enable_plane(ovl->id, 0);
  2359. dispc_go(ovl->manager->id);
  2360. mdelay(50);
  2361. break;
  2362. }
  2363. }
  2364. }
  2365. if (errors & DISPC_IRQ_VID2_FIFO_UNDERFLOW) {
  2366. DSSERR("VID2_FIFO_UNDERFLOW, disabling VID2\n");
  2367. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2368. struct omap_overlay *ovl;
  2369. ovl = omap_dss_get_overlay(i);
  2370. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2371. continue;
  2372. if (ovl->id == 2) {
  2373. dispc_enable_plane(ovl->id, 0);
  2374. dispc_go(ovl->manager->id);
  2375. mdelay(50);
  2376. break;
  2377. }
  2378. }
  2379. }
  2380. if (errors & DISPC_IRQ_SYNC_LOST) {
  2381. struct omap_overlay_manager *manager = NULL;
  2382. bool enable = false;
  2383. DSSERR("SYNC_LOST, disabling LCD\n");
  2384. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2385. struct omap_overlay_manager *mgr;
  2386. mgr = omap_dss_get_overlay_manager(i);
  2387. if (mgr->id == OMAP_DSS_CHANNEL_LCD) {
  2388. manager = mgr;
  2389. enable = mgr->device->state ==
  2390. OMAP_DSS_DISPLAY_ACTIVE;
  2391. mgr->device->driver->disable(mgr->device);
  2392. break;
  2393. }
  2394. }
  2395. if (manager) {
  2396. struct omap_dss_device *dssdev = manager->device;
  2397. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2398. struct omap_overlay *ovl;
  2399. ovl = omap_dss_get_overlay(i);
  2400. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2401. continue;
  2402. if (ovl->id != 0 && ovl->manager == manager)
  2403. dispc_enable_plane(ovl->id, 0);
  2404. }
  2405. dispc_go(manager->id);
  2406. mdelay(50);
  2407. if (enable)
  2408. dssdev->driver->enable(dssdev);
  2409. }
  2410. }
  2411. if (errors & DISPC_IRQ_SYNC_LOST_DIGIT) {
  2412. struct omap_overlay_manager *manager = NULL;
  2413. bool enable = false;
  2414. DSSERR("SYNC_LOST_DIGIT, disabling TV\n");
  2415. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2416. struct omap_overlay_manager *mgr;
  2417. mgr = omap_dss_get_overlay_manager(i);
  2418. if (mgr->id == OMAP_DSS_CHANNEL_DIGIT) {
  2419. manager = mgr;
  2420. enable = mgr->device->state ==
  2421. OMAP_DSS_DISPLAY_ACTIVE;
  2422. mgr->device->driver->disable(mgr->device);
  2423. break;
  2424. }
  2425. }
  2426. if (manager) {
  2427. struct omap_dss_device *dssdev = manager->device;
  2428. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2429. struct omap_overlay *ovl;
  2430. ovl = omap_dss_get_overlay(i);
  2431. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2432. continue;
  2433. if (ovl->id != 0 && ovl->manager == manager)
  2434. dispc_enable_plane(ovl->id, 0);
  2435. }
  2436. dispc_go(manager->id);
  2437. mdelay(50);
  2438. if (enable)
  2439. dssdev->driver->enable(dssdev);
  2440. }
  2441. }
  2442. if (errors & DISPC_IRQ_OCP_ERR) {
  2443. DSSERR("OCP_ERR\n");
  2444. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2445. struct omap_overlay_manager *mgr;
  2446. mgr = omap_dss_get_overlay_manager(i);
  2447. if (mgr->caps & OMAP_DSS_OVL_CAP_DISPC)
  2448. mgr->device->driver->disable(mgr->device);
  2449. }
  2450. }
  2451. spin_lock_irqsave(&dispc.irq_lock, flags);
  2452. dispc.irq_error_mask |= errors;
  2453. _omap_dispc_set_irqs();
  2454. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2455. }
  2456. int omap_dispc_wait_for_irq_timeout(u32 irqmask, unsigned long timeout)
  2457. {
  2458. void dispc_irq_wait_handler(void *data, u32 mask)
  2459. {
  2460. complete((struct completion *)data);
  2461. }
  2462. int r;
  2463. DECLARE_COMPLETION_ONSTACK(completion);
  2464. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2465. irqmask);
  2466. if (r)
  2467. return r;
  2468. timeout = wait_for_completion_timeout(&completion, timeout);
  2469. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2470. if (timeout == 0)
  2471. return -ETIMEDOUT;
  2472. if (timeout == -ERESTARTSYS)
  2473. return -ERESTARTSYS;
  2474. return 0;
  2475. }
  2476. int omap_dispc_wait_for_irq_interruptible_timeout(u32 irqmask,
  2477. unsigned long timeout)
  2478. {
  2479. void dispc_irq_wait_handler(void *data, u32 mask)
  2480. {
  2481. complete((struct completion *)data);
  2482. }
  2483. int r;
  2484. DECLARE_COMPLETION_ONSTACK(completion);
  2485. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2486. irqmask);
  2487. if (r)
  2488. return r;
  2489. timeout = wait_for_completion_interruptible_timeout(&completion,
  2490. timeout);
  2491. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2492. if (timeout == 0)
  2493. return -ETIMEDOUT;
  2494. if (timeout == -ERESTARTSYS)
  2495. return -ERESTARTSYS;
  2496. return 0;
  2497. }
  2498. #ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC
  2499. void dispc_fake_vsync_irq(void)
  2500. {
  2501. u32 irqstatus = DISPC_IRQ_VSYNC;
  2502. int i;
  2503. WARN_ON(!in_interrupt());
  2504. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2505. struct omap_dispc_isr_data *isr_data;
  2506. isr_data = &dispc.registered_isr[i];
  2507. if (!isr_data->isr)
  2508. continue;
  2509. if (isr_data->mask & irqstatus)
  2510. isr_data->isr(isr_data->arg, irqstatus);
  2511. }
  2512. }
  2513. #endif
  2514. static void _omap_dispc_initialize_irq(void)
  2515. {
  2516. unsigned long flags;
  2517. spin_lock_irqsave(&dispc.irq_lock, flags);
  2518. memset(dispc.registered_isr, 0, sizeof(dispc.registered_isr));
  2519. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  2520. /* there's SYNC_LOST_DIGIT waiting after enabling the DSS,
  2521. * so clear it */
  2522. dispc_write_reg(DISPC_IRQSTATUS, dispc_read_reg(DISPC_IRQSTATUS));
  2523. _omap_dispc_set_irqs();
  2524. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2525. }
  2526. void dispc_enable_sidle(void)
  2527. {
  2528. REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
  2529. }
  2530. void dispc_disable_sidle(void)
  2531. {
  2532. REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
  2533. }
  2534. static void _omap_dispc_initial_config(void)
  2535. {
  2536. u32 l;
  2537. l = dispc_read_reg(DISPC_SYSCONFIG);
  2538. l = FLD_MOD(l, 2, 13, 12); /* MIDLEMODE: smart standby */
  2539. l = FLD_MOD(l, 2, 4, 3); /* SIDLEMODE: smart idle */
  2540. l = FLD_MOD(l, 1, 2, 2); /* ENWAKEUP */
  2541. l = FLD_MOD(l, 1, 0, 0); /* AUTOIDLE */
  2542. dispc_write_reg(DISPC_SYSCONFIG, l);
  2543. /* FUNCGATED */
  2544. REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
  2545. /* L3 firewall setting: enable access to OCM RAM */
  2546. /* XXX this should be somewhere in plat-omap */
  2547. if (cpu_is_omap24xx())
  2548. __raw_writel(0x402000b0, OMAP2_L3_IO_ADDRESS(0x680050a0));
  2549. _dispc_setup_color_conv_coef();
  2550. dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
  2551. dispc_read_plane_fifo_sizes();
  2552. }
  2553. int dispc_init(void)
  2554. {
  2555. u32 rev;
  2556. spin_lock_init(&dispc.irq_lock);
  2557. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2558. spin_lock_init(&dispc.irq_stats_lock);
  2559. dispc.irq_stats.last_reset = jiffies;
  2560. #endif
  2561. INIT_WORK(&dispc.error_work, dispc_error_worker);
  2562. dispc.base = ioremap(DISPC_BASE, DISPC_SZ_REGS);
  2563. if (!dispc.base) {
  2564. DSSERR("can't ioremap DISPC\n");
  2565. return -ENOMEM;
  2566. }
  2567. enable_clocks(1);
  2568. _omap_dispc_initial_config();
  2569. _omap_dispc_initialize_irq();
  2570. dispc_save_context();
  2571. rev = dispc_read_reg(DISPC_REVISION);
  2572. printk(KERN_INFO "OMAP DISPC rev %d.%d\n",
  2573. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  2574. enable_clocks(0);
  2575. return 0;
  2576. }
  2577. void dispc_exit(void)
  2578. {
  2579. iounmap(dispc.base);
  2580. }
  2581. int dispc_enable_plane(enum omap_plane plane, bool enable)
  2582. {
  2583. DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
  2584. enable_clocks(1);
  2585. _dispc_enable_plane(plane, enable);
  2586. enable_clocks(0);
  2587. return 0;
  2588. }
  2589. int dispc_setup_plane(enum omap_plane plane,
  2590. u32 paddr, u16 screen_width,
  2591. u16 pos_x, u16 pos_y,
  2592. u16 width, u16 height,
  2593. u16 out_width, u16 out_height,
  2594. enum omap_color_mode color_mode,
  2595. bool ilace,
  2596. enum omap_dss_rotation_type rotation_type,
  2597. u8 rotation, bool mirror, u8 global_alpha)
  2598. {
  2599. int r = 0;
  2600. DSSDBG("dispc_setup_plane %d, pa %x, sw %d, %d,%d, %dx%d -> "
  2601. "%dx%d, ilace %d, cmode %x, rot %d, mir %d\n",
  2602. plane, paddr, screen_width, pos_x, pos_y,
  2603. width, height,
  2604. out_width, out_height,
  2605. ilace, color_mode,
  2606. rotation, mirror);
  2607. enable_clocks(1);
  2608. r = _dispc_setup_plane(plane,
  2609. paddr, screen_width,
  2610. pos_x, pos_y,
  2611. width, height,
  2612. out_width, out_height,
  2613. color_mode, ilace,
  2614. rotation_type,
  2615. rotation, mirror,
  2616. global_alpha);
  2617. enable_clocks(0);
  2618. return r;
  2619. }