spi_s3c64xx.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196
  1. /* linux/drivers/spi/spi_s3c64xx.c
  2. *
  3. * Copyright (C) 2009 Samsung Electronics Ltd.
  4. * Jaswinder Singh <jassi.brar@samsung.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/init.h>
  21. #include <linux/module.h>
  22. #include <linux/workqueue.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/spi.h>
  28. #include <mach/dma.h>
  29. #include <plat/s3c64xx-spi.h>
  30. /* Registers and bit-fields */
  31. #define S3C64XX_SPI_CH_CFG 0x00
  32. #define S3C64XX_SPI_CLK_CFG 0x04
  33. #define S3C64XX_SPI_MODE_CFG 0x08
  34. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  35. #define S3C64XX_SPI_INT_EN 0x10
  36. #define S3C64XX_SPI_STATUS 0x14
  37. #define S3C64XX_SPI_TX_DATA 0x18
  38. #define S3C64XX_SPI_RX_DATA 0x1C
  39. #define S3C64XX_SPI_PACKET_CNT 0x20
  40. #define S3C64XX_SPI_PENDING_CLR 0x24
  41. #define S3C64XX_SPI_SWAP_CFG 0x28
  42. #define S3C64XX_SPI_FB_CLK 0x2C
  43. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  44. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  45. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  46. #define S3C64XX_SPI_CPOL_L (1<<3)
  47. #define S3C64XX_SPI_CPHA_B (1<<2)
  48. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  49. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  50. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  51. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  52. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  53. #define S3C64XX_SPI_PSR_MASK 0xff
  54. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  55. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  56. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  57. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  58. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  59. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  60. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  61. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  62. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  63. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  64. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  65. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  66. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  67. #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  68. #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
  69. (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  70. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  71. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  72. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  73. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  74. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  75. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  76. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  77. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  78. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  79. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  80. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  81. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  82. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  83. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  84. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  85. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  86. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  87. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  88. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  89. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  90. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  91. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  92. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  93. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  94. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  95. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  96. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  97. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  98. #define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  99. (((i)->fifo_lvl_mask + 1))) \
  100. ? 1 : 0)
  101. #define S3C64XX_SPI_ST_TX_DONE(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  102. (((i)->fifo_lvl_mask + 1) << 1)) \
  103. ? 1 : 0)
  104. #define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask)
  105. #define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask)
  106. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  107. #define S3C64XX_SPI_TRAILCNT_OFF 19
  108. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  109. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  110. #define SUSPND (1<<0)
  111. #define SPIBUSY (1<<1)
  112. #define RXBUSY (1<<2)
  113. #define TXBUSY (1<<3)
  114. /**
  115. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  116. * @clk: Pointer to the spi clock.
  117. * @src_clk: Pointer to the clock used to generate SPI signals.
  118. * @master: Pointer to the SPI Protocol master.
  119. * @workqueue: Work queue for the SPI xfer requests.
  120. * @cntrlr_info: Platform specific data for the controller this driver manages.
  121. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  122. * @work: Work
  123. * @queue: To log SPI xfer requests.
  124. * @lock: Controller specific lock.
  125. * @state: Set of FLAGS to indicate status.
  126. * @rx_dmach: Controller's DMA channel for Rx.
  127. * @tx_dmach: Controller's DMA channel for Tx.
  128. * @sfr_start: BUS address of SPI controller regs.
  129. * @regs: Pointer to ioremap'ed controller registers.
  130. * @xfer_completion: To indicate completion of xfer task.
  131. * @cur_mode: Stores the active configuration of the controller.
  132. * @cur_bpw: Stores the active bits per word settings.
  133. * @cur_speed: Stores the active xfer clock speed.
  134. */
  135. struct s3c64xx_spi_driver_data {
  136. void __iomem *regs;
  137. struct clk *clk;
  138. struct clk *src_clk;
  139. struct platform_device *pdev;
  140. struct spi_master *master;
  141. struct workqueue_struct *workqueue;
  142. struct s3c64xx_spi_info *cntrlr_info;
  143. struct spi_device *tgl_spi;
  144. struct work_struct work;
  145. struct list_head queue;
  146. spinlock_t lock;
  147. enum dma_ch rx_dmach;
  148. enum dma_ch tx_dmach;
  149. unsigned long sfr_start;
  150. struct completion xfer_completion;
  151. unsigned state;
  152. unsigned cur_mode, cur_bpw;
  153. unsigned cur_speed;
  154. };
  155. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  156. .name = "samsung-spi-dma",
  157. };
  158. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  159. {
  160. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  161. void __iomem *regs = sdd->regs;
  162. unsigned long loops;
  163. u32 val;
  164. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  165. val = readl(regs + S3C64XX_SPI_CH_CFG);
  166. val |= S3C64XX_SPI_CH_SW_RST;
  167. val &= ~S3C64XX_SPI_CH_HS_EN;
  168. writel(val, regs + S3C64XX_SPI_CH_CFG);
  169. /* Flush TxFIFO*/
  170. loops = msecs_to_loops(1);
  171. do {
  172. val = readl(regs + S3C64XX_SPI_STATUS);
  173. } while (TX_FIFO_LVL(val, sci) && loops--);
  174. if (loops == 0)
  175. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  176. /* Flush RxFIFO*/
  177. loops = msecs_to_loops(1);
  178. do {
  179. val = readl(regs + S3C64XX_SPI_STATUS);
  180. if (RX_FIFO_LVL(val, sci))
  181. readl(regs + S3C64XX_SPI_RX_DATA);
  182. else
  183. break;
  184. } while (loops--);
  185. if (loops == 0)
  186. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  187. val = readl(regs + S3C64XX_SPI_CH_CFG);
  188. val &= ~S3C64XX_SPI_CH_SW_RST;
  189. writel(val, regs + S3C64XX_SPI_CH_CFG);
  190. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  191. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  192. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  193. val = readl(regs + S3C64XX_SPI_CH_CFG);
  194. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  195. writel(val, regs + S3C64XX_SPI_CH_CFG);
  196. }
  197. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  198. struct spi_device *spi,
  199. struct spi_transfer *xfer, int dma_mode)
  200. {
  201. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  202. void __iomem *regs = sdd->regs;
  203. u32 modecfg, chcfg;
  204. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  205. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  206. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  207. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  208. if (dma_mode) {
  209. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  210. } else {
  211. /* Always shift in data in FIFO, even if xfer is Tx only,
  212. * this helps setting PCKT_CNT value for generating clocks
  213. * as exactly needed.
  214. */
  215. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  216. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  217. | S3C64XX_SPI_PACKET_CNT_EN,
  218. regs + S3C64XX_SPI_PACKET_CNT);
  219. }
  220. if (xfer->tx_buf != NULL) {
  221. sdd->state |= TXBUSY;
  222. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  223. if (dma_mode) {
  224. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  225. s3c2410_dma_config(sdd->tx_dmach, 1);
  226. s3c2410_dma_enqueue(sdd->tx_dmach, (void *)sdd,
  227. xfer->tx_dma, xfer->len);
  228. s3c2410_dma_ctrl(sdd->tx_dmach, S3C2410_DMAOP_START);
  229. } else {
  230. unsigned char *buf = (unsigned char *) xfer->tx_buf;
  231. int i = 0;
  232. while (i < xfer->len)
  233. writeb(buf[i++], regs + S3C64XX_SPI_TX_DATA);
  234. }
  235. }
  236. if (xfer->rx_buf != NULL) {
  237. sdd->state |= RXBUSY;
  238. if (sci->high_speed && sdd->cur_speed >= 30000000UL
  239. && !(sdd->cur_mode & SPI_CPHA))
  240. chcfg |= S3C64XX_SPI_CH_HS_EN;
  241. if (dma_mode) {
  242. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  243. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  244. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  245. | S3C64XX_SPI_PACKET_CNT_EN,
  246. regs + S3C64XX_SPI_PACKET_CNT);
  247. s3c2410_dma_config(sdd->rx_dmach, 1);
  248. s3c2410_dma_enqueue(sdd->rx_dmach, (void *)sdd,
  249. xfer->rx_dma, xfer->len);
  250. s3c2410_dma_ctrl(sdd->rx_dmach, S3C2410_DMAOP_START);
  251. }
  252. }
  253. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  254. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  255. }
  256. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  257. struct spi_device *spi)
  258. {
  259. struct s3c64xx_spi_csinfo *cs;
  260. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  261. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  262. /* Deselect the last toggled device */
  263. cs = sdd->tgl_spi->controller_data;
  264. cs->set_level(cs->line,
  265. spi->mode & SPI_CS_HIGH ? 0 : 1);
  266. }
  267. sdd->tgl_spi = NULL;
  268. }
  269. cs = spi->controller_data;
  270. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
  271. }
  272. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  273. struct spi_transfer *xfer, int dma_mode)
  274. {
  275. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  276. void __iomem *regs = sdd->regs;
  277. unsigned long val;
  278. int ms;
  279. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  280. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  281. ms += 10; /* some tolerance */
  282. if (dma_mode) {
  283. val = msecs_to_jiffies(ms) + 10;
  284. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  285. } else {
  286. u32 status;
  287. val = msecs_to_loops(ms);
  288. do {
  289. status = readl(regs + S3C64XX_SPI_STATUS);
  290. } while (RX_FIFO_LVL(status, sci) < xfer->len && --val);
  291. }
  292. if (!val)
  293. return -EIO;
  294. if (dma_mode) {
  295. u32 status;
  296. /*
  297. * DmaTx returns after simply writing data in the FIFO,
  298. * w/o waiting for real transmission on the bus to finish.
  299. * DmaRx returns only after Dma read data from FIFO which
  300. * needs bus transmission to finish, so we don't worry if
  301. * Xfer involved Rx(with or without Tx).
  302. */
  303. if (xfer->rx_buf == NULL) {
  304. val = msecs_to_loops(10);
  305. status = readl(regs + S3C64XX_SPI_STATUS);
  306. while ((TX_FIFO_LVL(status, sci)
  307. || !S3C64XX_SPI_ST_TX_DONE(status, sci))
  308. && --val) {
  309. cpu_relax();
  310. status = readl(regs + S3C64XX_SPI_STATUS);
  311. }
  312. if (!val)
  313. return -EIO;
  314. }
  315. } else {
  316. unsigned char *buf;
  317. int i;
  318. /* If it was only Tx */
  319. if (xfer->rx_buf == NULL) {
  320. sdd->state &= ~TXBUSY;
  321. return 0;
  322. }
  323. i = 0;
  324. buf = xfer->rx_buf;
  325. while (i < xfer->len)
  326. buf[i++] = readb(regs + S3C64XX_SPI_RX_DATA);
  327. sdd->state &= ~RXBUSY;
  328. }
  329. return 0;
  330. }
  331. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  332. struct spi_device *spi)
  333. {
  334. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  335. if (sdd->tgl_spi == spi)
  336. sdd->tgl_spi = NULL;
  337. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
  338. }
  339. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  340. {
  341. void __iomem *regs = sdd->regs;
  342. u32 val;
  343. /* Disable Clock */
  344. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  345. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  346. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  347. /* Set Polarity and Phase */
  348. val = readl(regs + S3C64XX_SPI_CH_CFG);
  349. val &= ~(S3C64XX_SPI_CH_SLAVE |
  350. S3C64XX_SPI_CPOL_L |
  351. S3C64XX_SPI_CPHA_B);
  352. if (sdd->cur_mode & SPI_CPOL)
  353. val |= S3C64XX_SPI_CPOL_L;
  354. if (sdd->cur_mode & SPI_CPHA)
  355. val |= S3C64XX_SPI_CPHA_B;
  356. writel(val, regs + S3C64XX_SPI_CH_CFG);
  357. /* Set Channel & DMA Mode */
  358. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  359. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  360. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  361. switch (sdd->cur_bpw) {
  362. case 32:
  363. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  364. break;
  365. case 16:
  366. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  367. break;
  368. default:
  369. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  370. break;
  371. }
  372. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE; /* Always 8bits wide */
  373. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  374. /* Configure Clock */
  375. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  376. val &= ~S3C64XX_SPI_PSR_MASK;
  377. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  378. & S3C64XX_SPI_PSR_MASK);
  379. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  380. /* Enable Clock */
  381. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  382. val |= S3C64XX_SPI_ENCLK_ENABLE;
  383. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  384. }
  385. static void s3c64xx_spi_dma_rxcb(struct s3c2410_dma_chan *chan, void *buf_id,
  386. int size, enum s3c2410_dma_buffresult res)
  387. {
  388. struct s3c64xx_spi_driver_data *sdd = buf_id;
  389. unsigned long flags;
  390. spin_lock_irqsave(&sdd->lock, flags);
  391. if (res == S3C2410_RES_OK)
  392. sdd->state &= ~RXBUSY;
  393. else
  394. dev_err(&sdd->pdev->dev, "DmaAbrtRx-%d\n", size);
  395. /* If the other done */
  396. if (!(sdd->state & TXBUSY))
  397. complete(&sdd->xfer_completion);
  398. spin_unlock_irqrestore(&sdd->lock, flags);
  399. }
  400. static void s3c64xx_spi_dma_txcb(struct s3c2410_dma_chan *chan, void *buf_id,
  401. int size, enum s3c2410_dma_buffresult res)
  402. {
  403. struct s3c64xx_spi_driver_data *sdd = buf_id;
  404. unsigned long flags;
  405. spin_lock_irqsave(&sdd->lock, flags);
  406. if (res == S3C2410_RES_OK)
  407. sdd->state &= ~TXBUSY;
  408. else
  409. dev_err(&sdd->pdev->dev, "DmaAbrtTx-%d \n", size);
  410. /* If the other done */
  411. if (!(sdd->state & RXBUSY))
  412. complete(&sdd->xfer_completion);
  413. spin_unlock_irqrestore(&sdd->lock, flags);
  414. }
  415. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  416. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  417. struct spi_message *msg)
  418. {
  419. struct device *dev = &sdd->pdev->dev;
  420. struct spi_transfer *xfer;
  421. if (msg->is_dma_mapped)
  422. return 0;
  423. /* First mark all xfer unmapped */
  424. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  425. xfer->rx_dma = XFER_DMAADDR_INVALID;
  426. xfer->tx_dma = XFER_DMAADDR_INVALID;
  427. }
  428. /* Map until end or first fail */
  429. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  430. if (xfer->tx_buf != NULL) {
  431. xfer->tx_dma = dma_map_single(dev,
  432. (void *)xfer->tx_buf, xfer->len,
  433. DMA_TO_DEVICE);
  434. if (dma_mapping_error(dev, xfer->tx_dma)) {
  435. dev_err(dev, "dma_map_single Tx failed\n");
  436. xfer->tx_dma = XFER_DMAADDR_INVALID;
  437. return -ENOMEM;
  438. }
  439. }
  440. if (xfer->rx_buf != NULL) {
  441. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  442. xfer->len, DMA_FROM_DEVICE);
  443. if (dma_mapping_error(dev, xfer->rx_dma)) {
  444. dev_err(dev, "dma_map_single Rx failed\n");
  445. dma_unmap_single(dev, xfer->tx_dma,
  446. xfer->len, DMA_TO_DEVICE);
  447. xfer->tx_dma = XFER_DMAADDR_INVALID;
  448. xfer->rx_dma = XFER_DMAADDR_INVALID;
  449. return -ENOMEM;
  450. }
  451. }
  452. }
  453. return 0;
  454. }
  455. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  456. struct spi_message *msg)
  457. {
  458. struct device *dev = &sdd->pdev->dev;
  459. struct spi_transfer *xfer;
  460. if (msg->is_dma_mapped)
  461. return;
  462. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  463. if (xfer->rx_buf != NULL
  464. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  465. dma_unmap_single(dev, xfer->rx_dma,
  466. xfer->len, DMA_FROM_DEVICE);
  467. if (xfer->tx_buf != NULL
  468. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  469. dma_unmap_single(dev, xfer->tx_dma,
  470. xfer->len, DMA_TO_DEVICE);
  471. }
  472. }
  473. static void handle_msg(struct s3c64xx_spi_driver_data *sdd,
  474. struct spi_message *msg)
  475. {
  476. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  477. struct spi_device *spi = msg->spi;
  478. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  479. struct spi_transfer *xfer;
  480. int status = 0, cs_toggle = 0;
  481. u32 speed;
  482. u8 bpw;
  483. /* If Master's(controller) state differs from that needed by Slave */
  484. if (sdd->cur_speed != spi->max_speed_hz
  485. || sdd->cur_mode != spi->mode
  486. || sdd->cur_bpw != spi->bits_per_word) {
  487. sdd->cur_bpw = spi->bits_per_word;
  488. sdd->cur_speed = spi->max_speed_hz;
  489. sdd->cur_mode = spi->mode;
  490. s3c64xx_spi_config(sdd);
  491. }
  492. /* Map all the transfers if needed */
  493. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  494. dev_err(&spi->dev,
  495. "Xfer: Unable to map message buffers!\n");
  496. status = -ENOMEM;
  497. goto out;
  498. }
  499. /* Configure feedback delay */
  500. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  501. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  502. unsigned long flags;
  503. int use_dma;
  504. INIT_COMPLETION(sdd->xfer_completion);
  505. /* Only BPW and Speed may change across transfers */
  506. bpw = xfer->bits_per_word ? : spi->bits_per_word;
  507. speed = xfer->speed_hz ? : spi->max_speed_hz;
  508. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  509. sdd->cur_bpw = bpw;
  510. sdd->cur_speed = speed;
  511. s3c64xx_spi_config(sdd);
  512. }
  513. /* Polling method for xfers not bigger than FIFO capacity */
  514. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  515. use_dma = 0;
  516. else
  517. use_dma = 1;
  518. spin_lock_irqsave(&sdd->lock, flags);
  519. /* Pending only which is to be done */
  520. sdd->state &= ~RXBUSY;
  521. sdd->state &= ~TXBUSY;
  522. enable_datapath(sdd, spi, xfer, use_dma);
  523. /* Slave Select */
  524. enable_cs(sdd, spi);
  525. /* Start the signals */
  526. S3C64XX_SPI_ACT(sdd);
  527. spin_unlock_irqrestore(&sdd->lock, flags);
  528. status = wait_for_xfer(sdd, xfer, use_dma);
  529. /* Quiese the signals */
  530. S3C64XX_SPI_DEACT(sdd);
  531. if (status) {
  532. dev_err(&spi->dev, "I/O Error: "
  533. "rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  534. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  535. (sdd->state & RXBUSY) ? 'f' : 'p',
  536. (sdd->state & TXBUSY) ? 'f' : 'p',
  537. xfer->len);
  538. if (use_dma) {
  539. if (xfer->tx_buf != NULL
  540. && (sdd->state & TXBUSY))
  541. s3c2410_dma_ctrl(sdd->tx_dmach,
  542. S3C2410_DMAOP_FLUSH);
  543. if (xfer->rx_buf != NULL
  544. && (sdd->state & RXBUSY))
  545. s3c2410_dma_ctrl(sdd->rx_dmach,
  546. S3C2410_DMAOP_FLUSH);
  547. }
  548. goto out;
  549. }
  550. if (xfer->delay_usecs)
  551. udelay(xfer->delay_usecs);
  552. if (xfer->cs_change) {
  553. /* Hint that the next mssg is gonna be
  554. for the same device */
  555. if (list_is_last(&xfer->transfer_list,
  556. &msg->transfers))
  557. cs_toggle = 1;
  558. else
  559. disable_cs(sdd, spi);
  560. }
  561. msg->actual_length += xfer->len;
  562. flush_fifo(sdd);
  563. }
  564. out:
  565. if (!cs_toggle || status)
  566. disable_cs(sdd, spi);
  567. else
  568. sdd->tgl_spi = spi;
  569. s3c64xx_spi_unmap_mssg(sdd, msg);
  570. msg->status = status;
  571. if (msg->complete)
  572. msg->complete(msg->context);
  573. }
  574. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  575. {
  576. if (s3c2410_dma_request(sdd->rx_dmach,
  577. &s3c64xx_spi_dma_client, NULL) < 0) {
  578. dev_err(&sdd->pdev->dev, "cannot get RxDMA\n");
  579. return 0;
  580. }
  581. s3c2410_dma_set_buffdone_fn(sdd->rx_dmach, s3c64xx_spi_dma_rxcb);
  582. s3c2410_dma_devconfig(sdd->rx_dmach, S3C2410_DMASRC_HW,
  583. sdd->sfr_start + S3C64XX_SPI_RX_DATA);
  584. if (s3c2410_dma_request(sdd->tx_dmach,
  585. &s3c64xx_spi_dma_client, NULL) < 0) {
  586. dev_err(&sdd->pdev->dev, "cannot get TxDMA\n");
  587. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  588. return 0;
  589. }
  590. s3c2410_dma_set_buffdone_fn(sdd->tx_dmach, s3c64xx_spi_dma_txcb);
  591. s3c2410_dma_devconfig(sdd->tx_dmach, S3C2410_DMASRC_MEM,
  592. sdd->sfr_start + S3C64XX_SPI_TX_DATA);
  593. return 1;
  594. }
  595. static void s3c64xx_spi_work(struct work_struct *work)
  596. {
  597. struct s3c64xx_spi_driver_data *sdd = container_of(work,
  598. struct s3c64xx_spi_driver_data, work);
  599. unsigned long flags;
  600. /* Acquire DMA channels */
  601. while (!acquire_dma(sdd))
  602. msleep(10);
  603. spin_lock_irqsave(&sdd->lock, flags);
  604. while (!list_empty(&sdd->queue)
  605. && !(sdd->state & SUSPND)) {
  606. struct spi_message *msg;
  607. msg = container_of(sdd->queue.next, struct spi_message, queue);
  608. list_del_init(&msg->queue);
  609. /* Set Xfer busy flag */
  610. sdd->state |= SPIBUSY;
  611. spin_unlock_irqrestore(&sdd->lock, flags);
  612. handle_msg(sdd, msg);
  613. spin_lock_irqsave(&sdd->lock, flags);
  614. sdd->state &= ~SPIBUSY;
  615. }
  616. spin_unlock_irqrestore(&sdd->lock, flags);
  617. /* Free DMA channels */
  618. s3c2410_dma_free(sdd->tx_dmach, &s3c64xx_spi_dma_client);
  619. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  620. }
  621. static int s3c64xx_spi_transfer(struct spi_device *spi,
  622. struct spi_message *msg)
  623. {
  624. struct s3c64xx_spi_driver_data *sdd;
  625. unsigned long flags;
  626. sdd = spi_master_get_devdata(spi->master);
  627. spin_lock_irqsave(&sdd->lock, flags);
  628. if (sdd->state & SUSPND) {
  629. spin_unlock_irqrestore(&sdd->lock, flags);
  630. return -ESHUTDOWN;
  631. }
  632. msg->status = -EINPROGRESS;
  633. msg->actual_length = 0;
  634. list_add_tail(&msg->queue, &sdd->queue);
  635. queue_work(sdd->workqueue, &sdd->work);
  636. spin_unlock_irqrestore(&sdd->lock, flags);
  637. return 0;
  638. }
  639. /*
  640. * Here we only check the validity of requested configuration
  641. * and save the configuration in a local data-structure.
  642. * The controller is actually configured only just before we
  643. * get a message to transfer.
  644. */
  645. static int s3c64xx_spi_setup(struct spi_device *spi)
  646. {
  647. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  648. struct s3c64xx_spi_driver_data *sdd;
  649. struct s3c64xx_spi_info *sci;
  650. struct spi_message *msg;
  651. u32 psr, speed;
  652. unsigned long flags;
  653. int err = 0;
  654. if (cs == NULL || cs->set_level == NULL) {
  655. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  656. return -ENODEV;
  657. }
  658. sdd = spi_master_get_devdata(spi->master);
  659. sci = sdd->cntrlr_info;
  660. spin_lock_irqsave(&sdd->lock, flags);
  661. list_for_each_entry(msg, &sdd->queue, queue) {
  662. /* Is some mssg is already queued for this device */
  663. if (msg->spi == spi) {
  664. dev_err(&spi->dev,
  665. "setup: attempt while mssg in queue!\n");
  666. spin_unlock_irqrestore(&sdd->lock, flags);
  667. return -EBUSY;
  668. }
  669. }
  670. if (sdd->state & SUSPND) {
  671. spin_unlock_irqrestore(&sdd->lock, flags);
  672. dev_err(&spi->dev,
  673. "setup: SPI-%d not active!\n", spi->master->bus_num);
  674. return -ESHUTDOWN;
  675. }
  676. spin_unlock_irqrestore(&sdd->lock, flags);
  677. if (spi->bits_per_word != 8
  678. && spi->bits_per_word != 16
  679. && spi->bits_per_word != 32) {
  680. dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
  681. spi->bits_per_word);
  682. err = -EINVAL;
  683. goto setup_exit;
  684. }
  685. /* Check if we can provide the requested rate */
  686. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1); /* Max possible */
  687. if (spi->max_speed_hz > speed)
  688. spi->max_speed_hz = speed;
  689. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  690. psr &= S3C64XX_SPI_PSR_MASK;
  691. if (psr == S3C64XX_SPI_PSR_MASK)
  692. psr--;
  693. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  694. if (spi->max_speed_hz < speed) {
  695. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  696. psr++;
  697. } else {
  698. err = -EINVAL;
  699. goto setup_exit;
  700. }
  701. }
  702. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  703. if (spi->max_speed_hz >= speed)
  704. spi->max_speed_hz = speed;
  705. else
  706. err = -EINVAL;
  707. setup_exit:
  708. /* setup() returns with device de-selected */
  709. disable_cs(sdd, spi);
  710. return err;
  711. }
  712. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  713. {
  714. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  715. void __iomem *regs = sdd->regs;
  716. unsigned int val;
  717. sdd->cur_speed = 0;
  718. S3C64XX_SPI_DEACT(sdd);
  719. /* Disable Interrupts - we use Polling if not DMA mode */
  720. writel(0, regs + S3C64XX_SPI_INT_EN);
  721. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  722. regs + S3C64XX_SPI_CLK_CFG);
  723. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  724. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  725. /* Clear any irq pending bits */
  726. writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
  727. regs + S3C64XX_SPI_PENDING_CLR);
  728. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  729. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  730. val &= ~S3C64XX_SPI_MODE_4BURST;
  731. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  732. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  733. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  734. flush_fifo(sdd);
  735. }
  736. static int __init s3c64xx_spi_probe(struct platform_device *pdev)
  737. {
  738. struct resource *mem_res, *dmatx_res, *dmarx_res;
  739. struct s3c64xx_spi_driver_data *sdd;
  740. struct s3c64xx_spi_info *sci;
  741. struct spi_master *master;
  742. int ret;
  743. if (pdev->id < 0) {
  744. dev_err(&pdev->dev,
  745. "Invalid platform device id-%d\n", pdev->id);
  746. return -ENODEV;
  747. }
  748. if (pdev->dev.platform_data == NULL) {
  749. dev_err(&pdev->dev, "platform_data missing!\n");
  750. return -ENODEV;
  751. }
  752. sci = pdev->dev.platform_data;
  753. if (!sci->src_clk_name) {
  754. dev_err(&pdev->dev,
  755. "Board init must call s3c64xx_spi_set_info()\n");
  756. return -EINVAL;
  757. }
  758. /* Check for availability of necessary resource */
  759. dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  760. if (dmatx_res == NULL) {
  761. dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
  762. return -ENXIO;
  763. }
  764. dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  765. if (dmarx_res == NULL) {
  766. dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
  767. return -ENXIO;
  768. }
  769. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  770. if (mem_res == NULL) {
  771. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  772. return -ENXIO;
  773. }
  774. master = spi_alloc_master(&pdev->dev,
  775. sizeof(struct s3c64xx_spi_driver_data));
  776. if (master == NULL) {
  777. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  778. return -ENOMEM;
  779. }
  780. platform_set_drvdata(pdev, master);
  781. sdd = spi_master_get_devdata(master);
  782. sdd->master = master;
  783. sdd->cntrlr_info = sci;
  784. sdd->pdev = pdev;
  785. sdd->sfr_start = mem_res->start;
  786. sdd->tx_dmach = dmatx_res->start;
  787. sdd->rx_dmach = dmarx_res->start;
  788. sdd->cur_bpw = 8;
  789. master->bus_num = pdev->id;
  790. master->setup = s3c64xx_spi_setup;
  791. master->transfer = s3c64xx_spi_transfer;
  792. master->num_chipselect = sci->num_cs;
  793. master->dma_alignment = 8;
  794. /* the spi->mode bits understood by this driver: */
  795. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  796. if (request_mem_region(mem_res->start,
  797. resource_size(mem_res), pdev->name) == NULL) {
  798. dev_err(&pdev->dev, "Req mem region failed\n");
  799. ret = -ENXIO;
  800. goto err0;
  801. }
  802. sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
  803. if (sdd->regs == NULL) {
  804. dev_err(&pdev->dev, "Unable to remap IO\n");
  805. ret = -ENXIO;
  806. goto err1;
  807. }
  808. if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) {
  809. dev_err(&pdev->dev, "Unable to config gpio\n");
  810. ret = -EBUSY;
  811. goto err2;
  812. }
  813. /* Setup clocks */
  814. sdd->clk = clk_get(&pdev->dev, "spi");
  815. if (IS_ERR(sdd->clk)) {
  816. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  817. ret = PTR_ERR(sdd->clk);
  818. goto err3;
  819. }
  820. if (clk_enable(sdd->clk)) {
  821. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  822. ret = -EBUSY;
  823. goto err4;
  824. }
  825. sdd->src_clk = clk_get(&pdev->dev, sci->src_clk_name);
  826. if (IS_ERR(sdd->src_clk)) {
  827. dev_err(&pdev->dev,
  828. "Unable to acquire clock '%s'\n", sci->src_clk_name);
  829. ret = PTR_ERR(sdd->src_clk);
  830. goto err5;
  831. }
  832. if (clk_enable(sdd->src_clk)) {
  833. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n",
  834. sci->src_clk_name);
  835. ret = -EBUSY;
  836. goto err6;
  837. }
  838. sdd->workqueue = create_singlethread_workqueue(
  839. dev_name(master->dev.parent));
  840. if (sdd->workqueue == NULL) {
  841. dev_err(&pdev->dev, "Unable to create workqueue\n");
  842. ret = -ENOMEM;
  843. goto err7;
  844. }
  845. /* Setup Deufult Mode */
  846. s3c64xx_spi_hwinit(sdd, pdev->id);
  847. spin_lock_init(&sdd->lock);
  848. init_completion(&sdd->xfer_completion);
  849. INIT_WORK(&sdd->work, s3c64xx_spi_work);
  850. INIT_LIST_HEAD(&sdd->queue);
  851. if (spi_register_master(master)) {
  852. dev_err(&pdev->dev, "cannot register SPI master\n");
  853. ret = -EBUSY;
  854. goto err8;
  855. }
  856. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
  857. "with %d Slaves attached\n",
  858. pdev->id, master->num_chipselect);
  859. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
  860. mem_res->end, mem_res->start,
  861. sdd->rx_dmach, sdd->tx_dmach);
  862. return 0;
  863. err8:
  864. destroy_workqueue(sdd->workqueue);
  865. err7:
  866. clk_disable(sdd->src_clk);
  867. err6:
  868. clk_put(sdd->src_clk);
  869. err5:
  870. clk_disable(sdd->clk);
  871. err4:
  872. clk_put(sdd->clk);
  873. err3:
  874. err2:
  875. iounmap((void *) sdd->regs);
  876. err1:
  877. release_mem_region(mem_res->start, resource_size(mem_res));
  878. err0:
  879. platform_set_drvdata(pdev, NULL);
  880. spi_master_put(master);
  881. return ret;
  882. }
  883. static int s3c64xx_spi_remove(struct platform_device *pdev)
  884. {
  885. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  886. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  887. struct resource *mem_res;
  888. unsigned long flags;
  889. spin_lock_irqsave(&sdd->lock, flags);
  890. sdd->state |= SUSPND;
  891. spin_unlock_irqrestore(&sdd->lock, flags);
  892. while (sdd->state & SPIBUSY)
  893. msleep(10);
  894. spi_unregister_master(master);
  895. destroy_workqueue(sdd->workqueue);
  896. clk_disable(sdd->src_clk);
  897. clk_put(sdd->src_clk);
  898. clk_disable(sdd->clk);
  899. clk_put(sdd->clk);
  900. iounmap((void *) sdd->regs);
  901. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  902. if (mem_res != NULL)
  903. release_mem_region(mem_res->start, resource_size(mem_res));
  904. platform_set_drvdata(pdev, NULL);
  905. spi_master_put(master);
  906. return 0;
  907. }
  908. #ifdef CONFIG_PM
  909. static int s3c64xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  910. {
  911. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  912. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  913. unsigned long flags;
  914. spin_lock_irqsave(&sdd->lock, flags);
  915. sdd->state |= SUSPND;
  916. spin_unlock_irqrestore(&sdd->lock, flags);
  917. while (sdd->state & SPIBUSY)
  918. msleep(10);
  919. /* Disable the clock */
  920. clk_disable(sdd->src_clk);
  921. clk_disable(sdd->clk);
  922. sdd->cur_speed = 0; /* Output Clock is stopped */
  923. return 0;
  924. }
  925. static int s3c64xx_spi_resume(struct platform_device *pdev)
  926. {
  927. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  928. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  929. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  930. unsigned long flags;
  931. sci->cfg_gpio(pdev);
  932. /* Enable the clock */
  933. clk_enable(sdd->src_clk);
  934. clk_enable(sdd->clk);
  935. s3c64xx_spi_hwinit(sdd, pdev->id);
  936. spin_lock_irqsave(&sdd->lock, flags);
  937. sdd->state &= ~SUSPND;
  938. spin_unlock_irqrestore(&sdd->lock, flags);
  939. return 0;
  940. }
  941. #else
  942. #define s3c64xx_spi_suspend NULL
  943. #define s3c64xx_spi_resume NULL
  944. #endif /* CONFIG_PM */
  945. static struct platform_driver s3c64xx_spi_driver = {
  946. .driver = {
  947. .name = "s3c64xx-spi",
  948. .owner = THIS_MODULE,
  949. },
  950. .remove = s3c64xx_spi_remove,
  951. .suspend = s3c64xx_spi_suspend,
  952. .resume = s3c64xx_spi_resume,
  953. };
  954. MODULE_ALIAS("platform:s3c64xx-spi");
  955. static int __init s3c64xx_spi_init(void)
  956. {
  957. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  958. }
  959. subsys_initcall(s3c64xx_spi_init);
  960. static void __exit s3c64xx_spi_exit(void)
  961. {
  962. platform_driver_unregister(&s3c64xx_spi_driver);
  963. }
  964. module_exit(s3c64xx_spi_exit);
  965. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  966. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  967. MODULE_LICENSE("GPL");