spi.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/cache.h>
  24. #include <linux/mutex.h>
  25. #include <linux/slab.h>
  26. #include <linux/mod_devicetable.h>
  27. #include <linux/spi/spi.h>
  28. #include <linux/of_spi.h>
  29. /* SPI bustype and spi_master class are registered after board init code
  30. * provides the SPI device tables, ensuring that both are present by the
  31. * time controller driver registration causes spi_devices to "enumerate".
  32. */
  33. static void spidev_release(struct device *dev)
  34. {
  35. struct spi_device *spi = to_spi_device(dev);
  36. /* spi masters may cleanup for released devices */
  37. if (spi->master->cleanup)
  38. spi->master->cleanup(spi);
  39. spi_master_put(spi->master);
  40. kfree(spi);
  41. }
  42. static ssize_t
  43. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  44. {
  45. const struct spi_device *spi = to_spi_device(dev);
  46. return sprintf(buf, "%s\n", spi->modalias);
  47. }
  48. static struct device_attribute spi_dev_attrs[] = {
  49. __ATTR_RO(modalias),
  50. __ATTR_NULL,
  51. };
  52. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  53. * and the sysfs version makes coldplug work too.
  54. */
  55. static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  56. const struct spi_device *sdev)
  57. {
  58. while (id->name[0]) {
  59. if (!strcmp(sdev->modalias, id->name))
  60. return id;
  61. id++;
  62. }
  63. return NULL;
  64. }
  65. const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  66. {
  67. const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  68. return spi_match_id(sdrv->id_table, sdev);
  69. }
  70. EXPORT_SYMBOL_GPL(spi_get_device_id);
  71. static int spi_match_device(struct device *dev, struct device_driver *drv)
  72. {
  73. const struct spi_device *spi = to_spi_device(dev);
  74. const struct spi_driver *sdrv = to_spi_driver(drv);
  75. if (sdrv->id_table)
  76. return !!spi_match_id(sdrv->id_table, spi);
  77. return strcmp(spi->modalias, drv->name) == 0;
  78. }
  79. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  80. {
  81. const struct spi_device *spi = to_spi_device(dev);
  82. add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  83. return 0;
  84. }
  85. #ifdef CONFIG_PM
  86. static int spi_suspend(struct device *dev, pm_message_t message)
  87. {
  88. int value = 0;
  89. struct spi_driver *drv = to_spi_driver(dev->driver);
  90. /* suspend will stop irqs and dma; no more i/o */
  91. if (drv) {
  92. if (drv->suspend)
  93. value = drv->suspend(to_spi_device(dev), message);
  94. else
  95. dev_dbg(dev, "... can't suspend\n");
  96. }
  97. return value;
  98. }
  99. static int spi_resume(struct device *dev)
  100. {
  101. int value = 0;
  102. struct spi_driver *drv = to_spi_driver(dev->driver);
  103. /* resume may restart the i/o queue */
  104. if (drv) {
  105. if (drv->resume)
  106. value = drv->resume(to_spi_device(dev));
  107. else
  108. dev_dbg(dev, "... can't resume\n");
  109. }
  110. return value;
  111. }
  112. #else
  113. #define spi_suspend NULL
  114. #define spi_resume NULL
  115. #endif
  116. struct bus_type spi_bus_type = {
  117. .name = "spi",
  118. .dev_attrs = spi_dev_attrs,
  119. .match = spi_match_device,
  120. .uevent = spi_uevent,
  121. .suspend = spi_suspend,
  122. .resume = spi_resume,
  123. };
  124. EXPORT_SYMBOL_GPL(spi_bus_type);
  125. static int spi_drv_probe(struct device *dev)
  126. {
  127. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  128. return sdrv->probe(to_spi_device(dev));
  129. }
  130. static int spi_drv_remove(struct device *dev)
  131. {
  132. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  133. return sdrv->remove(to_spi_device(dev));
  134. }
  135. static void spi_drv_shutdown(struct device *dev)
  136. {
  137. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  138. sdrv->shutdown(to_spi_device(dev));
  139. }
  140. /**
  141. * spi_register_driver - register a SPI driver
  142. * @sdrv: the driver to register
  143. * Context: can sleep
  144. */
  145. int spi_register_driver(struct spi_driver *sdrv)
  146. {
  147. sdrv->driver.bus = &spi_bus_type;
  148. if (sdrv->probe)
  149. sdrv->driver.probe = spi_drv_probe;
  150. if (sdrv->remove)
  151. sdrv->driver.remove = spi_drv_remove;
  152. if (sdrv->shutdown)
  153. sdrv->driver.shutdown = spi_drv_shutdown;
  154. return driver_register(&sdrv->driver);
  155. }
  156. EXPORT_SYMBOL_GPL(spi_register_driver);
  157. /*-------------------------------------------------------------------------*/
  158. /* SPI devices should normally not be created by SPI device drivers; that
  159. * would make them board-specific. Similarly with SPI master drivers.
  160. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  161. * with other readonly (flashable) information about mainboard devices.
  162. */
  163. struct boardinfo {
  164. struct list_head list;
  165. unsigned n_board_info;
  166. struct spi_board_info board_info[0];
  167. };
  168. static LIST_HEAD(board_list);
  169. static DEFINE_MUTEX(board_lock);
  170. /**
  171. * spi_alloc_device - Allocate a new SPI device
  172. * @master: Controller to which device is connected
  173. * Context: can sleep
  174. *
  175. * Allows a driver to allocate and initialize a spi_device without
  176. * registering it immediately. This allows a driver to directly
  177. * fill the spi_device with device parameters before calling
  178. * spi_add_device() on it.
  179. *
  180. * Caller is responsible to call spi_add_device() on the returned
  181. * spi_device structure to add it to the SPI master. If the caller
  182. * needs to discard the spi_device without adding it, then it should
  183. * call spi_dev_put() on it.
  184. *
  185. * Returns a pointer to the new device, or NULL.
  186. */
  187. struct spi_device *spi_alloc_device(struct spi_master *master)
  188. {
  189. struct spi_device *spi;
  190. struct device *dev = master->dev.parent;
  191. if (!spi_master_get(master))
  192. return NULL;
  193. spi = kzalloc(sizeof *spi, GFP_KERNEL);
  194. if (!spi) {
  195. dev_err(dev, "cannot alloc spi_device\n");
  196. spi_master_put(master);
  197. return NULL;
  198. }
  199. spi->master = master;
  200. spi->dev.parent = dev;
  201. spi->dev.bus = &spi_bus_type;
  202. spi->dev.release = spidev_release;
  203. device_initialize(&spi->dev);
  204. return spi;
  205. }
  206. EXPORT_SYMBOL_GPL(spi_alloc_device);
  207. /**
  208. * spi_add_device - Add spi_device allocated with spi_alloc_device
  209. * @spi: spi_device to register
  210. *
  211. * Companion function to spi_alloc_device. Devices allocated with
  212. * spi_alloc_device can be added onto the spi bus with this function.
  213. *
  214. * Returns 0 on success; negative errno on failure
  215. */
  216. int spi_add_device(struct spi_device *spi)
  217. {
  218. static DEFINE_MUTEX(spi_add_lock);
  219. struct device *dev = spi->master->dev.parent;
  220. struct device *d;
  221. int status;
  222. /* Chipselects are numbered 0..max; validate. */
  223. if (spi->chip_select >= spi->master->num_chipselect) {
  224. dev_err(dev, "cs%d >= max %d\n",
  225. spi->chip_select,
  226. spi->master->num_chipselect);
  227. return -EINVAL;
  228. }
  229. /* Set the bus ID string */
  230. dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
  231. spi->chip_select);
  232. /* We need to make sure there's no other device with this
  233. * chipselect **BEFORE** we call setup(), else we'll trash
  234. * its configuration. Lock against concurrent add() calls.
  235. */
  236. mutex_lock(&spi_add_lock);
  237. d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
  238. if (d != NULL) {
  239. dev_err(dev, "chipselect %d already in use\n",
  240. spi->chip_select);
  241. put_device(d);
  242. status = -EBUSY;
  243. goto done;
  244. }
  245. /* Drivers may modify this initial i/o setup, but will
  246. * normally rely on the device being setup. Devices
  247. * using SPI_CS_HIGH can't coexist well otherwise...
  248. */
  249. status = spi_setup(spi);
  250. if (status < 0) {
  251. dev_err(dev, "can't %s %s, status %d\n",
  252. "setup", dev_name(&spi->dev), status);
  253. goto done;
  254. }
  255. /* Device may be bound to an active driver when this returns */
  256. status = device_add(&spi->dev);
  257. if (status < 0)
  258. dev_err(dev, "can't %s %s, status %d\n",
  259. "add", dev_name(&spi->dev), status);
  260. else
  261. dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
  262. done:
  263. mutex_unlock(&spi_add_lock);
  264. return status;
  265. }
  266. EXPORT_SYMBOL_GPL(spi_add_device);
  267. /**
  268. * spi_new_device - instantiate one new SPI device
  269. * @master: Controller to which device is connected
  270. * @chip: Describes the SPI device
  271. * Context: can sleep
  272. *
  273. * On typical mainboards, this is purely internal; and it's not needed
  274. * after board init creates the hard-wired devices. Some development
  275. * platforms may not be able to use spi_register_board_info though, and
  276. * this is exported so that for example a USB or parport based adapter
  277. * driver could add devices (which it would learn about out-of-band).
  278. *
  279. * Returns the new device, or NULL.
  280. */
  281. struct spi_device *spi_new_device(struct spi_master *master,
  282. struct spi_board_info *chip)
  283. {
  284. struct spi_device *proxy;
  285. int status;
  286. /* NOTE: caller did any chip->bus_num checks necessary.
  287. *
  288. * Also, unless we change the return value convention to use
  289. * error-or-pointer (not NULL-or-pointer), troubleshootability
  290. * suggests syslogged diagnostics are best here (ugh).
  291. */
  292. proxy = spi_alloc_device(master);
  293. if (!proxy)
  294. return NULL;
  295. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  296. proxy->chip_select = chip->chip_select;
  297. proxy->max_speed_hz = chip->max_speed_hz;
  298. proxy->mode = chip->mode;
  299. proxy->irq = chip->irq;
  300. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  301. proxy->dev.platform_data = (void *) chip->platform_data;
  302. proxy->controller_data = chip->controller_data;
  303. proxy->controller_state = NULL;
  304. status = spi_add_device(proxy);
  305. if (status < 0) {
  306. spi_dev_put(proxy);
  307. return NULL;
  308. }
  309. return proxy;
  310. }
  311. EXPORT_SYMBOL_GPL(spi_new_device);
  312. /**
  313. * spi_register_board_info - register SPI devices for a given board
  314. * @info: array of chip descriptors
  315. * @n: how many descriptors are provided
  316. * Context: can sleep
  317. *
  318. * Board-specific early init code calls this (probably during arch_initcall)
  319. * with segments of the SPI device table. Any device nodes are created later,
  320. * after the relevant parent SPI controller (bus_num) is defined. We keep
  321. * this table of devices forever, so that reloading a controller driver will
  322. * not make Linux forget about these hard-wired devices.
  323. *
  324. * Other code can also call this, e.g. a particular add-on board might provide
  325. * SPI devices through its expansion connector, so code initializing that board
  326. * would naturally declare its SPI devices.
  327. *
  328. * The board info passed can safely be __initdata ... but be careful of
  329. * any embedded pointers (platform_data, etc), they're copied as-is.
  330. */
  331. int __init
  332. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  333. {
  334. struct boardinfo *bi;
  335. bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
  336. if (!bi)
  337. return -ENOMEM;
  338. bi->n_board_info = n;
  339. memcpy(bi->board_info, info, n * sizeof *info);
  340. mutex_lock(&board_lock);
  341. list_add_tail(&bi->list, &board_list);
  342. mutex_unlock(&board_lock);
  343. return 0;
  344. }
  345. /* FIXME someone should add support for a __setup("spi", ...) that
  346. * creates board info from kernel command lines
  347. */
  348. static void scan_boardinfo(struct spi_master *master)
  349. {
  350. struct boardinfo *bi;
  351. mutex_lock(&board_lock);
  352. list_for_each_entry(bi, &board_list, list) {
  353. struct spi_board_info *chip = bi->board_info;
  354. unsigned n;
  355. for (n = bi->n_board_info; n > 0; n--, chip++) {
  356. if (chip->bus_num != master->bus_num)
  357. continue;
  358. /* NOTE: this relies on spi_new_device to
  359. * issue diagnostics when given bogus inputs
  360. */
  361. (void) spi_new_device(master, chip);
  362. }
  363. }
  364. mutex_unlock(&board_lock);
  365. }
  366. /*-------------------------------------------------------------------------*/
  367. static void spi_master_release(struct device *dev)
  368. {
  369. struct spi_master *master;
  370. master = container_of(dev, struct spi_master, dev);
  371. kfree(master);
  372. }
  373. static struct class spi_master_class = {
  374. .name = "spi_master",
  375. .owner = THIS_MODULE,
  376. .dev_release = spi_master_release,
  377. };
  378. /**
  379. * spi_alloc_master - allocate SPI master controller
  380. * @dev: the controller, possibly using the platform_bus
  381. * @size: how much zeroed driver-private data to allocate; the pointer to this
  382. * memory is in the driver_data field of the returned device,
  383. * accessible with spi_master_get_devdata().
  384. * Context: can sleep
  385. *
  386. * This call is used only by SPI master controller drivers, which are the
  387. * only ones directly touching chip registers. It's how they allocate
  388. * an spi_master structure, prior to calling spi_register_master().
  389. *
  390. * This must be called from context that can sleep. It returns the SPI
  391. * master structure on success, else NULL.
  392. *
  393. * The caller is responsible for assigning the bus number and initializing
  394. * the master's methods before calling spi_register_master(); and (after errors
  395. * adding the device) calling spi_master_put() to prevent a memory leak.
  396. */
  397. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  398. {
  399. struct spi_master *master;
  400. if (!dev)
  401. return NULL;
  402. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  403. if (!master)
  404. return NULL;
  405. device_initialize(&master->dev);
  406. master->dev.class = &spi_master_class;
  407. master->dev.parent = get_device(dev);
  408. spi_master_set_devdata(master, &master[1]);
  409. return master;
  410. }
  411. EXPORT_SYMBOL_GPL(spi_alloc_master);
  412. /**
  413. * spi_register_master - register SPI master controller
  414. * @master: initialized master, originally from spi_alloc_master()
  415. * Context: can sleep
  416. *
  417. * SPI master controllers connect to their drivers using some non-SPI bus,
  418. * such as the platform bus. The final stage of probe() in that code
  419. * includes calling spi_register_master() to hook up to this SPI bus glue.
  420. *
  421. * SPI controllers use board specific (often SOC specific) bus numbers,
  422. * and board-specific addressing for SPI devices combines those numbers
  423. * with chip select numbers. Since SPI does not directly support dynamic
  424. * device identification, boards need configuration tables telling which
  425. * chip is at which address.
  426. *
  427. * This must be called from context that can sleep. It returns zero on
  428. * success, else a negative error code (dropping the master's refcount).
  429. * After a successful return, the caller is responsible for calling
  430. * spi_unregister_master().
  431. */
  432. int spi_register_master(struct spi_master *master)
  433. {
  434. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  435. struct device *dev = master->dev.parent;
  436. int status = -ENODEV;
  437. int dynamic = 0;
  438. if (!dev)
  439. return -ENODEV;
  440. /* even if it's just one always-selected device, there must
  441. * be at least one chipselect
  442. */
  443. if (master->num_chipselect == 0)
  444. return -EINVAL;
  445. /* convention: dynamically assigned bus IDs count down from the max */
  446. if (master->bus_num < 0) {
  447. /* FIXME switch to an IDR based scheme, something like
  448. * I2C now uses, so we can't run out of "dynamic" IDs
  449. */
  450. master->bus_num = atomic_dec_return(&dyn_bus_id);
  451. dynamic = 1;
  452. }
  453. spin_lock_init(&master->bus_lock_spinlock);
  454. mutex_init(&master->bus_lock_mutex);
  455. master->bus_lock_flag = 0;
  456. /* register the device, then userspace will see it.
  457. * registration fails if the bus ID is in use.
  458. */
  459. dev_set_name(&master->dev, "spi%u", master->bus_num);
  460. status = device_add(&master->dev);
  461. if (status < 0)
  462. goto done;
  463. dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
  464. dynamic ? " (dynamic)" : "");
  465. /* populate children from any spi device tables */
  466. scan_boardinfo(master);
  467. status = 0;
  468. /* Register devices from the device tree */
  469. of_register_spi_devices(master);
  470. done:
  471. return status;
  472. }
  473. EXPORT_SYMBOL_GPL(spi_register_master);
  474. static int __unregister(struct device *dev, void *null)
  475. {
  476. spi_unregister_device(to_spi_device(dev));
  477. return 0;
  478. }
  479. /**
  480. * spi_unregister_master - unregister SPI master controller
  481. * @master: the master being unregistered
  482. * Context: can sleep
  483. *
  484. * This call is used only by SPI master controller drivers, which are the
  485. * only ones directly touching chip registers.
  486. *
  487. * This must be called from context that can sleep.
  488. */
  489. void spi_unregister_master(struct spi_master *master)
  490. {
  491. int dummy;
  492. dummy = device_for_each_child(&master->dev, NULL, __unregister);
  493. device_unregister(&master->dev);
  494. }
  495. EXPORT_SYMBOL_GPL(spi_unregister_master);
  496. static int __spi_master_match(struct device *dev, void *data)
  497. {
  498. struct spi_master *m;
  499. u16 *bus_num = data;
  500. m = container_of(dev, struct spi_master, dev);
  501. return m->bus_num == *bus_num;
  502. }
  503. /**
  504. * spi_busnum_to_master - look up master associated with bus_num
  505. * @bus_num: the master's bus number
  506. * Context: can sleep
  507. *
  508. * This call may be used with devices that are registered after
  509. * arch init time. It returns a refcounted pointer to the relevant
  510. * spi_master (which the caller must release), or NULL if there is
  511. * no such master registered.
  512. */
  513. struct spi_master *spi_busnum_to_master(u16 bus_num)
  514. {
  515. struct device *dev;
  516. struct spi_master *master = NULL;
  517. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  518. __spi_master_match);
  519. if (dev)
  520. master = container_of(dev, struct spi_master, dev);
  521. /* reference got in class_find_device */
  522. return master;
  523. }
  524. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  525. /*-------------------------------------------------------------------------*/
  526. /* Core methods for SPI master protocol drivers. Some of the
  527. * other core methods are currently defined as inline functions.
  528. */
  529. /**
  530. * spi_setup - setup SPI mode and clock rate
  531. * @spi: the device whose settings are being modified
  532. * Context: can sleep, and no requests are queued to the device
  533. *
  534. * SPI protocol drivers may need to update the transfer mode if the
  535. * device doesn't work with its default. They may likewise need
  536. * to update clock rates or word sizes from initial values. This function
  537. * changes those settings, and must be called from a context that can sleep.
  538. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  539. * effect the next time the device is selected and data is transferred to
  540. * or from it. When this function returns, the spi device is deselected.
  541. *
  542. * Note that this call will fail if the protocol driver specifies an option
  543. * that the underlying controller or its driver does not support. For
  544. * example, not all hardware supports wire transfers using nine bit words,
  545. * LSB-first wire encoding, or active-high chipselects.
  546. */
  547. int spi_setup(struct spi_device *spi)
  548. {
  549. unsigned bad_bits;
  550. int status;
  551. /* help drivers fail *cleanly* when they need options
  552. * that aren't supported with their current master
  553. */
  554. bad_bits = spi->mode & ~spi->master->mode_bits;
  555. if (bad_bits) {
  556. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  557. bad_bits);
  558. return -EINVAL;
  559. }
  560. if (!spi->bits_per_word)
  561. spi->bits_per_word = 8;
  562. status = spi->master->setup(spi);
  563. dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
  564. "%u bits/w, %u Hz max --> %d\n",
  565. (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
  566. (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
  567. (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
  568. (spi->mode & SPI_3WIRE) ? "3wire, " : "",
  569. (spi->mode & SPI_LOOP) ? "loopback, " : "",
  570. spi->bits_per_word, spi->max_speed_hz,
  571. status);
  572. return status;
  573. }
  574. EXPORT_SYMBOL_GPL(spi_setup);
  575. static int __spi_async(struct spi_device *spi, struct spi_message *message)
  576. {
  577. struct spi_master *master = spi->master;
  578. /* Half-duplex links include original MicroWire, and ones with
  579. * only one data pin like SPI_3WIRE (switches direction) or where
  580. * either MOSI or MISO is missing. They can also be caused by
  581. * software limitations.
  582. */
  583. if ((master->flags & SPI_MASTER_HALF_DUPLEX)
  584. || (spi->mode & SPI_3WIRE)) {
  585. struct spi_transfer *xfer;
  586. unsigned flags = master->flags;
  587. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  588. if (xfer->rx_buf && xfer->tx_buf)
  589. return -EINVAL;
  590. if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
  591. return -EINVAL;
  592. if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
  593. return -EINVAL;
  594. }
  595. }
  596. message->spi = spi;
  597. message->status = -EINPROGRESS;
  598. return master->transfer(spi, message);
  599. }
  600. /**
  601. * spi_async - asynchronous SPI transfer
  602. * @spi: device with which data will be exchanged
  603. * @message: describes the data transfers, including completion callback
  604. * Context: any (irqs may be blocked, etc)
  605. *
  606. * This call may be used in_irq and other contexts which can't sleep,
  607. * as well as from task contexts which can sleep.
  608. *
  609. * The completion callback is invoked in a context which can't sleep.
  610. * Before that invocation, the value of message->status is undefined.
  611. * When the callback is issued, message->status holds either zero (to
  612. * indicate complete success) or a negative error code. After that
  613. * callback returns, the driver which issued the transfer request may
  614. * deallocate the associated memory; it's no longer in use by any SPI
  615. * core or controller driver code.
  616. *
  617. * Note that although all messages to a spi_device are handled in
  618. * FIFO order, messages may go to different devices in other orders.
  619. * Some device might be higher priority, or have various "hard" access
  620. * time requirements, for example.
  621. *
  622. * On detection of any fault during the transfer, processing of
  623. * the entire message is aborted, and the device is deselected.
  624. * Until returning from the associated message completion callback,
  625. * no other spi_message queued to that device will be processed.
  626. * (This rule applies equally to all the synchronous transfer calls,
  627. * which are wrappers around this core asynchronous primitive.)
  628. */
  629. int spi_async(struct spi_device *spi, struct spi_message *message)
  630. {
  631. struct spi_master *master = spi->master;
  632. int ret;
  633. unsigned long flags;
  634. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  635. if (master->bus_lock_flag)
  636. ret = -EBUSY;
  637. else
  638. ret = __spi_async(spi, message);
  639. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  640. return ret;
  641. }
  642. EXPORT_SYMBOL_GPL(spi_async);
  643. /**
  644. * spi_async_locked - version of spi_async with exclusive bus usage
  645. * @spi: device with which data will be exchanged
  646. * @message: describes the data transfers, including completion callback
  647. * Context: any (irqs may be blocked, etc)
  648. *
  649. * This call may be used in_irq and other contexts which can't sleep,
  650. * as well as from task contexts which can sleep.
  651. *
  652. * The completion callback is invoked in a context which can't sleep.
  653. * Before that invocation, the value of message->status is undefined.
  654. * When the callback is issued, message->status holds either zero (to
  655. * indicate complete success) or a negative error code. After that
  656. * callback returns, the driver which issued the transfer request may
  657. * deallocate the associated memory; it's no longer in use by any SPI
  658. * core or controller driver code.
  659. *
  660. * Note that although all messages to a spi_device are handled in
  661. * FIFO order, messages may go to different devices in other orders.
  662. * Some device might be higher priority, or have various "hard" access
  663. * time requirements, for example.
  664. *
  665. * On detection of any fault during the transfer, processing of
  666. * the entire message is aborted, and the device is deselected.
  667. * Until returning from the associated message completion callback,
  668. * no other spi_message queued to that device will be processed.
  669. * (This rule applies equally to all the synchronous transfer calls,
  670. * which are wrappers around this core asynchronous primitive.)
  671. */
  672. int spi_async_locked(struct spi_device *spi, struct spi_message *message)
  673. {
  674. struct spi_master *master = spi->master;
  675. int ret;
  676. unsigned long flags;
  677. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  678. ret = __spi_async(spi, message);
  679. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  680. return ret;
  681. }
  682. EXPORT_SYMBOL_GPL(spi_async_locked);
  683. /*-------------------------------------------------------------------------*/
  684. /* Utility methods for SPI master protocol drivers, layered on
  685. * top of the core. Some other utility methods are defined as
  686. * inline functions.
  687. */
  688. static void spi_complete(void *arg)
  689. {
  690. complete(arg);
  691. }
  692. static int __spi_sync(struct spi_device *spi, struct spi_message *message,
  693. int bus_locked)
  694. {
  695. DECLARE_COMPLETION_ONSTACK(done);
  696. int status;
  697. struct spi_master *master = spi->master;
  698. message->complete = spi_complete;
  699. message->context = &done;
  700. if (!bus_locked)
  701. mutex_lock(&master->bus_lock_mutex);
  702. status = spi_async_locked(spi, message);
  703. if (!bus_locked)
  704. mutex_unlock(&master->bus_lock_mutex);
  705. if (status == 0) {
  706. wait_for_completion(&done);
  707. status = message->status;
  708. }
  709. message->context = NULL;
  710. return status;
  711. }
  712. /**
  713. * spi_sync - blocking/synchronous SPI data transfers
  714. * @spi: device with which data will be exchanged
  715. * @message: describes the data transfers
  716. * Context: can sleep
  717. *
  718. * This call may only be used from a context that may sleep. The sleep
  719. * is non-interruptible, and has no timeout. Low-overhead controller
  720. * drivers may DMA directly into and out of the message buffers.
  721. *
  722. * Note that the SPI device's chip select is active during the message,
  723. * and then is normally disabled between messages. Drivers for some
  724. * frequently-used devices may want to minimize costs of selecting a chip,
  725. * by leaving it selected in anticipation that the next message will go
  726. * to the same chip. (That may increase power usage.)
  727. *
  728. * Also, the caller is guaranteeing that the memory associated with the
  729. * message will not be freed before this call returns.
  730. *
  731. * It returns zero on success, else a negative error code.
  732. */
  733. int spi_sync(struct spi_device *spi, struct spi_message *message)
  734. {
  735. return __spi_sync(spi, message, 0);
  736. }
  737. EXPORT_SYMBOL_GPL(spi_sync);
  738. /**
  739. * spi_sync_locked - version of spi_sync with exclusive bus usage
  740. * @spi: device with which data will be exchanged
  741. * @message: describes the data transfers
  742. * Context: can sleep
  743. *
  744. * This call may only be used from a context that may sleep. The sleep
  745. * is non-interruptible, and has no timeout. Low-overhead controller
  746. * drivers may DMA directly into and out of the message buffers.
  747. *
  748. * This call should be used by drivers that require exclusive access to the
  749. * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
  750. * be released by a spi_bus_unlock call when the exclusive access is over.
  751. *
  752. * It returns zero on success, else a negative error code.
  753. */
  754. int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
  755. {
  756. return __spi_sync(spi, message, 1);
  757. }
  758. EXPORT_SYMBOL_GPL(spi_sync_locked);
  759. /**
  760. * spi_bus_lock - obtain a lock for exclusive SPI bus usage
  761. * @master: SPI bus master that should be locked for exclusive bus access
  762. * Context: can sleep
  763. *
  764. * This call may only be used from a context that may sleep. The sleep
  765. * is non-interruptible, and has no timeout.
  766. *
  767. * This call should be used by drivers that require exclusive access to the
  768. * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
  769. * exclusive access is over. Data transfer must be done by spi_sync_locked
  770. * and spi_async_locked calls when the SPI bus lock is held.
  771. *
  772. * It returns zero on success, else a negative error code.
  773. */
  774. int spi_bus_lock(struct spi_master *master)
  775. {
  776. unsigned long flags;
  777. mutex_lock(&master->bus_lock_mutex);
  778. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  779. master->bus_lock_flag = 1;
  780. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  781. /* mutex remains locked until spi_bus_unlock is called */
  782. return 0;
  783. }
  784. EXPORT_SYMBOL_GPL(spi_bus_lock);
  785. /**
  786. * spi_bus_unlock - release the lock for exclusive SPI bus usage
  787. * @master: SPI bus master that was locked for exclusive bus access
  788. * Context: can sleep
  789. *
  790. * This call may only be used from a context that may sleep. The sleep
  791. * is non-interruptible, and has no timeout.
  792. *
  793. * This call releases an SPI bus lock previously obtained by an spi_bus_lock
  794. * call.
  795. *
  796. * It returns zero on success, else a negative error code.
  797. */
  798. int spi_bus_unlock(struct spi_master *master)
  799. {
  800. master->bus_lock_flag = 0;
  801. mutex_unlock(&master->bus_lock_mutex);
  802. return 0;
  803. }
  804. EXPORT_SYMBOL_GPL(spi_bus_unlock);
  805. /* portable code must never pass more than 32 bytes */
  806. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  807. static u8 *buf;
  808. /**
  809. * spi_write_then_read - SPI synchronous write followed by read
  810. * @spi: device with which data will be exchanged
  811. * @txbuf: data to be written (need not be dma-safe)
  812. * @n_tx: size of txbuf, in bytes
  813. * @rxbuf: buffer into which data will be read (need not be dma-safe)
  814. * @n_rx: size of rxbuf, in bytes
  815. * Context: can sleep
  816. *
  817. * This performs a half duplex MicroWire style transaction with the
  818. * device, sending txbuf and then reading rxbuf. The return value
  819. * is zero for success, else a negative errno status code.
  820. * This call may only be used from a context that may sleep.
  821. *
  822. * Parameters to this routine are always copied using a small buffer;
  823. * portable code should never use this for more than 32 bytes.
  824. * Performance-sensitive or bulk transfer code should instead use
  825. * spi_{async,sync}() calls with dma-safe buffers.
  826. */
  827. int spi_write_then_read(struct spi_device *spi,
  828. const u8 *txbuf, unsigned n_tx,
  829. u8 *rxbuf, unsigned n_rx)
  830. {
  831. static DEFINE_MUTEX(lock);
  832. int status;
  833. struct spi_message message;
  834. struct spi_transfer x[2];
  835. u8 *local_buf;
  836. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  837. * (as a pure convenience thing), but we can keep heap costs
  838. * out of the hot path ...
  839. */
  840. if ((n_tx + n_rx) > SPI_BUFSIZ)
  841. return -EINVAL;
  842. spi_message_init(&message);
  843. memset(x, 0, sizeof x);
  844. if (n_tx) {
  845. x[0].len = n_tx;
  846. spi_message_add_tail(&x[0], &message);
  847. }
  848. if (n_rx) {
  849. x[1].len = n_rx;
  850. spi_message_add_tail(&x[1], &message);
  851. }
  852. /* ... unless someone else is using the pre-allocated buffer */
  853. if (!mutex_trylock(&lock)) {
  854. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  855. if (!local_buf)
  856. return -ENOMEM;
  857. } else
  858. local_buf = buf;
  859. memcpy(local_buf, txbuf, n_tx);
  860. x[0].tx_buf = local_buf;
  861. x[1].rx_buf = local_buf + n_tx;
  862. /* do the i/o */
  863. status = spi_sync(spi, &message);
  864. if (status == 0)
  865. memcpy(rxbuf, x[1].rx_buf, n_rx);
  866. if (x[0].tx_buf == buf)
  867. mutex_unlock(&lock);
  868. else
  869. kfree(local_buf);
  870. return status;
  871. }
  872. EXPORT_SYMBOL_GPL(spi_write_then_read);
  873. /*-------------------------------------------------------------------------*/
  874. static int __init spi_init(void)
  875. {
  876. int status;
  877. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  878. if (!buf) {
  879. status = -ENOMEM;
  880. goto err0;
  881. }
  882. status = bus_register(&spi_bus_type);
  883. if (status < 0)
  884. goto err1;
  885. status = class_register(&spi_master_class);
  886. if (status < 0)
  887. goto err2;
  888. return 0;
  889. err2:
  890. bus_unregister(&spi_bus_type);
  891. err1:
  892. kfree(buf);
  893. buf = NULL;
  894. err0:
  895. return status;
  896. }
  897. /* board_info is normally registered in arch_initcall(),
  898. * but even essential drivers wait till later
  899. *
  900. * REVISIT only boardinfo really needs static linking. the rest (device and
  901. * driver registration) _could_ be dynamically linked (modular) ... costs
  902. * include needing to have boardinfo data structures be much more public.
  903. */
  904. postcore_initcall(spi_init);