samsung.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /*
  2. * Samsung S3C64XX/S5PC1XX OneNAND driver
  3. *
  4. * Copyright © 2008-2010 Samsung Electronics
  5. * Kyungmin Park <kyungmin.park@samsung.com>
  6. * Marek Szyprowski <m.szyprowski@samsung.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * Implementation:
  13. * S3C64XX and S5PC100: emulate the pseudo BufferRAM
  14. * S5PC110: use DMA
  15. */
  16. #include <linux/module.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/onenand.h>
  22. #include <linux/mtd/partitions.h>
  23. #include <linux/dma-mapping.h>
  24. #include <asm/mach/flash.h>
  25. #include <plat/regs-onenand.h>
  26. #include <linux/io.h>
  27. enum soc_type {
  28. TYPE_S3C6400,
  29. TYPE_S3C6410,
  30. TYPE_S5PC100,
  31. TYPE_S5PC110,
  32. };
  33. #define ONENAND_ERASE_STATUS 0x00
  34. #define ONENAND_MULTI_ERASE_SET 0x01
  35. #define ONENAND_ERASE_START 0x03
  36. #define ONENAND_UNLOCK_START 0x08
  37. #define ONENAND_UNLOCK_END 0x09
  38. #define ONENAND_LOCK_START 0x0A
  39. #define ONENAND_LOCK_END 0x0B
  40. #define ONENAND_LOCK_TIGHT_START 0x0C
  41. #define ONENAND_LOCK_TIGHT_END 0x0D
  42. #define ONENAND_UNLOCK_ALL 0x0E
  43. #define ONENAND_OTP_ACCESS 0x12
  44. #define ONENAND_SPARE_ACCESS_ONLY 0x13
  45. #define ONENAND_MAIN_ACCESS_ONLY 0x14
  46. #define ONENAND_ERASE_VERIFY 0x15
  47. #define ONENAND_MAIN_SPARE_ACCESS 0x16
  48. #define ONENAND_PIPELINE_READ 0x4000
  49. #define MAP_00 (0x0)
  50. #define MAP_01 (0x1)
  51. #define MAP_10 (0x2)
  52. #define MAP_11 (0x3)
  53. #define S3C64XX_CMD_MAP_SHIFT 24
  54. #define S5PC1XX_CMD_MAP_SHIFT 26
  55. #define S3C6400_FBA_SHIFT 10
  56. #define S3C6400_FPA_SHIFT 4
  57. #define S3C6400_FSA_SHIFT 2
  58. #define S3C6410_FBA_SHIFT 12
  59. #define S3C6410_FPA_SHIFT 6
  60. #define S3C6410_FSA_SHIFT 4
  61. #define S5PC100_FBA_SHIFT 13
  62. #define S5PC100_FPA_SHIFT 7
  63. #define S5PC100_FSA_SHIFT 5
  64. /* S5PC110 specific definitions */
  65. #define S5PC110_DMA_SRC_ADDR 0x400
  66. #define S5PC110_DMA_SRC_CFG 0x404
  67. #define S5PC110_DMA_DST_ADDR 0x408
  68. #define S5PC110_DMA_DST_CFG 0x40C
  69. #define S5PC110_DMA_TRANS_SIZE 0x414
  70. #define S5PC110_DMA_TRANS_CMD 0x418
  71. #define S5PC110_DMA_TRANS_STATUS 0x41C
  72. #define S5PC110_DMA_TRANS_DIR 0x420
  73. #define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
  74. #define S5PC110_DMA_CFG_4BURST (0x2 << 16)
  75. #define S5PC110_DMA_CFG_8BURST (0x3 << 16)
  76. #define S5PC110_DMA_CFG_16BURST (0x4 << 16)
  77. #define S5PC110_DMA_CFG_INC (0x0 << 8)
  78. #define S5PC110_DMA_CFG_CNT (0x1 << 8)
  79. #define S5PC110_DMA_CFG_8BIT (0x0 << 0)
  80. #define S5PC110_DMA_CFG_16BIT (0x1 << 0)
  81. #define S5PC110_DMA_CFG_32BIT (0x2 << 0)
  82. #define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  83. S5PC110_DMA_CFG_INC | \
  84. S5PC110_DMA_CFG_16BIT)
  85. #define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  86. S5PC110_DMA_CFG_INC | \
  87. S5PC110_DMA_CFG_32BIT)
  88. #define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  89. S5PC110_DMA_CFG_INC | \
  90. S5PC110_DMA_CFG_32BIT)
  91. #define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  92. S5PC110_DMA_CFG_INC | \
  93. S5PC110_DMA_CFG_16BIT)
  94. #define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
  95. #define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
  96. #define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
  97. #define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
  98. #define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
  99. #define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
  100. #define S5PC110_DMA_DIR_READ 0x0
  101. #define S5PC110_DMA_DIR_WRITE 0x1
  102. struct s3c_onenand {
  103. struct mtd_info *mtd;
  104. struct platform_device *pdev;
  105. enum soc_type type;
  106. void __iomem *base;
  107. struct resource *base_res;
  108. void __iomem *ahb_addr;
  109. struct resource *ahb_res;
  110. int bootram_command;
  111. void __iomem *page_buf;
  112. void __iomem *oob_buf;
  113. unsigned int (*mem_addr)(int fba, int fpa, int fsa);
  114. unsigned int (*cmd_map)(unsigned int type, unsigned int val);
  115. void __iomem *dma_addr;
  116. struct resource *dma_res;
  117. unsigned long phys_base;
  118. #ifdef CONFIG_MTD_PARTITIONS
  119. struct mtd_partition *parts;
  120. #endif
  121. };
  122. #define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
  123. #define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
  124. #define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
  125. #define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
  126. static struct s3c_onenand *onenand;
  127. #ifdef CONFIG_MTD_PARTITIONS
  128. static const char *part_probes[] = { "cmdlinepart", NULL, };
  129. #endif
  130. static inline int s3c_read_reg(int offset)
  131. {
  132. return readl(onenand->base + offset);
  133. }
  134. static inline void s3c_write_reg(int value, int offset)
  135. {
  136. writel(value, onenand->base + offset);
  137. }
  138. static inline int s3c_read_cmd(unsigned int cmd)
  139. {
  140. return readl(onenand->ahb_addr + cmd);
  141. }
  142. static inline void s3c_write_cmd(int value, unsigned int cmd)
  143. {
  144. writel(value, onenand->ahb_addr + cmd);
  145. }
  146. #ifdef SAMSUNG_DEBUG
  147. static void s3c_dump_reg(void)
  148. {
  149. int i;
  150. for (i = 0; i < 0x400; i += 0x40) {
  151. printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  152. (unsigned int) onenand->base + i,
  153. s3c_read_reg(i), s3c_read_reg(i + 0x10),
  154. s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
  155. }
  156. }
  157. #endif
  158. static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
  159. {
  160. return (type << S3C64XX_CMD_MAP_SHIFT) | val;
  161. }
  162. static unsigned int s5pc1xx_cmd_map(unsigned type, unsigned val)
  163. {
  164. return (type << S5PC1XX_CMD_MAP_SHIFT) | val;
  165. }
  166. static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
  167. {
  168. return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
  169. (fsa << S3C6400_FSA_SHIFT);
  170. }
  171. static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
  172. {
  173. return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
  174. (fsa << S3C6410_FSA_SHIFT);
  175. }
  176. static unsigned int s5pc100_mem_addr(int fba, int fpa, int fsa)
  177. {
  178. return (fba << S5PC100_FBA_SHIFT) | (fpa << S5PC100_FPA_SHIFT) |
  179. (fsa << S5PC100_FSA_SHIFT);
  180. }
  181. static void s3c_onenand_reset(void)
  182. {
  183. unsigned long timeout = 0x10000;
  184. int stat;
  185. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  186. while (1 && timeout--) {
  187. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  188. if (stat & RST_CMP)
  189. break;
  190. }
  191. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  192. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  193. /* Clear interrupt */
  194. s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
  195. /* Clear the ECC status */
  196. s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
  197. }
  198. static unsigned short s3c_onenand_readw(void __iomem *addr)
  199. {
  200. struct onenand_chip *this = onenand->mtd->priv;
  201. struct device *dev = &onenand->pdev->dev;
  202. int reg = addr - this->base;
  203. int word_addr = reg >> 1;
  204. int value;
  205. /* It's used for probing time */
  206. switch (reg) {
  207. case ONENAND_REG_MANUFACTURER_ID:
  208. return s3c_read_reg(MANUFACT_ID_OFFSET);
  209. case ONENAND_REG_DEVICE_ID:
  210. return s3c_read_reg(DEVICE_ID_OFFSET);
  211. case ONENAND_REG_VERSION_ID:
  212. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  213. case ONENAND_REG_DATA_BUFFER_SIZE:
  214. return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
  215. case ONENAND_REG_TECHNOLOGY:
  216. return s3c_read_reg(TECH_OFFSET);
  217. case ONENAND_REG_SYS_CFG1:
  218. return s3c_read_reg(MEM_CFG_OFFSET);
  219. /* Used at unlock all status */
  220. case ONENAND_REG_CTRL_STATUS:
  221. return 0;
  222. case ONENAND_REG_WP_STATUS:
  223. return ONENAND_WP_US;
  224. default:
  225. break;
  226. }
  227. /* BootRAM access control */
  228. if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
  229. if (word_addr == 0)
  230. return s3c_read_reg(MANUFACT_ID_OFFSET);
  231. if (word_addr == 1)
  232. return s3c_read_reg(DEVICE_ID_OFFSET);
  233. if (word_addr == 2)
  234. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  235. }
  236. value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
  237. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  238. word_addr, value);
  239. return value;
  240. }
  241. static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
  242. {
  243. struct onenand_chip *this = onenand->mtd->priv;
  244. struct device *dev = &onenand->pdev->dev;
  245. unsigned int reg = addr - this->base;
  246. unsigned int word_addr = reg >> 1;
  247. /* It's used for probing time */
  248. switch (reg) {
  249. case ONENAND_REG_SYS_CFG1:
  250. s3c_write_reg(value, MEM_CFG_OFFSET);
  251. return;
  252. case ONENAND_REG_START_ADDRESS1:
  253. case ONENAND_REG_START_ADDRESS2:
  254. return;
  255. /* Lock/lock-tight/unlock/unlock_all */
  256. case ONENAND_REG_START_BLOCK_ADDRESS:
  257. return;
  258. default:
  259. break;
  260. }
  261. /* BootRAM access control */
  262. if ((unsigned int)addr < ONENAND_DATARAM) {
  263. if (value == ONENAND_CMD_READID) {
  264. onenand->bootram_command = 1;
  265. return;
  266. }
  267. if (value == ONENAND_CMD_RESET) {
  268. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  269. onenand->bootram_command = 0;
  270. return;
  271. }
  272. }
  273. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  274. word_addr, value);
  275. s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
  276. }
  277. static int s3c_onenand_wait(struct mtd_info *mtd, int state)
  278. {
  279. struct device *dev = &onenand->pdev->dev;
  280. unsigned int flags = INT_ACT;
  281. unsigned int stat, ecc;
  282. unsigned long timeout;
  283. switch (state) {
  284. case FL_READING:
  285. flags |= BLK_RW_CMP | LOAD_CMP;
  286. break;
  287. case FL_WRITING:
  288. flags |= BLK_RW_CMP | PGM_CMP;
  289. break;
  290. case FL_ERASING:
  291. flags |= BLK_RW_CMP | ERS_CMP;
  292. break;
  293. case FL_LOCKING:
  294. flags |= BLK_RW_CMP;
  295. break;
  296. default:
  297. break;
  298. }
  299. /* The 20 msec is enough */
  300. timeout = jiffies + msecs_to_jiffies(20);
  301. while (time_before(jiffies, timeout)) {
  302. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  303. if (stat & flags)
  304. break;
  305. if (state != FL_READING)
  306. cond_resched();
  307. }
  308. /* To get correct interrupt status in timeout case */
  309. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  310. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  311. /*
  312. * In the Spec. it checks the controller status first
  313. * However if you get the correct information in case of
  314. * power off recovery (POR) test, it should read ECC status first
  315. */
  316. if (stat & LOAD_CMP) {
  317. ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  318. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  319. dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
  320. ecc);
  321. mtd->ecc_stats.failed++;
  322. return -EBADMSG;
  323. }
  324. }
  325. if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
  326. dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
  327. stat);
  328. if (stat & LOCKED_BLK)
  329. dev_info(dev, "%s: it's locked error = 0x%04x\n",
  330. __func__, stat);
  331. return -EIO;
  332. }
  333. return 0;
  334. }
  335. static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
  336. size_t len)
  337. {
  338. struct onenand_chip *this = mtd->priv;
  339. unsigned int *m, *s;
  340. int fba, fpa, fsa = 0;
  341. unsigned int mem_addr, cmd_map_01, cmd_map_10;
  342. int i, mcount, scount;
  343. int index;
  344. fba = (int) (addr >> this->erase_shift);
  345. fpa = (int) (addr >> this->page_shift);
  346. fpa &= this->page_mask;
  347. mem_addr = onenand->mem_addr(fba, fpa, fsa);
  348. cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
  349. cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
  350. switch (cmd) {
  351. case ONENAND_CMD_READ:
  352. case ONENAND_CMD_READOOB:
  353. case ONENAND_CMD_BUFFERRAM:
  354. ONENAND_SET_NEXT_BUFFERRAM(this);
  355. default:
  356. break;
  357. }
  358. index = ONENAND_CURRENT_BUFFERRAM(this);
  359. /*
  360. * Emulate Two BufferRAMs and access with 4 bytes pointer
  361. */
  362. m = (unsigned int *) onenand->page_buf;
  363. s = (unsigned int *) onenand->oob_buf;
  364. if (index) {
  365. m += (this->writesize >> 2);
  366. s += (mtd->oobsize >> 2);
  367. }
  368. mcount = mtd->writesize >> 2;
  369. scount = mtd->oobsize >> 2;
  370. switch (cmd) {
  371. case ONENAND_CMD_READ:
  372. /* Main */
  373. for (i = 0; i < mcount; i++)
  374. *m++ = s3c_read_cmd(cmd_map_01);
  375. return 0;
  376. case ONENAND_CMD_READOOB:
  377. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  378. /* Main */
  379. for (i = 0; i < mcount; i++)
  380. *m++ = s3c_read_cmd(cmd_map_01);
  381. /* Spare */
  382. for (i = 0; i < scount; i++)
  383. *s++ = s3c_read_cmd(cmd_map_01);
  384. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  385. return 0;
  386. case ONENAND_CMD_PROG:
  387. /* Main */
  388. for (i = 0; i < mcount; i++)
  389. s3c_write_cmd(*m++, cmd_map_01);
  390. return 0;
  391. case ONENAND_CMD_PROGOOB:
  392. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  393. /* Main - dummy write */
  394. for (i = 0; i < mcount; i++)
  395. s3c_write_cmd(0xffffffff, cmd_map_01);
  396. /* Spare */
  397. for (i = 0; i < scount; i++)
  398. s3c_write_cmd(*s++, cmd_map_01);
  399. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  400. return 0;
  401. case ONENAND_CMD_UNLOCK_ALL:
  402. s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
  403. return 0;
  404. case ONENAND_CMD_ERASE:
  405. s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
  406. return 0;
  407. default:
  408. break;
  409. }
  410. return 0;
  411. }
  412. static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
  413. {
  414. struct onenand_chip *this = mtd->priv;
  415. int index = ONENAND_CURRENT_BUFFERRAM(this);
  416. unsigned char *p;
  417. if (area == ONENAND_DATARAM) {
  418. p = (unsigned char *) onenand->page_buf;
  419. if (index == 1)
  420. p += this->writesize;
  421. } else {
  422. p = (unsigned char *) onenand->oob_buf;
  423. if (index == 1)
  424. p += mtd->oobsize;
  425. }
  426. return p;
  427. }
  428. static int onenand_read_bufferram(struct mtd_info *mtd, int area,
  429. unsigned char *buffer, int offset,
  430. size_t count)
  431. {
  432. unsigned char *p;
  433. p = s3c_get_bufferram(mtd, area);
  434. memcpy(buffer, p + offset, count);
  435. return 0;
  436. }
  437. static int onenand_write_bufferram(struct mtd_info *mtd, int area,
  438. const unsigned char *buffer, int offset,
  439. size_t count)
  440. {
  441. unsigned char *p;
  442. p = s3c_get_bufferram(mtd, area);
  443. memcpy(p + offset, buffer, count);
  444. return 0;
  445. }
  446. static int s5pc110_dma_ops(void *dst, void *src, size_t count, int direction)
  447. {
  448. void __iomem *base = onenand->dma_addr;
  449. int status;
  450. writel(src, base + S5PC110_DMA_SRC_ADDR);
  451. writel(dst, base + S5PC110_DMA_DST_ADDR);
  452. if (direction == S5PC110_DMA_DIR_READ) {
  453. writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
  454. writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
  455. } else {
  456. writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
  457. writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
  458. }
  459. writel(count, base + S5PC110_DMA_TRANS_SIZE);
  460. writel(direction, base + S5PC110_DMA_TRANS_DIR);
  461. writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
  462. do {
  463. status = readl(base + S5PC110_DMA_TRANS_STATUS);
  464. if (status & S5PC110_DMA_TRANS_STATUS_TE) {
  465. writel(S5PC110_DMA_TRANS_CMD_TEC,
  466. base + S5PC110_DMA_TRANS_CMD);
  467. return -EIO;
  468. }
  469. } while (!(status & S5PC110_DMA_TRANS_STATUS_TD));
  470. writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
  471. return 0;
  472. }
  473. static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
  474. unsigned char *buffer, int offset, size_t count)
  475. {
  476. struct onenand_chip *this = mtd->priv;
  477. void __iomem *p;
  478. void *buf = (void *) buffer;
  479. dma_addr_t dma_src, dma_dst;
  480. int err;
  481. p = this->base + area;
  482. if (ONENAND_CURRENT_BUFFERRAM(this)) {
  483. if (area == ONENAND_DATARAM)
  484. p += this->writesize;
  485. else
  486. p += mtd->oobsize;
  487. }
  488. if (offset & 3 || (size_t) buf & 3 ||
  489. !onenand->dma_addr || count != mtd->writesize)
  490. goto normal;
  491. /* Handle vmalloc address */
  492. if (buf >= high_memory) {
  493. struct page *page;
  494. if (((size_t) buf & PAGE_MASK) !=
  495. ((size_t) (buf + count - 1) & PAGE_MASK))
  496. goto normal;
  497. page = vmalloc_to_page(buf);
  498. if (!page)
  499. goto normal;
  500. buf = page_address(page) + ((size_t) buf & ~PAGE_MASK);
  501. }
  502. /* DMA routine */
  503. dma_src = onenand->phys_base + (p - this->base);
  504. dma_dst = dma_map_single(&onenand->pdev->dev,
  505. buf, count, DMA_FROM_DEVICE);
  506. if (dma_mapping_error(&onenand->pdev->dev, dma_dst)) {
  507. dev_err(&onenand->pdev->dev,
  508. "Couldn't map a %d byte buffer for DMA\n", count);
  509. goto normal;
  510. }
  511. err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src,
  512. count, S5PC110_DMA_DIR_READ);
  513. dma_unmap_single(&onenand->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
  514. if (!err)
  515. return 0;
  516. normal:
  517. if (count != mtd->writesize) {
  518. /* Copy the bufferram to memory to prevent unaligned access */
  519. memcpy(this->page_buf, p, mtd->writesize);
  520. p = this->page_buf + offset;
  521. }
  522. memcpy(buffer, p, count);
  523. return 0;
  524. }
  525. static int s5pc110_chip_probe(struct mtd_info *mtd)
  526. {
  527. /* Now just return 0 */
  528. return 0;
  529. }
  530. static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
  531. {
  532. unsigned int flags = INT_ACT | LOAD_CMP;
  533. unsigned int stat;
  534. unsigned long timeout;
  535. /* The 20 msec is enough */
  536. timeout = jiffies + msecs_to_jiffies(20);
  537. while (time_before(jiffies, timeout)) {
  538. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  539. if (stat & flags)
  540. break;
  541. }
  542. /* To get correct interrupt status in timeout case */
  543. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  544. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  545. if (stat & LD_FAIL_ECC_ERR) {
  546. s3c_onenand_reset();
  547. return ONENAND_BBT_READ_ERROR;
  548. }
  549. if (stat & LOAD_CMP) {
  550. int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  551. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  552. s3c_onenand_reset();
  553. return ONENAND_BBT_READ_ERROR;
  554. }
  555. }
  556. return 0;
  557. }
  558. static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
  559. {
  560. struct onenand_chip *this = mtd->priv;
  561. struct device *dev = &onenand->pdev->dev;
  562. unsigned int block, end;
  563. int tmp;
  564. end = this->chipsize >> this->erase_shift;
  565. for (block = 0; block < end; block++) {
  566. unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
  567. tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
  568. if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
  569. dev_err(dev, "block %d is write-protected!\n", block);
  570. s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
  571. }
  572. }
  573. }
  574. static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
  575. size_t len, int cmd)
  576. {
  577. struct onenand_chip *this = mtd->priv;
  578. int start, end, start_mem_addr, end_mem_addr;
  579. start = ofs >> this->erase_shift;
  580. start_mem_addr = onenand->mem_addr(start, 0, 0);
  581. end = start + (len >> this->erase_shift) - 1;
  582. end_mem_addr = onenand->mem_addr(end, 0, 0);
  583. if (cmd == ONENAND_CMD_LOCK) {
  584. s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
  585. start_mem_addr));
  586. s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
  587. end_mem_addr));
  588. } else {
  589. s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
  590. start_mem_addr));
  591. s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
  592. end_mem_addr));
  593. }
  594. this->wait(mtd, FL_LOCKING);
  595. }
  596. static void s3c_unlock_all(struct mtd_info *mtd)
  597. {
  598. struct onenand_chip *this = mtd->priv;
  599. loff_t ofs = 0;
  600. size_t len = this->chipsize;
  601. if (this->options & ONENAND_HAS_UNLOCK_ALL) {
  602. /* Write unlock command */
  603. this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
  604. /* No need to check return value */
  605. this->wait(mtd, FL_LOCKING);
  606. /* Workaround for all block unlock in DDP */
  607. if (!ONENAND_IS_DDP(this)) {
  608. s3c_onenand_check_lock_status(mtd);
  609. return;
  610. }
  611. /* All blocks on another chip */
  612. ofs = this->chipsize >> 1;
  613. len = this->chipsize >> 1;
  614. }
  615. s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
  616. s3c_onenand_check_lock_status(mtd);
  617. }
  618. static void s3c_onenand_setup(struct mtd_info *mtd)
  619. {
  620. struct onenand_chip *this = mtd->priv;
  621. onenand->mtd = mtd;
  622. if (onenand->type == TYPE_S3C6400) {
  623. onenand->mem_addr = s3c6400_mem_addr;
  624. onenand->cmd_map = s3c64xx_cmd_map;
  625. } else if (onenand->type == TYPE_S3C6410) {
  626. onenand->mem_addr = s3c6410_mem_addr;
  627. onenand->cmd_map = s3c64xx_cmd_map;
  628. } else if (onenand->type == TYPE_S5PC100) {
  629. onenand->mem_addr = s5pc100_mem_addr;
  630. onenand->cmd_map = s5pc1xx_cmd_map;
  631. } else if (onenand->type == TYPE_S5PC110) {
  632. /* Use generic onenand functions */
  633. onenand->cmd_map = s5pc1xx_cmd_map;
  634. this->read_bufferram = s5pc110_read_bufferram;
  635. this->chip_probe = s5pc110_chip_probe;
  636. return;
  637. } else {
  638. BUG();
  639. }
  640. this->read_word = s3c_onenand_readw;
  641. this->write_word = s3c_onenand_writew;
  642. this->wait = s3c_onenand_wait;
  643. this->bbt_wait = s3c_onenand_bbt_wait;
  644. this->unlock_all = s3c_unlock_all;
  645. this->command = s3c_onenand_command;
  646. this->read_bufferram = onenand_read_bufferram;
  647. this->write_bufferram = onenand_write_bufferram;
  648. }
  649. static int s3c_onenand_probe(struct platform_device *pdev)
  650. {
  651. struct onenand_platform_data *pdata;
  652. struct onenand_chip *this;
  653. struct mtd_info *mtd;
  654. struct resource *r;
  655. int size, err;
  656. pdata = pdev->dev.platform_data;
  657. /* No need to check pdata. the platform data is optional */
  658. size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
  659. mtd = kzalloc(size, GFP_KERNEL);
  660. if (!mtd) {
  661. dev_err(&pdev->dev, "failed to allocate memory\n");
  662. return -ENOMEM;
  663. }
  664. onenand = kzalloc(sizeof(struct s3c_onenand), GFP_KERNEL);
  665. if (!onenand) {
  666. err = -ENOMEM;
  667. goto onenand_fail;
  668. }
  669. this = (struct onenand_chip *) &mtd[1];
  670. mtd->priv = this;
  671. mtd->dev.parent = &pdev->dev;
  672. mtd->owner = THIS_MODULE;
  673. onenand->pdev = pdev;
  674. onenand->type = platform_get_device_id(pdev)->driver_data;
  675. s3c_onenand_setup(mtd);
  676. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  677. if (!r) {
  678. dev_err(&pdev->dev, "no memory resource defined\n");
  679. return -ENOENT;
  680. goto ahb_resource_failed;
  681. }
  682. onenand->base_res = request_mem_region(r->start, resource_size(r),
  683. pdev->name);
  684. if (!onenand->base_res) {
  685. dev_err(&pdev->dev, "failed to request memory resource\n");
  686. err = -EBUSY;
  687. goto resource_failed;
  688. }
  689. onenand->base = ioremap(r->start, resource_size(r));
  690. if (!onenand->base) {
  691. dev_err(&pdev->dev, "failed to map memory resource\n");
  692. err = -EFAULT;
  693. goto ioremap_failed;
  694. }
  695. /* Set onenand_chip also */
  696. this->base = onenand->base;
  697. /* Use runtime badblock check */
  698. this->options |= ONENAND_SKIP_UNLOCK_CHECK;
  699. if (onenand->type != TYPE_S5PC110) {
  700. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  701. if (!r) {
  702. dev_err(&pdev->dev, "no buffer memory resource defined\n");
  703. return -ENOENT;
  704. goto ahb_resource_failed;
  705. }
  706. onenand->ahb_res = request_mem_region(r->start, resource_size(r),
  707. pdev->name);
  708. if (!onenand->ahb_res) {
  709. dev_err(&pdev->dev, "failed to request buffer memory resource\n");
  710. err = -EBUSY;
  711. goto ahb_resource_failed;
  712. }
  713. onenand->ahb_addr = ioremap(r->start, resource_size(r));
  714. if (!onenand->ahb_addr) {
  715. dev_err(&pdev->dev, "failed to map buffer memory resource\n");
  716. err = -EINVAL;
  717. goto ahb_ioremap_failed;
  718. }
  719. /* Allocate 4KiB BufferRAM */
  720. onenand->page_buf = kzalloc(SZ_4K, GFP_KERNEL);
  721. if (!onenand->page_buf) {
  722. err = -ENOMEM;
  723. goto page_buf_fail;
  724. }
  725. /* Allocate 128 SpareRAM */
  726. onenand->oob_buf = kzalloc(128, GFP_KERNEL);
  727. if (!onenand->oob_buf) {
  728. err = -ENOMEM;
  729. goto oob_buf_fail;
  730. }
  731. /* S3C doesn't handle subpage write */
  732. mtd->subpage_sft = 0;
  733. this->subpagesize = mtd->writesize;
  734. } else { /* S5PC110 */
  735. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  736. if (!r) {
  737. dev_err(&pdev->dev, "no dma memory resource defined\n");
  738. return -ENOENT;
  739. goto dma_resource_failed;
  740. }
  741. onenand->dma_res = request_mem_region(r->start, resource_size(r),
  742. pdev->name);
  743. if (!onenand->dma_res) {
  744. dev_err(&pdev->dev, "failed to request dma memory resource\n");
  745. err = -EBUSY;
  746. goto dma_resource_failed;
  747. }
  748. onenand->dma_addr = ioremap(r->start, resource_size(r));
  749. if (!onenand->dma_addr) {
  750. dev_err(&pdev->dev, "failed to map dma memory resource\n");
  751. err = -EINVAL;
  752. goto dma_ioremap_failed;
  753. }
  754. onenand->phys_base = onenand->base_res->start;
  755. }
  756. if (onenand_scan(mtd, 1)) {
  757. err = -EFAULT;
  758. goto scan_failed;
  759. }
  760. if (onenand->type != TYPE_S5PC110) {
  761. /* S3C doesn't handle subpage write */
  762. mtd->subpage_sft = 0;
  763. this->subpagesize = mtd->writesize;
  764. }
  765. if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
  766. dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
  767. #ifdef CONFIG_MTD_PARTITIONS
  768. err = parse_mtd_partitions(mtd, part_probes, &onenand->parts, 0);
  769. if (err > 0)
  770. add_mtd_partitions(mtd, onenand->parts, err);
  771. else if (err <= 0 && pdata && pdata->parts)
  772. add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts);
  773. else
  774. #endif
  775. err = add_mtd_device(mtd);
  776. platform_set_drvdata(pdev, mtd);
  777. return 0;
  778. scan_failed:
  779. if (onenand->dma_addr)
  780. iounmap(onenand->dma_addr);
  781. dma_ioremap_failed:
  782. if (onenand->dma_res)
  783. release_mem_region(onenand->dma_res->start,
  784. resource_size(onenand->dma_res));
  785. kfree(onenand->oob_buf);
  786. oob_buf_fail:
  787. kfree(onenand->page_buf);
  788. page_buf_fail:
  789. if (onenand->ahb_addr)
  790. iounmap(onenand->ahb_addr);
  791. ahb_ioremap_failed:
  792. if (onenand->ahb_res)
  793. release_mem_region(onenand->ahb_res->start,
  794. resource_size(onenand->ahb_res));
  795. dma_resource_failed:
  796. ahb_resource_failed:
  797. iounmap(onenand->base);
  798. ioremap_failed:
  799. if (onenand->base_res)
  800. release_mem_region(onenand->base_res->start,
  801. resource_size(onenand->base_res));
  802. resource_failed:
  803. kfree(onenand);
  804. onenand_fail:
  805. kfree(mtd);
  806. return err;
  807. }
  808. static int __devexit s3c_onenand_remove(struct platform_device *pdev)
  809. {
  810. struct mtd_info *mtd = platform_get_drvdata(pdev);
  811. onenand_release(mtd);
  812. if (onenand->ahb_addr)
  813. iounmap(onenand->ahb_addr);
  814. if (onenand->ahb_res)
  815. release_mem_region(onenand->ahb_res->start,
  816. resource_size(onenand->ahb_res));
  817. if (onenand->dma_addr)
  818. iounmap(onenand->dma_addr);
  819. if (onenand->dma_res)
  820. release_mem_region(onenand->dma_res->start,
  821. resource_size(onenand->dma_res));
  822. iounmap(onenand->base);
  823. release_mem_region(onenand->base_res->start,
  824. resource_size(onenand->base_res));
  825. platform_set_drvdata(pdev, NULL);
  826. kfree(onenand->oob_buf);
  827. kfree(onenand->page_buf);
  828. kfree(onenand);
  829. kfree(mtd);
  830. return 0;
  831. }
  832. static int s3c_pm_ops_suspend(struct device *dev)
  833. {
  834. struct platform_device *pdev = to_platform_device(dev);
  835. struct mtd_info *mtd = platform_get_drvdata(pdev);
  836. struct onenand_chip *this = mtd->priv;
  837. this->wait(mtd, FL_PM_SUSPENDED);
  838. return mtd->suspend(mtd);
  839. }
  840. static int s3c_pm_ops_resume(struct device *dev)
  841. {
  842. struct platform_device *pdev = to_platform_device(dev);
  843. struct mtd_info *mtd = platform_get_drvdata(pdev);
  844. struct onenand_chip *this = mtd->priv;
  845. mtd->resume(mtd);
  846. this->unlock_all(mtd);
  847. return 0;
  848. }
  849. static const struct dev_pm_ops s3c_pm_ops = {
  850. .suspend = s3c_pm_ops_suspend,
  851. .resume = s3c_pm_ops_resume,
  852. };
  853. static struct platform_device_id s3c_onenand_driver_ids[] = {
  854. {
  855. .name = "s3c6400-onenand",
  856. .driver_data = TYPE_S3C6400,
  857. }, {
  858. .name = "s3c6410-onenand",
  859. .driver_data = TYPE_S3C6410,
  860. }, {
  861. .name = "s5pc100-onenand",
  862. .driver_data = TYPE_S5PC100,
  863. }, {
  864. .name = "s5pc110-onenand",
  865. .driver_data = TYPE_S5PC110,
  866. }, { },
  867. };
  868. MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
  869. static struct platform_driver s3c_onenand_driver = {
  870. .driver = {
  871. .name = "samsung-onenand",
  872. .pm = &s3c_pm_ops,
  873. },
  874. .id_table = s3c_onenand_driver_ids,
  875. .probe = s3c_onenand_probe,
  876. .remove = __devexit_p(s3c_onenand_remove),
  877. };
  878. static int __init s3c_onenand_init(void)
  879. {
  880. return platform_driver_register(&s3c_onenand_driver);
  881. }
  882. static void __exit s3c_onenand_exit(void)
  883. {
  884. platform_driver_unregister(&s3c_onenand_driver);
  885. }
  886. module_init(s3c_onenand_init);
  887. module_exit(s3c_onenand_exit);
  888. MODULE_LICENSE("GPL");
  889. MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
  890. MODULE_DESCRIPTION("Samsung OneNAND controller support");