mtdpart.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. /* Our partition linked list */
  32. static LIST_HEAD(mtd_partitions);
  33. /* Our partition node structure */
  34. struct mtd_part {
  35. struct mtd_info mtd;
  36. struct mtd_info *master;
  37. uint64_t offset;
  38. struct list_head list;
  39. };
  40. /*
  41. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  42. * the pointer to that structure with this macro.
  43. */
  44. #define PART(x) ((struct mtd_part *)(x))
  45. /*
  46. * MTD methods which simply translate the effective address and pass through
  47. * to the _real_ device.
  48. */
  49. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  50. size_t *retlen, u_char *buf)
  51. {
  52. struct mtd_part *part = PART(mtd);
  53. struct mtd_ecc_stats stats;
  54. int res;
  55. stats = part->master->ecc_stats;
  56. if (from >= mtd->size)
  57. len = 0;
  58. else if (from + len > mtd->size)
  59. len = mtd->size - from;
  60. res = part->master->read(part->master, from + part->offset,
  61. len, retlen, buf);
  62. if (unlikely(res)) {
  63. if (res == -EUCLEAN)
  64. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  65. if (res == -EBADMSG)
  66. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  67. }
  68. return res;
  69. }
  70. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  71. size_t *retlen, void **virt, resource_size_t *phys)
  72. {
  73. struct mtd_part *part = PART(mtd);
  74. if (from >= mtd->size)
  75. len = 0;
  76. else if (from + len > mtd->size)
  77. len = mtd->size - from;
  78. return part->master->point (part->master, from + part->offset,
  79. len, retlen, virt, phys);
  80. }
  81. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  82. {
  83. struct mtd_part *part = PART(mtd);
  84. part->master->unpoint(part->master, from + part->offset, len);
  85. }
  86. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  87. unsigned long len,
  88. unsigned long offset,
  89. unsigned long flags)
  90. {
  91. struct mtd_part *part = PART(mtd);
  92. offset += part->offset;
  93. return part->master->get_unmapped_area(part->master, len, offset,
  94. flags);
  95. }
  96. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  97. struct mtd_oob_ops *ops)
  98. {
  99. struct mtd_part *part = PART(mtd);
  100. int res;
  101. if (from >= mtd->size)
  102. return -EINVAL;
  103. if (ops->datbuf && from + ops->len > mtd->size)
  104. return -EINVAL;
  105. res = part->master->read_oob(part->master, from + part->offset, ops);
  106. if (unlikely(res)) {
  107. if (res == -EUCLEAN)
  108. mtd->ecc_stats.corrected++;
  109. if (res == -EBADMSG)
  110. mtd->ecc_stats.failed++;
  111. }
  112. return res;
  113. }
  114. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  115. size_t len, size_t *retlen, u_char *buf)
  116. {
  117. struct mtd_part *part = PART(mtd);
  118. return part->master->read_user_prot_reg(part->master, from,
  119. len, retlen, buf);
  120. }
  121. static int part_get_user_prot_info(struct mtd_info *mtd,
  122. struct otp_info *buf, size_t len)
  123. {
  124. struct mtd_part *part = PART(mtd);
  125. return part->master->get_user_prot_info(part->master, buf, len);
  126. }
  127. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  128. size_t len, size_t *retlen, u_char *buf)
  129. {
  130. struct mtd_part *part = PART(mtd);
  131. return part->master->read_fact_prot_reg(part->master, from,
  132. len, retlen, buf);
  133. }
  134. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  135. size_t len)
  136. {
  137. struct mtd_part *part = PART(mtd);
  138. return part->master->get_fact_prot_info(part->master, buf, len);
  139. }
  140. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  141. size_t *retlen, const u_char *buf)
  142. {
  143. struct mtd_part *part = PART(mtd);
  144. if (!(mtd->flags & MTD_WRITEABLE))
  145. return -EROFS;
  146. if (to >= mtd->size)
  147. len = 0;
  148. else if (to + len > mtd->size)
  149. len = mtd->size - to;
  150. return part->master->write(part->master, to + part->offset,
  151. len, retlen, buf);
  152. }
  153. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  154. size_t *retlen, const u_char *buf)
  155. {
  156. struct mtd_part *part = PART(mtd);
  157. if (!(mtd->flags & MTD_WRITEABLE))
  158. return -EROFS;
  159. if (to >= mtd->size)
  160. len = 0;
  161. else if (to + len > mtd->size)
  162. len = mtd->size - to;
  163. return part->master->panic_write(part->master, to + part->offset,
  164. len, retlen, buf);
  165. }
  166. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  167. struct mtd_oob_ops *ops)
  168. {
  169. struct mtd_part *part = PART(mtd);
  170. if (!(mtd->flags & MTD_WRITEABLE))
  171. return -EROFS;
  172. if (to >= mtd->size)
  173. return -EINVAL;
  174. if (ops->datbuf && to + ops->len > mtd->size)
  175. return -EINVAL;
  176. return part->master->write_oob(part->master, to + part->offset, ops);
  177. }
  178. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  179. size_t len, size_t *retlen, u_char *buf)
  180. {
  181. struct mtd_part *part = PART(mtd);
  182. return part->master->write_user_prot_reg(part->master, from,
  183. len, retlen, buf);
  184. }
  185. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  186. size_t len)
  187. {
  188. struct mtd_part *part = PART(mtd);
  189. return part->master->lock_user_prot_reg(part->master, from, len);
  190. }
  191. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  192. unsigned long count, loff_t to, size_t *retlen)
  193. {
  194. struct mtd_part *part = PART(mtd);
  195. if (!(mtd->flags & MTD_WRITEABLE))
  196. return -EROFS;
  197. return part->master->writev(part->master, vecs, count,
  198. to + part->offset, retlen);
  199. }
  200. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  201. {
  202. struct mtd_part *part = PART(mtd);
  203. int ret;
  204. if (!(mtd->flags & MTD_WRITEABLE))
  205. return -EROFS;
  206. if (instr->addr >= mtd->size)
  207. return -EINVAL;
  208. instr->addr += part->offset;
  209. ret = part->master->erase(part->master, instr);
  210. if (ret) {
  211. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  212. instr->fail_addr -= part->offset;
  213. instr->addr -= part->offset;
  214. }
  215. return ret;
  216. }
  217. void mtd_erase_callback(struct erase_info *instr)
  218. {
  219. if (instr->mtd->erase == part_erase) {
  220. struct mtd_part *part = PART(instr->mtd);
  221. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  222. instr->fail_addr -= part->offset;
  223. instr->addr -= part->offset;
  224. }
  225. if (instr->callback)
  226. instr->callback(instr);
  227. }
  228. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  229. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  230. {
  231. struct mtd_part *part = PART(mtd);
  232. if ((len + ofs) > mtd->size)
  233. return -EINVAL;
  234. return part->master->lock(part->master, ofs + part->offset, len);
  235. }
  236. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  237. {
  238. struct mtd_part *part = PART(mtd);
  239. if ((len + ofs) > mtd->size)
  240. return -EINVAL;
  241. return part->master->unlock(part->master, ofs + part->offset, len);
  242. }
  243. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  244. {
  245. struct mtd_part *part = PART(mtd);
  246. if ((len + ofs) > mtd->size)
  247. return -EINVAL;
  248. return part->master->is_locked(part->master, ofs + part->offset, len);
  249. }
  250. static void part_sync(struct mtd_info *mtd)
  251. {
  252. struct mtd_part *part = PART(mtd);
  253. part->master->sync(part->master);
  254. }
  255. static int part_suspend(struct mtd_info *mtd)
  256. {
  257. struct mtd_part *part = PART(mtd);
  258. return part->master->suspend(part->master);
  259. }
  260. static void part_resume(struct mtd_info *mtd)
  261. {
  262. struct mtd_part *part = PART(mtd);
  263. part->master->resume(part->master);
  264. }
  265. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  266. {
  267. struct mtd_part *part = PART(mtd);
  268. if (ofs >= mtd->size)
  269. return -EINVAL;
  270. ofs += part->offset;
  271. return part->master->block_isbad(part->master, ofs);
  272. }
  273. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  274. {
  275. struct mtd_part *part = PART(mtd);
  276. int res;
  277. if (!(mtd->flags & MTD_WRITEABLE))
  278. return -EROFS;
  279. if (ofs >= mtd->size)
  280. return -EINVAL;
  281. ofs += part->offset;
  282. res = part->master->block_markbad(part->master, ofs);
  283. if (!res)
  284. mtd->ecc_stats.badblocks++;
  285. return res;
  286. }
  287. /*
  288. * This function unregisters and destroy all slave MTD objects which are
  289. * attached to the given master MTD object.
  290. */
  291. int del_mtd_partitions(struct mtd_info *master)
  292. {
  293. struct mtd_part *slave, *next;
  294. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  295. if (slave->master == master) {
  296. list_del(&slave->list);
  297. del_mtd_device(&slave->mtd);
  298. kfree(slave);
  299. }
  300. return 0;
  301. }
  302. EXPORT_SYMBOL(del_mtd_partitions);
  303. static struct mtd_part *add_one_partition(struct mtd_info *master,
  304. const struct mtd_partition *part, int partno,
  305. uint64_t cur_offset)
  306. {
  307. struct mtd_part *slave;
  308. /* allocate the partition structure */
  309. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  310. if (!slave) {
  311. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  312. master->name);
  313. del_mtd_partitions(master);
  314. return NULL;
  315. }
  316. list_add(&slave->list, &mtd_partitions);
  317. /* set up the MTD object for this partition */
  318. slave->mtd.type = master->type;
  319. slave->mtd.flags = master->flags & ~part->mask_flags;
  320. slave->mtd.size = part->size;
  321. slave->mtd.writesize = master->writesize;
  322. slave->mtd.oobsize = master->oobsize;
  323. slave->mtd.oobavail = master->oobavail;
  324. slave->mtd.subpage_sft = master->subpage_sft;
  325. slave->mtd.name = part->name;
  326. slave->mtd.owner = master->owner;
  327. slave->mtd.backing_dev_info = master->backing_dev_info;
  328. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  329. * to have the same data be in two different partitions.
  330. */
  331. slave->mtd.dev.parent = master->dev.parent;
  332. slave->mtd.read = part_read;
  333. slave->mtd.write = part_write;
  334. if (master->panic_write)
  335. slave->mtd.panic_write = part_panic_write;
  336. if (master->point && master->unpoint) {
  337. slave->mtd.point = part_point;
  338. slave->mtd.unpoint = part_unpoint;
  339. }
  340. if (master->get_unmapped_area)
  341. slave->mtd.get_unmapped_area = part_get_unmapped_area;
  342. if (master->read_oob)
  343. slave->mtd.read_oob = part_read_oob;
  344. if (master->write_oob)
  345. slave->mtd.write_oob = part_write_oob;
  346. if (master->read_user_prot_reg)
  347. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  348. if (master->read_fact_prot_reg)
  349. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  350. if (master->write_user_prot_reg)
  351. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  352. if (master->lock_user_prot_reg)
  353. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  354. if (master->get_user_prot_info)
  355. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  356. if (master->get_fact_prot_info)
  357. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  358. if (master->sync)
  359. slave->mtd.sync = part_sync;
  360. if (!partno && !master->dev.class && master->suspend && master->resume) {
  361. slave->mtd.suspend = part_suspend;
  362. slave->mtd.resume = part_resume;
  363. }
  364. if (master->writev)
  365. slave->mtd.writev = part_writev;
  366. if (master->lock)
  367. slave->mtd.lock = part_lock;
  368. if (master->unlock)
  369. slave->mtd.unlock = part_unlock;
  370. if (master->is_locked)
  371. slave->mtd.is_locked = part_is_locked;
  372. if (master->block_isbad)
  373. slave->mtd.block_isbad = part_block_isbad;
  374. if (master->block_markbad)
  375. slave->mtd.block_markbad = part_block_markbad;
  376. slave->mtd.erase = part_erase;
  377. slave->master = master;
  378. slave->offset = part->offset;
  379. if (slave->offset == MTDPART_OFS_APPEND)
  380. slave->offset = cur_offset;
  381. if (slave->offset == MTDPART_OFS_NXTBLK) {
  382. slave->offset = cur_offset;
  383. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  384. /* Round up to next erasesize */
  385. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  386. printk(KERN_NOTICE "Moving partition %d: "
  387. "0x%012llx -> 0x%012llx\n", partno,
  388. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  389. }
  390. }
  391. if (slave->mtd.size == MTDPART_SIZ_FULL)
  392. slave->mtd.size = master->size - slave->offset;
  393. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  394. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  395. /* let's do some sanity checks */
  396. if (slave->offset >= master->size) {
  397. /* let's register it anyway to preserve ordering */
  398. slave->offset = 0;
  399. slave->mtd.size = 0;
  400. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  401. part->name);
  402. goto out_register;
  403. }
  404. if (slave->offset + slave->mtd.size > master->size) {
  405. slave->mtd.size = master->size - slave->offset;
  406. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  407. part->name, master->name, (unsigned long long)slave->mtd.size);
  408. }
  409. if (master->numeraseregions > 1) {
  410. /* Deal with variable erase size stuff */
  411. int i, max = master->numeraseregions;
  412. u64 end = slave->offset + slave->mtd.size;
  413. struct mtd_erase_region_info *regions = master->eraseregions;
  414. /* Find the first erase regions which is part of this
  415. * partition. */
  416. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  417. ;
  418. /* The loop searched for the region _behind_ the first one */
  419. if (i > 0)
  420. i--;
  421. /* Pick biggest erasesize */
  422. for (; i < max && regions[i].offset < end; i++) {
  423. if (slave->mtd.erasesize < regions[i].erasesize) {
  424. slave->mtd.erasesize = regions[i].erasesize;
  425. }
  426. }
  427. BUG_ON(slave->mtd.erasesize == 0);
  428. } else {
  429. /* Single erase size */
  430. slave->mtd.erasesize = master->erasesize;
  431. }
  432. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  433. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  434. /* Doesn't start on a boundary of major erase size */
  435. /* FIXME: Let it be writable if it is on a boundary of
  436. * _minor_ erase size though */
  437. slave->mtd.flags &= ~MTD_WRITEABLE;
  438. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  439. part->name);
  440. }
  441. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  442. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  443. slave->mtd.flags &= ~MTD_WRITEABLE;
  444. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  445. part->name);
  446. }
  447. slave->mtd.ecclayout = master->ecclayout;
  448. if (master->block_isbad) {
  449. uint64_t offs = 0;
  450. while (offs < slave->mtd.size) {
  451. if (master->block_isbad(master,
  452. offs + slave->offset))
  453. slave->mtd.ecc_stats.badblocks++;
  454. offs += slave->mtd.erasesize;
  455. }
  456. }
  457. out_register:
  458. /* register our partition */
  459. add_mtd_device(&slave->mtd);
  460. return slave;
  461. }
  462. /*
  463. * This function, given a master MTD object and a partition table, creates
  464. * and registers slave MTD objects which are bound to the master according to
  465. * the partition definitions.
  466. *
  467. * We don't register the master, or expect the caller to have done so,
  468. * for reasons of data integrity.
  469. */
  470. int add_mtd_partitions(struct mtd_info *master,
  471. const struct mtd_partition *parts,
  472. int nbparts)
  473. {
  474. struct mtd_part *slave;
  475. uint64_t cur_offset = 0;
  476. int i;
  477. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  478. for (i = 0; i < nbparts; i++) {
  479. slave = add_one_partition(master, parts + i, i, cur_offset);
  480. if (!slave)
  481. return -ENOMEM;
  482. cur_offset = slave->offset + slave->mtd.size;
  483. }
  484. return 0;
  485. }
  486. EXPORT_SYMBOL(add_mtd_partitions);
  487. static DEFINE_SPINLOCK(part_parser_lock);
  488. static LIST_HEAD(part_parsers);
  489. static struct mtd_part_parser *get_partition_parser(const char *name)
  490. {
  491. struct mtd_part_parser *p, *ret = NULL;
  492. spin_lock(&part_parser_lock);
  493. list_for_each_entry(p, &part_parsers, list)
  494. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  495. ret = p;
  496. break;
  497. }
  498. spin_unlock(&part_parser_lock);
  499. return ret;
  500. }
  501. int register_mtd_parser(struct mtd_part_parser *p)
  502. {
  503. spin_lock(&part_parser_lock);
  504. list_add(&p->list, &part_parsers);
  505. spin_unlock(&part_parser_lock);
  506. return 0;
  507. }
  508. EXPORT_SYMBOL_GPL(register_mtd_parser);
  509. int deregister_mtd_parser(struct mtd_part_parser *p)
  510. {
  511. spin_lock(&part_parser_lock);
  512. list_del(&p->list);
  513. spin_unlock(&part_parser_lock);
  514. return 0;
  515. }
  516. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  517. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  518. struct mtd_partition **pparts, unsigned long origin)
  519. {
  520. struct mtd_part_parser *parser;
  521. int ret = 0;
  522. for ( ; ret <= 0 && *types; types++) {
  523. parser = get_partition_parser(*types);
  524. if (!parser && !request_module("%s", *types))
  525. parser = get_partition_parser(*types);
  526. if (!parser) {
  527. printk(KERN_NOTICE "%s partition parsing not available\n",
  528. *types);
  529. continue;
  530. }
  531. ret = (*parser->parse_fn)(master, pparts, origin);
  532. if (ret > 0) {
  533. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  534. ret, parser->name, master->name);
  535. }
  536. put_partition_parser(parser);
  537. }
  538. return ret;
  539. }
  540. EXPORT_SYMBOL_GPL(parse_mtd_partitions);