intel_dp.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(i) ((i)->is_pch_edp)
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. };
  56. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  57. {
  58. return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
  59. }
  60. static void intel_dp_link_train(struct intel_dp *intel_dp);
  61. static void intel_dp_link_down(struct intel_dp *intel_dp);
  62. void
  63. intel_edp_link_config (struct intel_encoder *intel_encoder,
  64. int *lane_num, int *link_bw)
  65. {
  66. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  67. *lane_num = intel_dp->lane_count;
  68. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  69. *link_bw = 162000;
  70. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  71. *link_bw = 270000;
  72. }
  73. static int
  74. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  75. {
  76. int max_lane_count = 4;
  77. if (intel_dp->dpcd[0] >= 0x11) {
  78. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  79. switch (max_lane_count) {
  80. case 1: case 2: case 4:
  81. break;
  82. default:
  83. max_lane_count = 4;
  84. }
  85. }
  86. return max_lane_count;
  87. }
  88. static int
  89. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  90. {
  91. int max_link_bw = intel_dp->dpcd[1];
  92. switch (max_link_bw) {
  93. case DP_LINK_BW_1_62:
  94. case DP_LINK_BW_2_7:
  95. break;
  96. default:
  97. max_link_bw = DP_LINK_BW_1_62;
  98. break;
  99. }
  100. return max_link_bw;
  101. }
  102. static int
  103. intel_dp_link_clock(uint8_t link_bw)
  104. {
  105. if (link_bw == DP_LINK_BW_2_7)
  106. return 270000;
  107. else
  108. return 162000;
  109. }
  110. /* I think this is a fiction */
  111. static int
  112. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  113. {
  114. struct drm_i915_private *dev_priv = dev->dev_private;
  115. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  116. return (pixel_clock * dev_priv->edp_bpp) / 8;
  117. else
  118. return pixel_clock * 3;
  119. }
  120. static int
  121. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  122. {
  123. return (max_link_clock * max_lanes * 8) / 10;
  124. }
  125. static int
  126. intel_dp_mode_valid(struct drm_connector *connector,
  127. struct drm_display_mode *mode)
  128. {
  129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  130. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  131. struct drm_device *dev = connector->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  134. int max_lanes = intel_dp_max_lane_count(intel_dp);
  135. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  136. dev_priv->panel_fixed_mode) {
  137. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. }
  142. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  143. which are outside spec tolerances but somehow work by magic */
  144. if (!IS_eDP(intel_dp) &&
  145. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  146. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  147. return MODE_CLOCK_HIGH;
  148. if (mode->clock < 10000)
  149. return MODE_CLOCK_LOW;
  150. return MODE_OK;
  151. }
  152. static uint32_t
  153. pack_aux(uint8_t *src, int src_bytes)
  154. {
  155. int i;
  156. uint32_t v = 0;
  157. if (src_bytes > 4)
  158. src_bytes = 4;
  159. for (i = 0; i < src_bytes; i++)
  160. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  161. return v;
  162. }
  163. static void
  164. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  165. {
  166. int i;
  167. if (dst_bytes > 4)
  168. dst_bytes = 4;
  169. for (i = 0; i < dst_bytes; i++)
  170. dst[i] = src >> ((3-i) * 8);
  171. }
  172. /* hrawclock is 1/4 the FSB frequency */
  173. static int
  174. intel_hrawclk(struct drm_device *dev)
  175. {
  176. struct drm_i915_private *dev_priv = dev->dev_private;
  177. uint32_t clkcfg;
  178. clkcfg = I915_READ(CLKCFG);
  179. switch (clkcfg & CLKCFG_FSB_MASK) {
  180. case CLKCFG_FSB_400:
  181. return 100;
  182. case CLKCFG_FSB_533:
  183. return 133;
  184. case CLKCFG_FSB_667:
  185. return 166;
  186. case CLKCFG_FSB_800:
  187. return 200;
  188. case CLKCFG_FSB_1067:
  189. return 266;
  190. case CLKCFG_FSB_1333:
  191. return 333;
  192. /* these two are just a guess; one of them might be right */
  193. case CLKCFG_FSB_1600:
  194. case CLKCFG_FSB_1600_ALT:
  195. return 400;
  196. default:
  197. return 133;
  198. }
  199. }
  200. static int
  201. intel_dp_aux_ch(struct intel_dp *intel_dp,
  202. uint8_t *send, int send_bytes,
  203. uint8_t *recv, int recv_size)
  204. {
  205. uint32_t output_reg = intel_dp->output_reg;
  206. struct drm_device *dev = intel_dp->base.enc.dev;
  207. struct drm_i915_private *dev_priv = dev->dev_private;
  208. uint32_t ch_ctl = output_reg + 0x10;
  209. uint32_t ch_data = ch_ctl + 4;
  210. int i;
  211. int recv_bytes;
  212. uint32_t status;
  213. uint32_t aux_clock_divider;
  214. int try, precharge;
  215. /* The clock divider is based off the hrawclk,
  216. * and would like to run at 2MHz. So, take the
  217. * hrawclk value and divide by 2 and use that
  218. */
  219. if (IS_eDP(intel_dp)) {
  220. if (IS_GEN6(dev))
  221. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  222. else
  223. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  224. } else if (HAS_PCH_SPLIT(dev))
  225. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  226. else
  227. aux_clock_divider = intel_hrawclk(dev) / 2;
  228. if (IS_GEN6(dev))
  229. precharge = 3;
  230. else
  231. precharge = 5;
  232. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  233. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  234. I915_READ(ch_ctl));
  235. return -EBUSY;
  236. }
  237. /* Must try at least 3 times according to DP spec */
  238. for (try = 0; try < 5; try++) {
  239. /* Load the send data into the aux channel data registers */
  240. for (i = 0; i < send_bytes; i += 4)
  241. I915_WRITE(ch_data + i,
  242. pack_aux(send + i, send_bytes - i));
  243. /* Send the command and wait for it to complete */
  244. I915_WRITE(ch_ctl,
  245. DP_AUX_CH_CTL_SEND_BUSY |
  246. DP_AUX_CH_CTL_TIME_OUT_400us |
  247. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  248. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  249. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  250. DP_AUX_CH_CTL_DONE |
  251. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  252. DP_AUX_CH_CTL_RECEIVE_ERROR);
  253. for (;;) {
  254. status = I915_READ(ch_ctl);
  255. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  256. break;
  257. udelay(100);
  258. }
  259. /* Clear done status and any errors */
  260. I915_WRITE(ch_ctl,
  261. status |
  262. DP_AUX_CH_CTL_DONE |
  263. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  264. DP_AUX_CH_CTL_RECEIVE_ERROR);
  265. if (status & DP_AUX_CH_CTL_DONE)
  266. break;
  267. }
  268. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  269. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  270. return -EBUSY;
  271. }
  272. /* Check for timeout or receive error.
  273. * Timeouts occur when the sink is not connected
  274. */
  275. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  276. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  277. return -EIO;
  278. }
  279. /* Timeouts occur when the device isn't connected, so they're
  280. * "normal" -- don't fill the kernel log with these */
  281. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  282. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  283. return -ETIMEDOUT;
  284. }
  285. /* Unload any bytes sent back from the other side */
  286. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  287. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  288. if (recv_bytes > recv_size)
  289. recv_bytes = recv_size;
  290. for (i = 0; i < recv_bytes; i += 4)
  291. unpack_aux(I915_READ(ch_data + i),
  292. recv + i, recv_bytes - i);
  293. return recv_bytes;
  294. }
  295. /* Write data to the aux channel in native mode */
  296. static int
  297. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  298. uint16_t address, uint8_t *send, int send_bytes)
  299. {
  300. int ret;
  301. uint8_t msg[20];
  302. int msg_bytes;
  303. uint8_t ack;
  304. if (send_bytes > 16)
  305. return -1;
  306. msg[0] = AUX_NATIVE_WRITE << 4;
  307. msg[1] = address >> 8;
  308. msg[2] = address & 0xff;
  309. msg[3] = send_bytes - 1;
  310. memcpy(&msg[4], send, send_bytes);
  311. msg_bytes = send_bytes + 4;
  312. for (;;) {
  313. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  314. if (ret < 0)
  315. return ret;
  316. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  317. break;
  318. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  319. udelay(100);
  320. else
  321. return -EIO;
  322. }
  323. return send_bytes;
  324. }
  325. /* Write a single byte to the aux channel in native mode */
  326. static int
  327. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  328. uint16_t address, uint8_t byte)
  329. {
  330. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  331. }
  332. /* read bytes from a native aux channel */
  333. static int
  334. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  335. uint16_t address, uint8_t *recv, int recv_bytes)
  336. {
  337. uint8_t msg[4];
  338. int msg_bytes;
  339. uint8_t reply[20];
  340. int reply_bytes;
  341. uint8_t ack;
  342. int ret;
  343. msg[0] = AUX_NATIVE_READ << 4;
  344. msg[1] = address >> 8;
  345. msg[2] = address & 0xff;
  346. msg[3] = recv_bytes - 1;
  347. msg_bytes = 4;
  348. reply_bytes = recv_bytes + 1;
  349. for (;;) {
  350. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  351. reply, reply_bytes);
  352. if (ret == 0)
  353. return -EPROTO;
  354. if (ret < 0)
  355. return ret;
  356. ack = reply[0];
  357. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  358. memcpy(recv, reply + 1, ret - 1);
  359. return ret - 1;
  360. }
  361. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  362. udelay(100);
  363. else
  364. return -EIO;
  365. }
  366. }
  367. static int
  368. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  369. uint8_t write_byte, uint8_t *read_byte)
  370. {
  371. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  372. struct intel_dp *intel_dp = container_of(adapter,
  373. struct intel_dp,
  374. adapter);
  375. uint16_t address = algo_data->address;
  376. uint8_t msg[5];
  377. uint8_t reply[2];
  378. int msg_bytes;
  379. int reply_bytes;
  380. int ret;
  381. /* Set up the command byte */
  382. if (mode & MODE_I2C_READ)
  383. msg[0] = AUX_I2C_READ << 4;
  384. else
  385. msg[0] = AUX_I2C_WRITE << 4;
  386. if (!(mode & MODE_I2C_STOP))
  387. msg[0] |= AUX_I2C_MOT << 4;
  388. msg[1] = address >> 8;
  389. msg[2] = address;
  390. switch (mode) {
  391. case MODE_I2C_WRITE:
  392. msg[3] = 0;
  393. msg[4] = write_byte;
  394. msg_bytes = 5;
  395. reply_bytes = 1;
  396. break;
  397. case MODE_I2C_READ:
  398. msg[3] = 0;
  399. msg_bytes = 4;
  400. reply_bytes = 2;
  401. break;
  402. default:
  403. msg_bytes = 3;
  404. reply_bytes = 1;
  405. break;
  406. }
  407. for (;;) {
  408. ret = intel_dp_aux_ch(intel_dp,
  409. msg, msg_bytes,
  410. reply, reply_bytes);
  411. if (ret < 0) {
  412. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  413. return ret;
  414. }
  415. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  416. case AUX_I2C_REPLY_ACK:
  417. if (mode == MODE_I2C_READ) {
  418. *read_byte = reply[1];
  419. }
  420. return reply_bytes - 1;
  421. case AUX_I2C_REPLY_NACK:
  422. DRM_DEBUG_KMS("aux_ch nack\n");
  423. return -EREMOTEIO;
  424. case AUX_I2C_REPLY_DEFER:
  425. DRM_DEBUG_KMS("aux_ch defer\n");
  426. udelay(100);
  427. break;
  428. default:
  429. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  430. return -EREMOTEIO;
  431. }
  432. }
  433. }
  434. static int
  435. intel_dp_i2c_init(struct intel_dp *intel_dp,
  436. struct intel_connector *intel_connector, const char *name)
  437. {
  438. DRM_DEBUG_KMS("i2c_init %s\n", name);
  439. intel_dp->algo.running = false;
  440. intel_dp->algo.address = 0;
  441. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  442. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  443. intel_dp->adapter.owner = THIS_MODULE;
  444. intel_dp->adapter.class = I2C_CLASS_DDC;
  445. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  446. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  447. intel_dp->adapter.algo_data = &intel_dp->algo;
  448. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  449. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  450. }
  451. static bool
  452. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  453. struct drm_display_mode *adjusted_mode)
  454. {
  455. struct drm_device *dev = encoder->dev;
  456. struct drm_i915_private *dev_priv = dev->dev_private;
  457. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  458. int lane_count, clock;
  459. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  460. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  461. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  462. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  463. dev_priv->panel_fixed_mode) {
  464. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  465. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  466. mode, adjusted_mode);
  467. /*
  468. * the mode->clock is used to calculate the Data&Link M/N
  469. * of the pipe. For the eDP the fixed clock should be used.
  470. */
  471. mode->clock = dev_priv->panel_fixed_mode->clock;
  472. }
  473. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  474. for (clock = 0; clock <= max_clock; clock++) {
  475. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  476. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  477. <= link_avail) {
  478. intel_dp->link_bw = bws[clock];
  479. intel_dp->lane_count = lane_count;
  480. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  481. DRM_DEBUG_KMS("Display port link bw %02x lane "
  482. "count %d clock %d\n",
  483. intel_dp->link_bw, intel_dp->lane_count,
  484. adjusted_mode->clock);
  485. return true;
  486. }
  487. }
  488. }
  489. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  490. /* okay we failed just pick the highest */
  491. intel_dp->lane_count = max_lane_count;
  492. intel_dp->link_bw = bws[max_clock];
  493. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  494. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  495. "count %d clock %d\n",
  496. intel_dp->link_bw, intel_dp->lane_count,
  497. adjusted_mode->clock);
  498. return true;
  499. }
  500. return false;
  501. }
  502. struct intel_dp_m_n {
  503. uint32_t tu;
  504. uint32_t gmch_m;
  505. uint32_t gmch_n;
  506. uint32_t link_m;
  507. uint32_t link_n;
  508. };
  509. static void
  510. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  511. {
  512. while (*num > 0xffffff || *den > 0xffffff) {
  513. *num >>= 1;
  514. *den >>= 1;
  515. }
  516. }
  517. static void
  518. intel_dp_compute_m_n(int bpp,
  519. int nlanes,
  520. int pixel_clock,
  521. int link_clock,
  522. struct intel_dp_m_n *m_n)
  523. {
  524. m_n->tu = 64;
  525. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  526. m_n->gmch_n = link_clock * nlanes;
  527. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  528. m_n->link_m = pixel_clock;
  529. m_n->link_n = link_clock;
  530. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  531. }
  532. bool intel_pch_has_edp(struct drm_crtc *crtc)
  533. {
  534. struct drm_device *dev = crtc->dev;
  535. struct drm_mode_config *mode_config = &dev->mode_config;
  536. struct drm_encoder *encoder;
  537. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  538. struct intel_dp *intel_dp;
  539. if (encoder->crtc != crtc)
  540. continue;
  541. intel_dp = enc_to_intel_dp(encoder);
  542. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  543. return intel_dp->is_pch_edp;
  544. }
  545. return false;
  546. }
  547. void
  548. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  549. struct drm_display_mode *adjusted_mode)
  550. {
  551. struct drm_device *dev = crtc->dev;
  552. struct drm_mode_config *mode_config = &dev->mode_config;
  553. struct drm_encoder *encoder;
  554. struct drm_i915_private *dev_priv = dev->dev_private;
  555. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  556. int lane_count = 4, bpp = 24;
  557. struct intel_dp_m_n m_n;
  558. /*
  559. * Find the lane count in the intel_encoder private
  560. */
  561. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  562. struct intel_dp *intel_dp;
  563. if (encoder->crtc != crtc)
  564. continue;
  565. intel_dp = enc_to_intel_dp(encoder);
  566. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  567. lane_count = intel_dp->lane_count;
  568. if (IS_PCH_eDP(intel_dp))
  569. bpp = dev_priv->edp_bpp;
  570. break;
  571. }
  572. }
  573. /*
  574. * Compute the GMCH and Link ratios. The '3' here is
  575. * the number of bytes_per_pixel post-LUT, which we always
  576. * set up for 8-bits of R/G/B, or 3 bytes total.
  577. */
  578. intel_dp_compute_m_n(bpp, lane_count,
  579. mode->clock, adjusted_mode->clock, &m_n);
  580. if (HAS_PCH_SPLIT(dev)) {
  581. if (intel_crtc->pipe == 0) {
  582. I915_WRITE(TRANSA_DATA_M1,
  583. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  584. m_n.gmch_m);
  585. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  586. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  587. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  588. } else {
  589. I915_WRITE(TRANSB_DATA_M1,
  590. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  591. m_n.gmch_m);
  592. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  593. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  594. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  595. }
  596. } else {
  597. if (intel_crtc->pipe == 0) {
  598. I915_WRITE(PIPEA_GMCH_DATA_M,
  599. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  600. m_n.gmch_m);
  601. I915_WRITE(PIPEA_GMCH_DATA_N,
  602. m_n.gmch_n);
  603. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  604. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  605. } else {
  606. I915_WRITE(PIPEB_GMCH_DATA_M,
  607. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  608. m_n.gmch_m);
  609. I915_WRITE(PIPEB_GMCH_DATA_N,
  610. m_n.gmch_n);
  611. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  612. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  613. }
  614. }
  615. }
  616. static void
  617. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  618. struct drm_display_mode *adjusted_mode)
  619. {
  620. struct drm_device *dev = encoder->dev;
  621. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  622. struct drm_crtc *crtc = intel_dp->base.enc.crtc;
  623. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  624. intel_dp->DP = (DP_VOLTAGE_0_4 |
  625. DP_PRE_EMPHASIS_0);
  626. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  627. intel_dp->DP |= DP_SYNC_HS_HIGH;
  628. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  629. intel_dp->DP |= DP_SYNC_VS_HIGH;
  630. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  631. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  632. else
  633. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  634. switch (intel_dp->lane_count) {
  635. case 1:
  636. intel_dp->DP |= DP_PORT_WIDTH_1;
  637. break;
  638. case 2:
  639. intel_dp->DP |= DP_PORT_WIDTH_2;
  640. break;
  641. case 4:
  642. intel_dp->DP |= DP_PORT_WIDTH_4;
  643. break;
  644. }
  645. if (intel_dp->has_audio)
  646. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  647. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  648. intel_dp->link_configuration[0] = intel_dp->link_bw;
  649. intel_dp->link_configuration[1] = intel_dp->lane_count;
  650. /*
  651. * Check for DPCD version > 1.1 and enhanced framing support
  652. */
  653. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  654. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  655. intel_dp->DP |= DP_ENHANCED_FRAMING;
  656. }
  657. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  658. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  659. intel_dp->DP |= DP_PIPEB_SELECT;
  660. if (IS_eDP(intel_dp)) {
  661. /* don't miss out required setting for eDP */
  662. intel_dp->DP |= DP_PLL_ENABLE;
  663. if (adjusted_mode->clock < 200000)
  664. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  665. else
  666. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  667. }
  668. }
  669. static void ironlake_edp_panel_on (struct drm_device *dev)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 pp;
  673. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  674. return;
  675. pp = I915_READ(PCH_PP_CONTROL);
  676. /* ILK workaround: disable reset around power sequence */
  677. pp &= ~PANEL_POWER_RESET;
  678. I915_WRITE(PCH_PP_CONTROL, pp);
  679. POSTING_READ(PCH_PP_CONTROL);
  680. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  681. I915_WRITE(PCH_PP_CONTROL, pp);
  682. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000, 10))
  683. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  684. I915_READ(PCH_PP_STATUS));
  685. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  686. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  687. I915_WRITE(PCH_PP_CONTROL, pp);
  688. POSTING_READ(PCH_PP_CONTROL);
  689. }
  690. static void ironlake_edp_panel_off (struct drm_device *dev)
  691. {
  692. struct drm_i915_private *dev_priv = dev->dev_private;
  693. u32 pp;
  694. pp = I915_READ(PCH_PP_CONTROL);
  695. /* ILK workaround: disable reset around power sequence */
  696. pp &= ~PANEL_POWER_RESET;
  697. I915_WRITE(PCH_PP_CONTROL, pp);
  698. POSTING_READ(PCH_PP_CONTROL);
  699. pp &= ~POWER_TARGET_ON;
  700. I915_WRITE(PCH_PP_CONTROL, pp);
  701. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000, 10))
  702. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  703. I915_READ(PCH_PP_STATUS));
  704. /* Make sure VDD is enabled so DP AUX will work */
  705. pp |= EDP_FORCE_VDD | PANEL_POWER_RESET; /* restore panel reset bit */
  706. I915_WRITE(PCH_PP_CONTROL, pp);
  707. POSTING_READ(PCH_PP_CONTROL);
  708. }
  709. static void ironlake_edp_backlight_on (struct drm_device *dev)
  710. {
  711. struct drm_i915_private *dev_priv = dev->dev_private;
  712. u32 pp;
  713. DRM_DEBUG_KMS("\n");
  714. pp = I915_READ(PCH_PP_CONTROL);
  715. pp |= EDP_BLC_ENABLE;
  716. I915_WRITE(PCH_PP_CONTROL, pp);
  717. }
  718. static void ironlake_edp_backlight_off (struct drm_device *dev)
  719. {
  720. struct drm_i915_private *dev_priv = dev->dev_private;
  721. u32 pp;
  722. DRM_DEBUG_KMS("\n");
  723. pp = I915_READ(PCH_PP_CONTROL);
  724. pp &= ~EDP_BLC_ENABLE;
  725. I915_WRITE(PCH_PP_CONTROL, pp);
  726. }
  727. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  728. {
  729. struct drm_device *dev = encoder->dev;
  730. struct drm_i915_private *dev_priv = dev->dev_private;
  731. u32 dpa_ctl;
  732. DRM_DEBUG_KMS("\n");
  733. dpa_ctl = I915_READ(DP_A);
  734. dpa_ctl &= ~DP_PLL_ENABLE;
  735. I915_WRITE(DP_A, dpa_ctl);
  736. }
  737. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  738. {
  739. struct drm_device *dev = encoder->dev;
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. u32 dpa_ctl;
  742. dpa_ctl = I915_READ(DP_A);
  743. dpa_ctl |= DP_PLL_ENABLE;
  744. I915_WRITE(DP_A, dpa_ctl);
  745. udelay(200);
  746. }
  747. static void intel_dp_prepare(struct drm_encoder *encoder)
  748. {
  749. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  750. struct drm_device *dev = encoder->dev;
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  753. if (IS_eDP(intel_dp)) {
  754. ironlake_edp_backlight_off(dev);
  755. ironlake_edp_panel_on(dev);
  756. ironlake_edp_pll_on(encoder);
  757. }
  758. if (dp_reg & DP_PORT_EN)
  759. intel_dp_link_down(intel_dp);
  760. }
  761. static void intel_dp_commit(struct drm_encoder *encoder)
  762. {
  763. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  764. struct drm_device *dev = encoder->dev;
  765. struct drm_i915_private *dev_priv = dev->dev_private;
  766. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  767. if (!(dp_reg & DP_PORT_EN)) {
  768. intel_dp_link_train(intel_dp);
  769. }
  770. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  771. ironlake_edp_backlight_on(dev);
  772. }
  773. static void
  774. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  775. {
  776. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  777. struct drm_device *dev = encoder->dev;
  778. struct drm_i915_private *dev_priv = dev->dev_private;
  779. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  780. if (mode != DRM_MODE_DPMS_ON) {
  781. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  782. ironlake_edp_backlight_off(dev);
  783. ironlake_edp_panel_off(dev);
  784. }
  785. if (dp_reg & DP_PORT_EN)
  786. intel_dp_link_down(intel_dp);
  787. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  788. ironlake_edp_pll_off(encoder);
  789. } else {
  790. if (!(dp_reg & DP_PORT_EN)) {
  791. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  792. ironlake_edp_panel_on(dev);
  793. intel_dp_link_train(intel_dp);
  794. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  795. ironlake_edp_backlight_on(dev);
  796. }
  797. }
  798. intel_dp->dpms_mode = mode;
  799. }
  800. /*
  801. * Fetch AUX CH registers 0x202 - 0x207 which contain
  802. * link status information
  803. */
  804. static bool
  805. intel_dp_get_link_status(struct intel_dp *intel_dp,
  806. uint8_t link_status[DP_LINK_STATUS_SIZE])
  807. {
  808. int ret;
  809. ret = intel_dp_aux_native_read(intel_dp,
  810. DP_LANE0_1_STATUS,
  811. link_status, DP_LINK_STATUS_SIZE);
  812. if (ret != DP_LINK_STATUS_SIZE)
  813. return false;
  814. return true;
  815. }
  816. static uint8_t
  817. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  818. int r)
  819. {
  820. return link_status[r - DP_LANE0_1_STATUS];
  821. }
  822. static uint8_t
  823. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  824. int lane)
  825. {
  826. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  827. int s = ((lane & 1) ?
  828. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  829. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  830. uint8_t l = intel_dp_link_status(link_status, i);
  831. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  832. }
  833. static uint8_t
  834. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  835. int lane)
  836. {
  837. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  838. int s = ((lane & 1) ?
  839. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  840. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  841. uint8_t l = intel_dp_link_status(link_status, i);
  842. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  843. }
  844. #if 0
  845. static char *voltage_names[] = {
  846. "0.4V", "0.6V", "0.8V", "1.2V"
  847. };
  848. static char *pre_emph_names[] = {
  849. "0dB", "3.5dB", "6dB", "9.5dB"
  850. };
  851. static char *link_train_names[] = {
  852. "pattern 1", "pattern 2", "idle", "off"
  853. };
  854. #endif
  855. /*
  856. * These are source-specific values; current Intel hardware supports
  857. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  858. */
  859. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  860. static uint8_t
  861. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  862. {
  863. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  864. case DP_TRAIN_VOLTAGE_SWING_400:
  865. return DP_TRAIN_PRE_EMPHASIS_6;
  866. case DP_TRAIN_VOLTAGE_SWING_600:
  867. return DP_TRAIN_PRE_EMPHASIS_6;
  868. case DP_TRAIN_VOLTAGE_SWING_800:
  869. return DP_TRAIN_PRE_EMPHASIS_3_5;
  870. case DP_TRAIN_VOLTAGE_SWING_1200:
  871. default:
  872. return DP_TRAIN_PRE_EMPHASIS_0;
  873. }
  874. }
  875. static void
  876. intel_get_adjust_train(struct intel_dp *intel_dp,
  877. uint8_t link_status[DP_LINK_STATUS_SIZE],
  878. int lane_count,
  879. uint8_t train_set[4])
  880. {
  881. uint8_t v = 0;
  882. uint8_t p = 0;
  883. int lane;
  884. for (lane = 0; lane < lane_count; lane++) {
  885. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  886. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  887. if (this_v > v)
  888. v = this_v;
  889. if (this_p > p)
  890. p = this_p;
  891. }
  892. if (v >= I830_DP_VOLTAGE_MAX)
  893. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  894. if (p >= intel_dp_pre_emphasis_max(v))
  895. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  896. for (lane = 0; lane < 4; lane++)
  897. train_set[lane] = v | p;
  898. }
  899. static uint32_t
  900. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  901. {
  902. uint32_t signal_levels = 0;
  903. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  904. case DP_TRAIN_VOLTAGE_SWING_400:
  905. default:
  906. signal_levels |= DP_VOLTAGE_0_4;
  907. break;
  908. case DP_TRAIN_VOLTAGE_SWING_600:
  909. signal_levels |= DP_VOLTAGE_0_6;
  910. break;
  911. case DP_TRAIN_VOLTAGE_SWING_800:
  912. signal_levels |= DP_VOLTAGE_0_8;
  913. break;
  914. case DP_TRAIN_VOLTAGE_SWING_1200:
  915. signal_levels |= DP_VOLTAGE_1_2;
  916. break;
  917. }
  918. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  919. case DP_TRAIN_PRE_EMPHASIS_0:
  920. default:
  921. signal_levels |= DP_PRE_EMPHASIS_0;
  922. break;
  923. case DP_TRAIN_PRE_EMPHASIS_3_5:
  924. signal_levels |= DP_PRE_EMPHASIS_3_5;
  925. break;
  926. case DP_TRAIN_PRE_EMPHASIS_6:
  927. signal_levels |= DP_PRE_EMPHASIS_6;
  928. break;
  929. case DP_TRAIN_PRE_EMPHASIS_9_5:
  930. signal_levels |= DP_PRE_EMPHASIS_9_5;
  931. break;
  932. }
  933. return signal_levels;
  934. }
  935. /* Gen6's DP voltage swing and pre-emphasis control */
  936. static uint32_t
  937. intel_gen6_edp_signal_levels(uint8_t train_set)
  938. {
  939. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  940. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  941. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  942. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  943. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  944. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  945. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  946. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  947. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  948. default:
  949. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  950. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  951. }
  952. }
  953. static uint8_t
  954. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  955. int lane)
  956. {
  957. int i = DP_LANE0_1_STATUS + (lane >> 1);
  958. int s = (lane & 1) * 4;
  959. uint8_t l = intel_dp_link_status(link_status, i);
  960. return (l >> s) & 0xf;
  961. }
  962. /* Check for clock recovery is done on all channels */
  963. static bool
  964. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  965. {
  966. int lane;
  967. uint8_t lane_status;
  968. for (lane = 0; lane < lane_count; lane++) {
  969. lane_status = intel_get_lane_status(link_status, lane);
  970. if ((lane_status & DP_LANE_CR_DONE) == 0)
  971. return false;
  972. }
  973. return true;
  974. }
  975. /* Check to see if channel eq is done on all channels */
  976. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  977. DP_LANE_CHANNEL_EQ_DONE|\
  978. DP_LANE_SYMBOL_LOCKED)
  979. static bool
  980. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  981. {
  982. uint8_t lane_align;
  983. uint8_t lane_status;
  984. int lane;
  985. lane_align = intel_dp_link_status(link_status,
  986. DP_LANE_ALIGN_STATUS_UPDATED);
  987. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  988. return false;
  989. for (lane = 0; lane < lane_count; lane++) {
  990. lane_status = intel_get_lane_status(link_status, lane);
  991. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  992. return false;
  993. }
  994. return true;
  995. }
  996. static bool
  997. intel_dp_set_link_train(struct intel_dp *intel_dp,
  998. uint32_t dp_reg_value,
  999. uint8_t dp_train_pat,
  1000. uint8_t train_set[4],
  1001. bool first)
  1002. {
  1003. struct drm_device *dev = intel_dp->base.enc.dev;
  1004. struct drm_i915_private *dev_priv = dev->dev_private;
  1005. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.enc.crtc);
  1006. int ret;
  1007. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1008. POSTING_READ(intel_dp->output_reg);
  1009. if (first)
  1010. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1011. intel_dp_aux_native_write_1(intel_dp,
  1012. DP_TRAINING_PATTERN_SET,
  1013. dp_train_pat);
  1014. ret = intel_dp_aux_native_write(intel_dp,
  1015. DP_TRAINING_LANE0_SET, train_set, 4);
  1016. if (ret != 4)
  1017. return false;
  1018. return true;
  1019. }
  1020. static void
  1021. intel_dp_link_train(struct intel_dp *intel_dp)
  1022. {
  1023. struct drm_device *dev = intel_dp->base.enc.dev;
  1024. struct drm_i915_private *dev_priv = dev->dev_private;
  1025. uint8_t train_set[4];
  1026. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1027. int i;
  1028. uint8_t voltage;
  1029. bool clock_recovery = false;
  1030. bool channel_eq = false;
  1031. bool first = true;
  1032. int tries;
  1033. u32 reg;
  1034. uint32_t DP = intel_dp->DP;
  1035. /* Write the link configuration data */
  1036. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1037. intel_dp->link_configuration,
  1038. DP_LINK_CONFIGURATION_SIZE);
  1039. DP |= DP_PORT_EN;
  1040. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1041. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1042. else
  1043. DP &= ~DP_LINK_TRAIN_MASK;
  1044. memset(train_set, 0, 4);
  1045. voltage = 0xff;
  1046. tries = 0;
  1047. clock_recovery = false;
  1048. for (;;) {
  1049. /* Use train_set[0] to set the voltage and pre emphasis values */
  1050. uint32_t signal_levels;
  1051. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1052. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1053. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1054. } else {
  1055. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1056. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1057. }
  1058. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1059. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1060. else
  1061. reg = DP | DP_LINK_TRAIN_PAT_1;
  1062. if (!intel_dp_set_link_train(intel_dp, reg,
  1063. DP_TRAINING_PATTERN_1, train_set, first))
  1064. break;
  1065. first = false;
  1066. /* Set training pattern 1 */
  1067. udelay(100);
  1068. if (!intel_dp_get_link_status(intel_dp, link_status))
  1069. break;
  1070. if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1071. clock_recovery = true;
  1072. break;
  1073. }
  1074. /* Check to see if we've tried the max voltage */
  1075. for (i = 0; i < intel_dp->lane_count; i++)
  1076. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1077. break;
  1078. if (i == intel_dp->lane_count)
  1079. break;
  1080. /* Check to see if we've tried the same voltage 5 times */
  1081. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1082. ++tries;
  1083. if (tries == 5)
  1084. break;
  1085. } else
  1086. tries = 0;
  1087. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1088. /* Compute new train_set as requested by target */
  1089. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1090. }
  1091. /* channel equalization */
  1092. tries = 0;
  1093. channel_eq = false;
  1094. for (;;) {
  1095. /* Use train_set[0] to set the voltage and pre emphasis values */
  1096. uint32_t signal_levels;
  1097. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1098. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1099. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1100. } else {
  1101. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1102. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1103. }
  1104. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1105. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1106. else
  1107. reg = DP | DP_LINK_TRAIN_PAT_2;
  1108. /* channel eq pattern */
  1109. if (!intel_dp_set_link_train(intel_dp, reg,
  1110. DP_TRAINING_PATTERN_2, train_set,
  1111. false))
  1112. break;
  1113. udelay(400);
  1114. if (!intel_dp_get_link_status(intel_dp, link_status))
  1115. break;
  1116. if (intel_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1117. channel_eq = true;
  1118. break;
  1119. }
  1120. /* Try 5 times */
  1121. if (tries > 5)
  1122. break;
  1123. /* Compute new train_set as requested by target */
  1124. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1125. ++tries;
  1126. }
  1127. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1128. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1129. else
  1130. reg = DP | DP_LINK_TRAIN_OFF;
  1131. I915_WRITE(intel_dp->output_reg, reg);
  1132. POSTING_READ(intel_dp->output_reg);
  1133. intel_dp_aux_native_write_1(intel_dp,
  1134. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1135. }
  1136. static void
  1137. intel_dp_link_down(struct intel_dp *intel_dp)
  1138. {
  1139. struct drm_device *dev = intel_dp->base.enc.dev;
  1140. struct drm_i915_private *dev_priv = dev->dev_private;
  1141. uint32_t DP = intel_dp->DP;
  1142. DRM_DEBUG_KMS("\n");
  1143. if (IS_eDP(intel_dp)) {
  1144. DP &= ~DP_PLL_ENABLE;
  1145. I915_WRITE(intel_dp->output_reg, DP);
  1146. POSTING_READ(intel_dp->output_reg);
  1147. udelay(100);
  1148. }
  1149. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
  1150. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1151. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1152. POSTING_READ(intel_dp->output_reg);
  1153. } else {
  1154. DP &= ~DP_LINK_TRAIN_MASK;
  1155. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1156. POSTING_READ(intel_dp->output_reg);
  1157. }
  1158. udelay(17000);
  1159. if (IS_eDP(intel_dp))
  1160. DP |= DP_LINK_TRAIN_OFF;
  1161. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1162. POSTING_READ(intel_dp->output_reg);
  1163. }
  1164. /*
  1165. * According to DP spec
  1166. * 5.1.2:
  1167. * 1. Read DPCD
  1168. * 2. Configure link according to Receiver Capabilities
  1169. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1170. * 4. Check link status on receipt of hot-plug interrupt
  1171. */
  1172. static void
  1173. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1174. {
  1175. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1176. if (!intel_dp->base.enc.crtc)
  1177. return;
  1178. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1179. intel_dp_link_down(intel_dp);
  1180. return;
  1181. }
  1182. if (!intel_channel_eq_ok(link_status, intel_dp->lane_count))
  1183. intel_dp_link_train(intel_dp);
  1184. }
  1185. static enum drm_connector_status
  1186. ironlake_dp_detect(struct drm_connector *connector)
  1187. {
  1188. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1189. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1190. enum drm_connector_status status;
  1191. status = connector_status_disconnected;
  1192. if (intel_dp_aux_native_read(intel_dp,
  1193. 0x000, intel_dp->dpcd,
  1194. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1195. {
  1196. if (intel_dp->dpcd[0] != 0)
  1197. status = connector_status_connected;
  1198. }
  1199. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1200. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1201. return status;
  1202. }
  1203. /**
  1204. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1205. *
  1206. * \return true if DP port is connected.
  1207. * \return false if DP port is disconnected.
  1208. */
  1209. static enum drm_connector_status
  1210. intel_dp_detect(struct drm_connector *connector, bool force)
  1211. {
  1212. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1213. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1214. struct drm_device *dev = intel_dp->base.enc.dev;
  1215. struct drm_i915_private *dev_priv = dev->dev_private;
  1216. uint32_t temp, bit;
  1217. enum drm_connector_status status;
  1218. intel_dp->has_audio = false;
  1219. if (HAS_PCH_SPLIT(dev))
  1220. return ironlake_dp_detect(connector);
  1221. switch (intel_dp->output_reg) {
  1222. case DP_B:
  1223. bit = DPB_HOTPLUG_INT_STATUS;
  1224. break;
  1225. case DP_C:
  1226. bit = DPC_HOTPLUG_INT_STATUS;
  1227. break;
  1228. case DP_D:
  1229. bit = DPD_HOTPLUG_INT_STATUS;
  1230. break;
  1231. default:
  1232. return connector_status_unknown;
  1233. }
  1234. temp = I915_READ(PORT_HOTPLUG_STAT);
  1235. if ((temp & bit) == 0)
  1236. return connector_status_disconnected;
  1237. status = connector_status_disconnected;
  1238. if (intel_dp_aux_native_read(intel_dp,
  1239. 0x000, intel_dp->dpcd,
  1240. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1241. {
  1242. if (intel_dp->dpcd[0] != 0)
  1243. status = connector_status_connected;
  1244. }
  1245. return status;
  1246. }
  1247. static int intel_dp_get_modes(struct drm_connector *connector)
  1248. {
  1249. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1250. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1251. struct drm_device *dev = intel_dp->base.enc.dev;
  1252. struct drm_i915_private *dev_priv = dev->dev_private;
  1253. int ret;
  1254. /* We should parse the EDID data and find out if it has an audio sink
  1255. */
  1256. ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
  1257. if (ret) {
  1258. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  1259. !dev_priv->panel_fixed_mode) {
  1260. struct drm_display_mode *newmode;
  1261. list_for_each_entry(newmode, &connector->probed_modes,
  1262. head) {
  1263. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1264. dev_priv->panel_fixed_mode =
  1265. drm_mode_duplicate(dev, newmode);
  1266. break;
  1267. }
  1268. }
  1269. }
  1270. return ret;
  1271. }
  1272. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1273. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  1274. if (dev_priv->panel_fixed_mode != NULL) {
  1275. struct drm_display_mode *mode;
  1276. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1277. drm_mode_probed_add(connector, mode);
  1278. return 1;
  1279. }
  1280. }
  1281. return 0;
  1282. }
  1283. static void
  1284. intel_dp_destroy (struct drm_connector *connector)
  1285. {
  1286. drm_sysfs_connector_remove(connector);
  1287. drm_connector_cleanup(connector);
  1288. kfree(connector);
  1289. }
  1290. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1291. .dpms = intel_dp_dpms,
  1292. .mode_fixup = intel_dp_mode_fixup,
  1293. .prepare = intel_dp_prepare,
  1294. .mode_set = intel_dp_mode_set,
  1295. .commit = intel_dp_commit,
  1296. };
  1297. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1298. .dpms = drm_helper_connector_dpms,
  1299. .detect = intel_dp_detect,
  1300. .fill_modes = drm_helper_probe_single_connector_modes,
  1301. .destroy = intel_dp_destroy,
  1302. };
  1303. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1304. .get_modes = intel_dp_get_modes,
  1305. .mode_valid = intel_dp_mode_valid,
  1306. .best_encoder = intel_attached_encoder,
  1307. };
  1308. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1309. .destroy = intel_encoder_destroy,
  1310. };
  1311. void
  1312. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1313. {
  1314. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1315. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1316. intel_dp_check_link_status(intel_dp);
  1317. }
  1318. /* Return which DP Port should be selected for Transcoder DP control */
  1319. int
  1320. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1321. {
  1322. struct drm_device *dev = crtc->dev;
  1323. struct drm_mode_config *mode_config = &dev->mode_config;
  1324. struct drm_encoder *encoder;
  1325. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1326. struct intel_dp *intel_dp;
  1327. if (encoder->crtc != crtc)
  1328. continue;
  1329. intel_dp = enc_to_intel_dp(encoder);
  1330. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1331. return intel_dp->output_reg;
  1332. }
  1333. return -1;
  1334. }
  1335. /* check the VBT to see whether the eDP is on DP-D port */
  1336. bool intel_dpd_is_edp(struct drm_device *dev)
  1337. {
  1338. struct drm_i915_private *dev_priv = dev->dev_private;
  1339. struct child_device_config *p_child;
  1340. int i;
  1341. if (!dev_priv->child_dev_num)
  1342. return false;
  1343. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1344. p_child = dev_priv->child_dev + i;
  1345. if (p_child->dvo_port == PORT_IDPD &&
  1346. p_child->device_type == DEVICE_TYPE_eDP)
  1347. return true;
  1348. }
  1349. return false;
  1350. }
  1351. void
  1352. intel_dp_init(struct drm_device *dev, int output_reg)
  1353. {
  1354. struct drm_i915_private *dev_priv = dev->dev_private;
  1355. struct drm_connector *connector;
  1356. struct intel_dp *intel_dp;
  1357. struct intel_encoder *intel_encoder;
  1358. struct intel_connector *intel_connector;
  1359. const char *name = NULL;
  1360. int type;
  1361. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1362. if (!intel_dp)
  1363. return;
  1364. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1365. if (!intel_connector) {
  1366. kfree(intel_dp);
  1367. return;
  1368. }
  1369. intel_encoder = &intel_dp->base;
  1370. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1371. if (intel_dpd_is_edp(dev))
  1372. intel_dp->is_pch_edp = true;
  1373. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1374. type = DRM_MODE_CONNECTOR_eDP;
  1375. intel_encoder->type = INTEL_OUTPUT_EDP;
  1376. } else {
  1377. type = DRM_MODE_CONNECTOR_DisplayPort;
  1378. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1379. }
  1380. connector = &intel_connector->base;
  1381. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1382. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1383. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1384. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1385. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1386. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1387. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1388. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1389. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1390. if (IS_eDP(intel_dp))
  1391. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1392. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1393. connector->interlace_allowed = true;
  1394. connector->doublescan_allowed = 0;
  1395. intel_dp->output_reg = output_reg;
  1396. intel_dp->has_audio = false;
  1397. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1398. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1399. DRM_MODE_ENCODER_TMDS);
  1400. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1401. drm_mode_connector_attach_encoder(&intel_connector->base,
  1402. &intel_encoder->enc);
  1403. drm_sysfs_connector_add(connector);
  1404. /* Set up the DDC bus. */
  1405. switch (output_reg) {
  1406. case DP_A:
  1407. name = "DPDDC-A";
  1408. break;
  1409. case DP_B:
  1410. case PCH_DP_B:
  1411. dev_priv->hotplug_supported_mask |=
  1412. HDMIB_HOTPLUG_INT_STATUS;
  1413. name = "DPDDC-B";
  1414. break;
  1415. case DP_C:
  1416. case PCH_DP_C:
  1417. dev_priv->hotplug_supported_mask |=
  1418. HDMIC_HOTPLUG_INT_STATUS;
  1419. name = "DPDDC-C";
  1420. break;
  1421. case DP_D:
  1422. case PCH_DP_D:
  1423. dev_priv->hotplug_supported_mask |=
  1424. HDMID_HOTPLUG_INT_STATUS;
  1425. name = "DPDDC-D";
  1426. break;
  1427. }
  1428. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1429. intel_encoder->ddc_bus = &intel_dp->adapter;
  1430. intel_encoder->hot_plug = intel_dp_hot_plug;
  1431. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1432. /* initialize panel mode from VBT if available for eDP */
  1433. if (dev_priv->lfp_lvds_vbt_mode) {
  1434. dev_priv->panel_fixed_mode =
  1435. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1436. if (dev_priv->panel_fixed_mode) {
  1437. dev_priv->panel_fixed_mode->type |=
  1438. DRM_MODE_TYPE_PREFERRED;
  1439. }
  1440. }
  1441. }
  1442. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1443. * 0xd. Failure to do so will result in spurious interrupts being
  1444. * generated on the port when a cable is not attached.
  1445. */
  1446. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1447. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1448. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1449. }
  1450. }