i915_gem.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  41. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  42. int write);
  43. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  44. uint64_t offset,
  45. uint64_t size);
  46. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  47. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  48. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  49. unsigned alignment);
  50. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  55. static LIST_HEAD(shrink_list);
  56. static DEFINE_SPINLOCK(shrink_list_lock);
  57. static inline bool
  58. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  59. {
  60. return obj_priv->gtt_space &&
  61. !obj_priv->active &&
  62. obj_priv->pin_count == 0;
  63. }
  64. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  65. unsigned long end)
  66. {
  67. drm_i915_private_t *dev_priv = dev->dev_private;
  68. if (start >= end ||
  69. (start & (PAGE_SIZE - 1)) != 0 ||
  70. (end & (PAGE_SIZE - 1)) != 0) {
  71. return -EINVAL;
  72. }
  73. drm_mm_init(&dev_priv->mm.gtt_space, start,
  74. end - start);
  75. dev->gtt_total = (uint32_t) (end - start);
  76. return 0;
  77. }
  78. int
  79. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  80. struct drm_file *file_priv)
  81. {
  82. struct drm_i915_gem_init *args = data;
  83. int ret;
  84. mutex_lock(&dev->struct_mutex);
  85. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  86. mutex_unlock(&dev->struct_mutex);
  87. return ret;
  88. }
  89. int
  90. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  91. struct drm_file *file_priv)
  92. {
  93. struct drm_i915_gem_get_aperture *args = data;
  94. if (!(dev->driver->driver_features & DRIVER_GEM))
  95. return -ENODEV;
  96. args->aper_size = dev->gtt_total;
  97. args->aper_available_size = (args->aper_size -
  98. atomic_read(&dev->pin_memory));
  99. return 0;
  100. }
  101. /**
  102. * Creates a new mm object and returns a handle to it.
  103. */
  104. int
  105. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  106. struct drm_file *file_priv)
  107. {
  108. struct drm_i915_gem_create *args = data;
  109. struct drm_gem_object *obj;
  110. int ret;
  111. u32 handle;
  112. args->size = roundup(args->size, PAGE_SIZE);
  113. /* Allocate the new object */
  114. obj = i915_gem_alloc_object(dev, args->size);
  115. if (obj == NULL)
  116. return -ENOMEM;
  117. ret = drm_gem_handle_create(file_priv, obj, &handle);
  118. if (ret) {
  119. drm_gem_object_unreference_unlocked(obj);
  120. return ret;
  121. }
  122. /* Sink the floating reference from kref_init(handlecount) */
  123. drm_gem_object_handle_unreference_unlocked(obj);
  124. args->handle = handle;
  125. return 0;
  126. }
  127. static inline int
  128. fast_shmem_read(struct page **pages,
  129. loff_t page_base, int page_offset,
  130. char __user *data,
  131. int length)
  132. {
  133. char __iomem *vaddr;
  134. int unwritten;
  135. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  136. if (vaddr == NULL)
  137. return -ENOMEM;
  138. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  139. kunmap_atomic(vaddr, KM_USER0);
  140. if (unwritten)
  141. return -EFAULT;
  142. return 0;
  143. }
  144. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  145. {
  146. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  147. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  148. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  149. obj_priv->tiling_mode != I915_TILING_NONE;
  150. }
  151. static inline void
  152. slow_shmem_copy(struct page *dst_page,
  153. int dst_offset,
  154. struct page *src_page,
  155. int src_offset,
  156. int length)
  157. {
  158. char *dst_vaddr, *src_vaddr;
  159. dst_vaddr = kmap(dst_page);
  160. src_vaddr = kmap(src_page);
  161. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  162. kunmap(src_page);
  163. kunmap(dst_page);
  164. }
  165. static inline void
  166. slow_shmem_bit17_copy(struct page *gpu_page,
  167. int gpu_offset,
  168. struct page *cpu_page,
  169. int cpu_offset,
  170. int length,
  171. int is_read)
  172. {
  173. char *gpu_vaddr, *cpu_vaddr;
  174. /* Use the unswizzled path if this page isn't affected. */
  175. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  176. if (is_read)
  177. return slow_shmem_copy(cpu_page, cpu_offset,
  178. gpu_page, gpu_offset, length);
  179. else
  180. return slow_shmem_copy(gpu_page, gpu_offset,
  181. cpu_page, cpu_offset, length);
  182. }
  183. gpu_vaddr = kmap(gpu_page);
  184. cpu_vaddr = kmap(cpu_page);
  185. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  186. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  187. */
  188. while (length > 0) {
  189. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  190. int this_length = min(cacheline_end - gpu_offset, length);
  191. int swizzled_gpu_offset = gpu_offset ^ 64;
  192. if (is_read) {
  193. memcpy(cpu_vaddr + cpu_offset,
  194. gpu_vaddr + swizzled_gpu_offset,
  195. this_length);
  196. } else {
  197. memcpy(gpu_vaddr + swizzled_gpu_offset,
  198. cpu_vaddr + cpu_offset,
  199. this_length);
  200. }
  201. cpu_offset += this_length;
  202. gpu_offset += this_length;
  203. length -= this_length;
  204. }
  205. kunmap(cpu_page);
  206. kunmap(gpu_page);
  207. }
  208. /**
  209. * This is the fast shmem pread path, which attempts to copy_from_user directly
  210. * from the backing pages of the object to the user's address space. On a
  211. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  212. */
  213. static int
  214. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  215. struct drm_i915_gem_pread *args,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  219. ssize_t remain;
  220. loff_t offset, page_base;
  221. char __user *user_data;
  222. int page_offset, page_length;
  223. int ret;
  224. user_data = (char __user *) (uintptr_t) args->data_ptr;
  225. remain = args->size;
  226. mutex_lock(&dev->struct_mutex);
  227. ret = i915_gem_object_get_pages(obj, 0);
  228. if (ret != 0)
  229. goto fail_unlock;
  230. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  231. args->size);
  232. if (ret != 0)
  233. goto fail_put_pages;
  234. obj_priv = to_intel_bo(obj);
  235. offset = args->offset;
  236. while (remain > 0) {
  237. /* Operation in this page
  238. *
  239. * page_base = page offset within aperture
  240. * page_offset = offset within page
  241. * page_length = bytes to copy for this page
  242. */
  243. page_base = (offset & ~(PAGE_SIZE-1));
  244. page_offset = offset & (PAGE_SIZE-1);
  245. page_length = remain;
  246. if ((page_offset + remain) > PAGE_SIZE)
  247. page_length = PAGE_SIZE - page_offset;
  248. ret = fast_shmem_read(obj_priv->pages,
  249. page_base, page_offset,
  250. user_data, page_length);
  251. if (ret)
  252. goto fail_put_pages;
  253. remain -= page_length;
  254. user_data += page_length;
  255. offset += page_length;
  256. }
  257. fail_put_pages:
  258. i915_gem_object_put_pages(obj);
  259. fail_unlock:
  260. mutex_unlock(&dev->struct_mutex);
  261. return ret;
  262. }
  263. static int
  264. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  265. {
  266. int ret;
  267. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  268. /* If we've insufficient memory to map in the pages, attempt
  269. * to make some space by throwing out some old buffers.
  270. */
  271. if (ret == -ENOMEM) {
  272. struct drm_device *dev = obj->dev;
  273. ret = i915_gem_evict_something(dev, obj->size,
  274. i915_gem_get_gtt_alignment(obj));
  275. if (ret)
  276. return ret;
  277. ret = i915_gem_object_get_pages(obj, 0);
  278. }
  279. return ret;
  280. }
  281. /**
  282. * This is the fallback shmem pread path, which allocates temporary storage
  283. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  284. * can copy out of the object's backing pages while holding the struct mutex
  285. * and not take page faults.
  286. */
  287. static int
  288. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  289. struct drm_i915_gem_pread *args,
  290. struct drm_file *file_priv)
  291. {
  292. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  293. struct mm_struct *mm = current->mm;
  294. struct page **user_pages;
  295. ssize_t remain;
  296. loff_t offset, pinned_pages, i;
  297. loff_t first_data_page, last_data_page, num_pages;
  298. int shmem_page_index, shmem_page_offset;
  299. int data_page_index, data_page_offset;
  300. int page_length;
  301. int ret;
  302. uint64_t data_ptr = args->data_ptr;
  303. int do_bit17_swizzling;
  304. remain = args->size;
  305. /* Pin the user pages containing the data. We can't fault while
  306. * holding the struct mutex, yet we want to hold it while
  307. * dereferencing the user data.
  308. */
  309. first_data_page = data_ptr / PAGE_SIZE;
  310. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  311. num_pages = last_data_page - first_data_page + 1;
  312. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  313. if (user_pages == NULL)
  314. return -ENOMEM;
  315. down_read(&mm->mmap_sem);
  316. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  317. num_pages, 1, 0, user_pages, NULL);
  318. up_read(&mm->mmap_sem);
  319. if (pinned_pages < num_pages) {
  320. ret = -EFAULT;
  321. goto fail_put_user_pages;
  322. }
  323. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  324. mutex_lock(&dev->struct_mutex);
  325. ret = i915_gem_object_get_pages_or_evict(obj);
  326. if (ret)
  327. goto fail_unlock;
  328. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  329. args->size);
  330. if (ret != 0)
  331. goto fail_put_pages;
  332. obj_priv = to_intel_bo(obj);
  333. offset = args->offset;
  334. while (remain > 0) {
  335. /* Operation in this page
  336. *
  337. * shmem_page_index = page number within shmem file
  338. * shmem_page_offset = offset within page in shmem file
  339. * data_page_index = page number in get_user_pages return
  340. * data_page_offset = offset with data_page_index page.
  341. * page_length = bytes to copy for this page
  342. */
  343. shmem_page_index = offset / PAGE_SIZE;
  344. shmem_page_offset = offset & ~PAGE_MASK;
  345. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  346. data_page_offset = data_ptr & ~PAGE_MASK;
  347. page_length = remain;
  348. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  349. page_length = PAGE_SIZE - shmem_page_offset;
  350. if ((data_page_offset + page_length) > PAGE_SIZE)
  351. page_length = PAGE_SIZE - data_page_offset;
  352. if (do_bit17_swizzling) {
  353. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  354. shmem_page_offset,
  355. user_pages[data_page_index],
  356. data_page_offset,
  357. page_length,
  358. 1);
  359. } else {
  360. slow_shmem_copy(user_pages[data_page_index],
  361. data_page_offset,
  362. obj_priv->pages[shmem_page_index],
  363. shmem_page_offset,
  364. page_length);
  365. }
  366. remain -= page_length;
  367. data_ptr += page_length;
  368. offset += page_length;
  369. }
  370. fail_put_pages:
  371. i915_gem_object_put_pages(obj);
  372. fail_unlock:
  373. mutex_unlock(&dev->struct_mutex);
  374. fail_put_user_pages:
  375. for (i = 0; i < pinned_pages; i++) {
  376. SetPageDirty(user_pages[i]);
  377. page_cache_release(user_pages[i]);
  378. }
  379. drm_free_large(user_pages);
  380. return ret;
  381. }
  382. /**
  383. * Reads data from the object referenced by handle.
  384. *
  385. * On error, the contents of *data are undefined.
  386. */
  387. int
  388. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  389. struct drm_file *file_priv)
  390. {
  391. struct drm_i915_gem_pread *args = data;
  392. struct drm_gem_object *obj;
  393. struct drm_i915_gem_object *obj_priv;
  394. int ret;
  395. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  396. if (obj == NULL)
  397. return -ENOENT;
  398. obj_priv = to_intel_bo(obj);
  399. /* Bounds check source.
  400. *
  401. * XXX: This could use review for overflow issues...
  402. */
  403. if (args->offset > obj->size || args->size > obj->size ||
  404. args->offset + args->size > obj->size) {
  405. drm_gem_object_unreference_unlocked(obj);
  406. return -EINVAL;
  407. }
  408. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  409. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  410. } else {
  411. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  412. if (ret != 0)
  413. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  414. file_priv);
  415. }
  416. drm_gem_object_unreference_unlocked(obj);
  417. return ret;
  418. }
  419. /* This is the fast write path which cannot handle
  420. * page faults in the source data
  421. */
  422. static inline int
  423. fast_user_write(struct io_mapping *mapping,
  424. loff_t page_base, int page_offset,
  425. char __user *user_data,
  426. int length)
  427. {
  428. char *vaddr_atomic;
  429. unsigned long unwritten;
  430. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  431. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  432. user_data, length);
  433. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  434. if (unwritten)
  435. return -EFAULT;
  436. return 0;
  437. }
  438. /* Here's the write path which can sleep for
  439. * page faults
  440. */
  441. static inline void
  442. slow_kernel_write(struct io_mapping *mapping,
  443. loff_t gtt_base, int gtt_offset,
  444. struct page *user_page, int user_offset,
  445. int length)
  446. {
  447. char __iomem *dst_vaddr;
  448. char *src_vaddr;
  449. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  450. src_vaddr = kmap(user_page);
  451. memcpy_toio(dst_vaddr + gtt_offset,
  452. src_vaddr + user_offset,
  453. length);
  454. kunmap(user_page);
  455. io_mapping_unmap(dst_vaddr);
  456. }
  457. static inline int
  458. fast_shmem_write(struct page **pages,
  459. loff_t page_base, int page_offset,
  460. char __user *data,
  461. int length)
  462. {
  463. char __iomem *vaddr;
  464. unsigned long unwritten;
  465. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  466. if (vaddr == NULL)
  467. return -ENOMEM;
  468. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  469. kunmap_atomic(vaddr, KM_USER0);
  470. if (unwritten)
  471. return -EFAULT;
  472. return 0;
  473. }
  474. /**
  475. * This is the fast pwrite path, where we copy the data directly from the
  476. * user into the GTT, uncached.
  477. */
  478. static int
  479. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  480. struct drm_i915_gem_pwrite *args,
  481. struct drm_file *file_priv)
  482. {
  483. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  484. drm_i915_private_t *dev_priv = dev->dev_private;
  485. ssize_t remain;
  486. loff_t offset, page_base;
  487. char __user *user_data;
  488. int page_offset, page_length;
  489. int ret;
  490. user_data = (char __user *) (uintptr_t) args->data_ptr;
  491. remain = args->size;
  492. if (!access_ok(VERIFY_READ, user_data, remain))
  493. return -EFAULT;
  494. mutex_lock(&dev->struct_mutex);
  495. ret = i915_gem_object_pin(obj, 0);
  496. if (ret) {
  497. mutex_unlock(&dev->struct_mutex);
  498. return ret;
  499. }
  500. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  501. if (ret)
  502. goto fail;
  503. obj_priv = to_intel_bo(obj);
  504. offset = obj_priv->gtt_offset + args->offset;
  505. while (remain > 0) {
  506. /* Operation in this page
  507. *
  508. * page_base = page offset within aperture
  509. * page_offset = offset within page
  510. * page_length = bytes to copy for this page
  511. */
  512. page_base = (offset & ~(PAGE_SIZE-1));
  513. page_offset = offset & (PAGE_SIZE-1);
  514. page_length = remain;
  515. if ((page_offset + remain) > PAGE_SIZE)
  516. page_length = PAGE_SIZE - page_offset;
  517. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  518. page_offset, user_data, page_length);
  519. /* If we get a fault while copying data, then (presumably) our
  520. * source page isn't available. Return the error and we'll
  521. * retry in the slow path.
  522. */
  523. if (ret)
  524. goto fail;
  525. remain -= page_length;
  526. user_data += page_length;
  527. offset += page_length;
  528. }
  529. fail:
  530. i915_gem_object_unpin(obj);
  531. mutex_unlock(&dev->struct_mutex);
  532. return ret;
  533. }
  534. /**
  535. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  536. * the memory and maps it using kmap_atomic for copying.
  537. *
  538. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  539. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  540. */
  541. static int
  542. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  543. struct drm_i915_gem_pwrite *args,
  544. struct drm_file *file_priv)
  545. {
  546. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  547. drm_i915_private_t *dev_priv = dev->dev_private;
  548. ssize_t remain;
  549. loff_t gtt_page_base, offset;
  550. loff_t first_data_page, last_data_page, num_pages;
  551. loff_t pinned_pages, i;
  552. struct page **user_pages;
  553. struct mm_struct *mm = current->mm;
  554. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  555. int ret;
  556. uint64_t data_ptr = args->data_ptr;
  557. remain = args->size;
  558. /* Pin the user pages containing the data. We can't fault while
  559. * holding the struct mutex, and all of the pwrite implementations
  560. * want to hold it while dereferencing the user data.
  561. */
  562. first_data_page = data_ptr / PAGE_SIZE;
  563. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  564. num_pages = last_data_page - first_data_page + 1;
  565. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  566. if (user_pages == NULL)
  567. return -ENOMEM;
  568. down_read(&mm->mmap_sem);
  569. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  570. num_pages, 0, 0, user_pages, NULL);
  571. up_read(&mm->mmap_sem);
  572. if (pinned_pages < num_pages) {
  573. ret = -EFAULT;
  574. goto out_unpin_pages;
  575. }
  576. mutex_lock(&dev->struct_mutex);
  577. ret = i915_gem_object_pin(obj, 0);
  578. if (ret)
  579. goto out_unlock;
  580. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  581. if (ret)
  582. goto out_unpin_object;
  583. obj_priv = to_intel_bo(obj);
  584. offset = obj_priv->gtt_offset + args->offset;
  585. while (remain > 0) {
  586. /* Operation in this page
  587. *
  588. * gtt_page_base = page offset within aperture
  589. * gtt_page_offset = offset within page in aperture
  590. * data_page_index = page number in get_user_pages return
  591. * data_page_offset = offset with data_page_index page.
  592. * page_length = bytes to copy for this page
  593. */
  594. gtt_page_base = offset & PAGE_MASK;
  595. gtt_page_offset = offset & ~PAGE_MASK;
  596. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  597. data_page_offset = data_ptr & ~PAGE_MASK;
  598. page_length = remain;
  599. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  600. page_length = PAGE_SIZE - gtt_page_offset;
  601. if ((data_page_offset + page_length) > PAGE_SIZE)
  602. page_length = PAGE_SIZE - data_page_offset;
  603. slow_kernel_write(dev_priv->mm.gtt_mapping,
  604. gtt_page_base, gtt_page_offset,
  605. user_pages[data_page_index],
  606. data_page_offset,
  607. page_length);
  608. remain -= page_length;
  609. offset += page_length;
  610. data_ptr += page_length;
  611. }
  612. out_unpin_object:
  613. i915_gem_object_unpin(obj);
  614. out_unlock:
  615. mutex_unlock(&dev->struct_mutex);
  616. out_unpin_pages:
  617. for (i = 0; i < pinned_pages; i++)
  618. page_cache_release(user_pages[i]);
  619. drm_free_large(user_pages);
  620. return ret;
  621. }
  622. /**
  623. * This is the fast shmem pwrite path, which attempts to directly
  624. * copy_from_user into the kmapped pages backing the object.
  625. */
  626. static int
  627. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  628. struct drm_i915_gem_pwrite *args,
  629. struct drm_file *file_priv)
  630. {
  631. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  632. ssize_t remain;
  633. loff_t offset, page_base;
  634. char __user *user_data;
  635. int page_offset, page_length;
  636. int ret;
  637. user_data = (char __user *) (uintptr_t) args->data_ptr;
  638. remain = args->size;
  639. mutex_lock(&dev->struct_mutex);
  640. ret = i915_gem_object_get_pages(obj, 0);
  641. if (ret != 0)
  642. goto fail_unlock;
  643. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  644. if (ret != 0)
  645. goto fail_put_pages;
  646. obj_priv = to_intel_bo(obj);
  647. offset = args->offset;
  648. obj_priv->dirty = 1;
  649. while (remain > 0) {
  650. /* Operation in this page
  651. *
  652. * page_base = page offset within aperture
  653. * page_offset = offset within page
  654. * page_length = bytes to copy for this page
  655. */
  656. page_base = (offset & ~(PAGE_SIZE-1));
  657. page_offset = offset & (PAGE_SIZE-1);
  658. page_length = remain;
  659. if ((page_offset + remain) > PAGE_SIZE)
  660. page_length = PAGE_SIZE - page_offset;
  661. ret = fast_shmem_write(obj_priv->pages,
  662. page_base, page_offset,
  663. user_data, page_length);
  664. if (ret)
  665. goto fail_put_pages;
  666. remain -= page_length;
  667. user_data += page_length;
  668. offset += page_length;
  669. }
  670. fail_put_pages:
  671. i915_gem_object_put_pages(obj);
  672. fail_unlock:
  673. mutex_unlock(&dev->struct_mutex);
  674. return ret;
  675. }
  676. /**
  677. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  678. * the memory and maps it using kmap_atomic for copying.
  679. *
  680. * This avoids taking mmap_sem for faulting on the user's address while the
  681. * struct_mutex is held.
  682. */
  683. static int
  684. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  685. struct drm_i915_gem_pwrite *args,
  686. struct drm_file *file_priv)
  687. {
  688. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  689. struct mm_struct *mm = current->mm;
  690. struct page **user_pages;
  691. ssize_t remain;
  692. loff_t offset, pinned_pages, i;
  693. loff_t first_data_page, last_data_page, num_pages;
  694. int shmem_page_index, shmem_page_offset;
  695. int data_page_index, data_page_offset;
  696. int page_length;
  697. int ret;
  698. uint64_t data_ptr = args->data_ptr;
  699. int do_bit17_swizzling;
  700. remain = args->size;
  701. /* Pin the user pages containing the data. We can't fault while
  702. * holding the struct mutex, and all of the pwrite implementations
  703. * want to hold it while dereferencing the user data.
  704. */
  705. first_data_page = data_ptr / PAGE_SIZE;
  706. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  707. num_pages = last_data_page - first_data_page + 1;
  708. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  709. if (user_pages == NULL)
  710. return -ENOMEM;
  711. down_read(&mm->mmap_sem);
  712. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  713. num_pages, 0, 0, user_pages, NULL);
  714. up_read(&mm->mmap_sem);
  715. if (pinned_pages < num_pages) {
  716. ret = -EFAULT;
  717. goto fail_put_user_pages;
  718. }
  719. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  720. mutex_lock(&dev->struct_mutex);
  721. ret = i915_gem_object_get_pages_or_evict(obj);
  722. if (ret)
  723. goto fail_unlock;
  724. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  725. if (ret != 0)
  726. goto fail_put_pages;
  727. obj_priv = to_intel_bo(obj);
  728. offset = args->offset;
  729. obj_priv->dirty = 1;
  730. while (remain > 0) {
  731. /* Operation in this page
  732. *
  733. * shmem_page_index = page number within shmem file
  734. * shmem_page_offset = offset within page in shmem file
  735. * data_page_index = page number in get_user_pages return
  736. * data_page_offset = offset with data_page_index page.
  737. * page_length = bytes to copy for this page
  738. */
  739. shmem_page_index = offset / PAGE_SIZE;
  740. shmem_page_offset = offset & ~PAGE_MASK;
  741. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  742. data_page_offset = data_ptr & ~PAGE_MASK;
  743. page_length = remain;
  744. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  745. page_length = PAGE_SIZE - shmem_page_offset;
  746. if ((data_page_offset + page_length) > PAGE_SIZE)
  747. page_length = PAGE_SIZE - data_page_offset;
  748. if (do_bit17_swizzling) {
  749. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  750. shmem_page_offset,
  751. user_pages[data_page_index],
  752. data_page_offset,
  753. page_length,
  754. 0);
  755. } else {
  756. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  757. shmem_page_offset,
  758. user_pages[data_page_index],
  759. data_page_offset,
  760. page_length);
  761. }
  762. remain -= page_length;
  763. data_ptr += page_length;
  764. offset += page_length;
  765. }
  766. fail_put_pages:
  767. i915_gem_object_put_pages(obj);
  768. fail_unlock:
  769. mutex_unlock(&dev->struct_mutex);
  770. fail_put_user_pages:
  771. for (i = 0; i < pinned_pages; i++)
  772. page_cache_release(user_pages[i]);
  773. drm_free_large(user_pages);
  774. return ret;
  775. }
  776. /**
  777. * Writes data to the object referenced by handle.
  778. *
  779. * On error, the contents of the buffer that were to be modified are undefined.
  780. */
  781. int
  782. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  783. struct drm_file *file_priv)
  784. {
  785. struct drm_i915_gem_pwrite *args = data;
  786. struct drm_gem_object *obj;
  787. struct drm_i915_gem_object *obj_priv;
  788. int ret = 0;
  789. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  790. if (obj == NULL)
  791. return -ENOENT;
  792. obj_priv = to_intel_bo(obj);
  793. /* Bounds check destination.
  794. *
  795. * XXX: This could use review for overflow issues...
  796. */
  797. if (args->offset > obj->size || args->size > obj->size ||
  798. args->offset + args->size > obj->size) {
  799. drm_gem_object_unreference_unlocked(obj);
  800. return -EINVAL;
  801. }
  802. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  803. * it would end up going through the fenced access, and we'll get
  804. * different detiling behavior between reading and writing.
  805. * pread/pwrite currently are reading and writing from the CPU
  806. * perspective, requiring manual detiling by the client.
  807. */
  808. if (obj_priv->phys_obj)
  809. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  810. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  811. dev->gtt_total != 0 &&
  812. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  813. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  814. if (ret == -EFAULT) {
  815. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  816. file_priv);
  817. }
  818. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  819. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  820. } else {
  821. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  822. if (ret == -EFAULT) {
  823. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  824. file_priv);
  825. }
  826. }
  827. #if WATCH_PWRITE
  828. if (ret)
  829. DRM_INFO("pwrite failed %d\n", ret);
  830. #endif
  831. drm_gem_object_unreference_unlocked(obj);
  832. return ret;
  833. }
  834. /**
  835. * Called when user space prepares to use an object with the CPU, either
  836. * through the mmap ioctl's mapping or a GTT mapping.
  837. */
  838. int
  839. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  840. struct drm_file *file_priv)
  841. {
  842. struct drm_i915_private *dev_priv = dev->dev_private;
  843. struct drm_i915_gem_set_domain *args = data;
  844. struct drm_gem_object *obj;
  845. struct drm_i915_gem_object *obj_priv;
  846. uint32_t read_domains = args->read_domains;
  847. uint32_t write_domain = args->write_domain;
  848. int ret;
  849. if (!(dev->driver->driver_features & DRIVER_GEM))
  850. return -ENODEV;
  851. /* Only handle setting domains to types used by the CPU. */
  852. if (write_domain & I915_GEM_GPU_DOMAINS)
  853. return -EINVAL;
  854. if (read_domains & I915_GEM_GPU_DOMAINS)
  855. return -EINVAL;
  856. /* Having something in the write domain implies it's in the read
  857. * domain, and only that read domain. Enforce that in the request.
  858. */
  859. if (write_domain != 0 && read_domains != write_domain)
  860. return -EINVAL;
  861. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  862. if (obj == NULL)
  863. return -ENOENT;
  864. obj_priv = to_intel_bo(obj);
  865. mutex_lock(&dev->struct_mutex);
  866. intel_mark_busy(dev, obj);
  867. #if WATCH_BUF
  868. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  869. obj, obj->size, read_domains, write_domain);
  870. #endif
  871. if (read_domains & I915_GEM_DOMAIN_GTT) {
  872. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  873. /* Update the LRU on the fence for the CPU access that's
  874. * about to occur.
  875. */
  876. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  877. struct drm_i915_fence_reg *reg =
  878. &dev_priv->fence_regs[obj_priv->fence_reg];
  879. list_move_tail(&reg->lru_list,
  880. &dev_priv->mm.fence_list);
  881. }
  882. /* Silently promote "you're not bound, there was nothing to do"
  883. * to success, since the client was just asking us to
  884. * make sure everything was done.
  885. */
  886. if (ret == -EINVAL)
  887. ret = 0;
  888. } else {
  889. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  890. }
  891. /* Maintain LRU order of "inactive" objects */
  892. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  893. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  894. drm_gem_object_unreference(obj);
  895. mutex_unlock(&dev->struct_mutex);
  896. return ret;
  897. }
  898. /**
  899. * Called when user space has done writes to this buffer
  900. */
  901. int
  902. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  903. struct drm_file *file_priv)
  904. {
  905. struct drm_i915_gem_sw_finish *args = data;
  906. struct drm_gem_object *obj;
  907. struct drm_i915_gem_object *obj_priv;
  908. int ret = 0;
  909. if (!(dev->driver->driver_features & DRIVER_GEM))
  910. return -ENODEV;
  911. mutex_lock(&dev->struct_mutex);
  912. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  913. if (obj == NULL) {
  914. mutex_unlock(&dev->struct_mutex);
  915. return -ENOENT;
  916. }
  917. #if WATCH_BUF
  918. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  919. __func__, args->handle, obj, obj->size);
  920. #endif
  921. obj_priv = to_intel_bo(obj);
  922. /* Pinned buffers may be scanout, so flush the cache */
  923. if (obj_priv->pin_count)
  924. i915_gem_object_flush_cpu_write_domain(obj);
  925. drm_gem_object_unreference(obj);
  926. mutex_unlock(&dev->struct_mutex);
  927. return ret;
  928. }
  929. /**
  930. * Maps the contents of an object, returning the address it is mapped
  931. * into.
  932. *
  933. * While the mapping holds a reference on the contents of the object, it doesn't
  934. * imply a ref on the object itself.
  935. */
  936. int
  937. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  938. struct drm_file *file_priv)
  939. {
  940. struct drm_i915_gem_mmap *args = data;
  941. struct drm_gem_object *obj;
  942. loff_t offset;
  943. unsigned long addr;
  944. if (!(dev->driver->driver_features & DRIVER_GEM))
  945. return -ENODEV;
  946. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  947. if (obj == NULL)
  948. return -ENOENT;
  949. offset = args->offset;
  950. down_write(&current->mm->mmap_sem);
  951. addr = do_mmap(obj->filp, 0, args->size,
  952. PROT_READ | PROT_WRITE, MAP_SHARED,
  953. args->offset);
  954. up_write(&current->mm->mmap_sem);
  955. drm_gem_object_unreference_unlocked(obj);
  956. if (IS_ERR((void *)addr))
  957. return addr;
  958. args->addr_ptr = (uint64_t) addr;
  959. return 0;
  960. }
  961. /**
  962. * i915_gem_fault - fault a page into the GTT
  963. * vma: VMA in question
  964. * vmf: fault info
  965. *
  966. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  967. * from userspace. The fault handler takes care of binding the object to
  968. * the GTT (if needed), allocating and programming a fence register (again,
  969. * only if needed based on whether the old reg is still valid or the object
  970. * is tiled) and inserting a new PTE into the faulting process.
  971. *
  972. * Note that the faulting process may involve evicting existing objects
  973. * from the GTT and/or fence registers to make room. So performance may
  974. * suffer if the GTT working set is large or there are few fence registers
  975. * left.
  976. */
  977. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  978. {
  979. struct drm_gem_object *obj = vma->vm_private_data;
  980. struct drm_device *dev = obj->dev;
  981. drm_i915_private_t *dev_priv = dev->dev_private;
  982. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  983. pgoff_t page_offset;
  984. unsigned long pfn;
  985. int ret = 0;
  986. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  987. /* We don't use vmf->pgoff since that has the fake offset */
  988. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  989. PAGE_SHIFT;
  990. /* Now bind it into the GTT if needed */
  991. mutex_lock(&dev->struct_mutex);
  992. if (!obj_priv->gtt_space) {
  993. ret = i915_gem_object_bind_to_gtt(obj, 0);
  994. if (ret)
  995. goto unlock;
  996. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  997. if (ret)
  998. goto unlock;
  999. }
  1000. /* Need a new fence register? */
  1001. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1002. ret = i915_gem_object_get_fence_reg(obj);
  1003. if (ret)
  1004. goto unlock;
  1005. }
  1006. if (i915_gem_object_is_inactive(obj_priv))
  1007. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1008. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1009. page_offset;
  1010. /* Finally, remap it using the new GTT offset */
  1011. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1012. unlock:
  1013. mutex_unlock(&dev->struct_mutex);
  1014. switch (ret) {
  1015. case 0:
  1016. case -ERESTARTSYS:
  1017. return VM_FAULT_NOPAGE;
  1018. case -ENOMEM:
  1019. case -EAGAIN:
  1020. return VM_FAULT_OOM;
  1021. default:
  1022. return VM_FAULT_SIGBUS;
  1023. }
  1024. }
  1025. /**
  1026. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1027. * @obj: obj in question
  1028. *
  1029. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1030. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1031. * up the object based on the offset and sets up the various memory mapping
  1032. * structures.
  1033. *
  1034. * This routine allocates and attaches a fake offset for @obj.
  1035. */
  1036. static int
  1037. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1038. {
  1039. struct drm_device *dev = obj->dev;
  1040. struct drm_gem_mm *mm = dev->mm_private;
  1041. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1042. struct drm_map_list *list;
  1043. struct drm_local_map *map;
  1044. int ret = 0;
  1045. /* Set the object up for mmap'ing */
  1046. list = &obj->map_list;
  1047. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1048. if (!list->map)
  1049. return -ENOMEM;
  1050. map = list->map;
  1051. map->type = _DRM_GEM;
  1052. map->size = obj->size;
  1053. map->handle = obj;
  1054. /* Get a DRM GEM mmap offset allocated... */
  1055. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1056. obj->size / PAGE_SIZE, 0, 0);
  1057. if (!list->file_offset_node) {
  1058. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1059. ret = -ENOMEM;
  1060. goto out_free_list;
  1061. }
  1062. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1063. obj->size / PAGE_SIZE, 0);
  1064. if (!list->file_offset_node) {
  1065. ret = -ENOMEM;
  1066. goto out_free_list;
  1067. }
  1068. list->hash.key = list->file_offset_node->start;
  1069. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1070. DRM_ERROR("failed to add to map hash\n");
  1071. ret = -ENOMEM;
  1072. goto out_free_mm;
  1073. }
  1074. /* By now we should be all set, any drm_mmap request on the offset
  1075. * below will get to our mmap & fault handler */
  1076. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1077. return 0;
  1078. out_free_mm:
  1079. drm_mm_put_block(list->file_offset_node);
  1080. out_free_list:
  1081. kfree(list->map);
  1082. return ret;
  1083. }
  1084. /**
  1085. * i915_gem_release_mmap - remove physical page mappings
  1086. * @obj: obj in question
  1087. *
  1088. * Preserve the reservation of the mmapping with the DRM core code, but
  1089. * relinquish ownership of the pages back to the system.
  1090. *
  1091. * It is vital that we remove the page mapping if we have mapped a tiled
  1092. * object through the GTT and then lose the fence register due to
  1093. * resource pressure. Similarly if the object has been moved out of the
  1094. * aperture, than pages mapped into userspace must be revoked. Removing the
  1095. * mapping will then trigger a page fault on the next user access, allowing
  1096. * fixup by i915_gem_fault().
  1097. */
  1098. void
  1099. i915_gem_release_mmap(struct drm_gem_object *obj)
  1100. {
  1101. struct drm_device *dev = obj->dev;
  1102. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1103. if (dev->dev_mapping)
  1104. unmap_mapping_range(dev->dev_mapping,
  1105. obj_priv->mmap_offset, obj->size, 1);
  1106. }
  1107. static void
  1108. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1109. {
  1110. struct drm_device *dev = obj->dev;
  1111. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1112. struct drm_gem_mm *mm = dev->mm_private;
  1113. struct drm_map_list *list;
  1114. list = &obj->map_list;
  1115. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1116. if (list->file_offset_node) {
  1117. drm_mm_put_block(list->file_offset_node);
  1118. list->file_offset_node = NULL;
  1119. }
  1120. if (list->map) {
  1121. kfree(list->map);
  1122. list->map = NULL;
  1123. }
  1124. obj_priv->mmap_offset = 0;
  1125. }
  1126. /**
  1127. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1128. * @obj: object to check
  1129. *
  1130. * Return the required GTT alignment for an object, taking into account
  1131. * potential fence register mapping if needed.
  1132. */
  1133. static uint32_t
  1134. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1135. {
  1136. struct drm_device *dev = obj->dev;
  1137. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1138. int start, i;
  1139. /*
  1140. * Minimum alignment is 4k (GTT page size), but might be greater
  1141. * if a fence register is needed for the object.
  1142. */
  1143. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1144. return 4096;
  1145. /*
  1146. * Previous chips need to be aligned to the size of the smallest
  1147. * fence register that can contain the object.
  1148. */
  1149. if (IS_I9XX(dev))
  1150. start = 1024*1024;
  1151. else
  1152. start = 512*1024;
  1153. for (i = start; i < obj->size; i <<= 1)
  1154. ;
  1155. return i;
  1156. }
  1157. /**
  1158. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1159. * @dev: DRM device
  1160. * @data: GTT mapping ioctl data
  1161. * @file_priv: GEM object info
  1162. *
  1163. * Simply returns the fake offset to userspace so it can mmap it.
  1164. * The mmap call will end up in drm_gem_mmap(), which will set things
  1165. * up so we can get faults in the handler above.
  1166. *
  1167. * The fault handler will take care of binding the object into the GTT
  1168. * (since it may have been evicted to make room for something), allocating
  1169. * a fence register, and mapping the appropriate aperture address into
  1170. * userspace.
  1171. */
  1172. int
  1173. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1174. struct drm_file *file_priv)
  1175. {
  1176. struct drm_i915_gem_mmap_gtt *args = data;
  1177. struct drm_gem_object *obj;
  1178. struct drm_i915_gem_object *obj_priv;
  1179. int ret;
  1180. if (!(dev->driver->driver_features & DRIVER_GEM))
  1181. return -ENODEV;
  1182. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1183. if (obj == NULL)
  1184. return -ENOENT;
  1185. mutex_lock(&dev->struct_mutex);
  1186. obj_priv = to_intel_bo(obj);
  1187. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1188. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1189. drm_gem_object_unreference(obj);
  1190. mutex_unlock(&dev->struct_mutex);
  1191. return -EINVAL;
  1192. }
  1193. if (!obj_priv->mmap_offset) {
  1194. ret = i915_gem_create_mmap_offset(obj);
  1195. if (ret) {
  1196. drm_gem_object_unreference(obj);
  1197. mutex_unlock(&dev->struct_mutex);
  1198. return ret;
  1199. }
  1200. }
  1201. args->offset = obj_priv->mmap_offset;
  1202. /*
  1203. * Pull it into the GTT so that we have a page list (makes the
  1204. * initial fault faster and any subsequent flushing possible).
  1205. */
  1206. if (!obj_priv->agp_mem) {
  1207. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1208. if (ret) {
  1209. drm_gem_object_unreference(obj);
  1210. mutex_unlock(&dev->struct_mutex);
  1211. return ret;
  1212. }
  1213. }
  1214. drm_gem_object_unreference(obj);
  1215. mutex_unlock(&dev->struct_mutex);
  1216. return 0;
  1217. }
  1218. void
  1219. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1220. {
  1221. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1222. int page_count = obj->size / PAGE_SIZE;
  1223. int i;
  1224. BUG_ON(obj_priv->pages_refcount == 0);
  1225. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1226. if (--obj_priv->pages_refcount != 0)
  1227. return;
  1228. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1229. i915_gem_object_save_bit_17_swizzle(obj);
  1230. if (obj_priv->madv == I915_MADV_DONTNEED)
  1231. obj_priv->dirty = 0;
  1232. for (i = 0; i < page_count; i++) {
  1233. if (obj_priv->dirty)
  1234. set_page_dirty(obj_priv->pages[i]);
  1235. if (obj_priv->madv == I915_MADV_WILLNEED)
  1236. mark_page_accessed(obj_priv->pages[i]);
  1237. page_cache_release(obj_priv->pages[i]);
  1238. }
  1239. obj_priv->dirty = 0;
  1240. drm_free_large(obj_priv->pages);
  1241. obj_priv->pages = NULL;
  1242. }
  1243. static void
  1244. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
  1245. struct intel_ring_buffer *ring)
  1246. {
  1247. struct drm_device *dev = obj->dev;
  1248. drm_i915_private_t *dev_priv = dev->dev_private;
  1249. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1250. BUG_ON(ring == NULL);
  1251. obj_priv->ring = ring;
  1252. /* Add a reference if we're newly entering the active list. */
  1253. if (!obj_priv->active) {
  1254. drm_gem_object_reference(obj);
  1255. obj_priv->active = 1;
  1256. }
  1257. /* Move from whatever list we were on to the tail of execution. */
  1258. spin_lock(&dev_priv->mm.active_list_lock);
  1259. list_move_tail(&obj_priv->list, &ring->active_list);
  1260. spin_unlock(&dev_priv->mm.active_list_lock);
  1261. obj_priv->last_rendering_seqno = seqno;
  1262. }
  1263. static void
  1264. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1265. {
  1266. struct drm_device *dev = obj->dev;
  1267. drm_i915_private_t *dev_priv = dev->dev_private;
  1268. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1269. BUG_ON(!obj_priv->active);
  1270. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1271. obj_priv->last_rendering_seqno = 0;
  1272. }
  1273. /* Immediately discard the backing storage */
  1274. static void
  1275. i915_gem_object_truncate(struct drm_gem_object *obj)
  1276. {
  1277. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1278. struct inode *inode;
  1279. /* Our goal here is to return as much of the memory as
  1280. * is possible back to the system as we are called from OOM.
  1281. * To do this we must instruct the shmfs to drop all of its
  1282. * backing pages, *now*. Here we mirror the actions taken
  1283. * when by shmem_delete_inode() to release the backing store.
  1284. */
  1285. inode = obj->filp->f_path.dentry->d_inode;
  1286. truncate_inode_pages(inode->i_mapping, 0);
  1287. if (inode->i_op->truncate_range)
  1288. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1289. obj_priv->madv = __I915_MADV_PURGED;
  1290. }
  1291. static inline int
  1292. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1293. {
  1294. return obj_priv->madv == I915_MADV_DONTNEED;
  1295. }
  1296. static void
  1297. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1298. {
  1299. struct drm_device *dev = obj->dev;
  1300. drm_i915_private_t *dev_priv = dev->dev_private;
  1301. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1302. i915_verify_inactive(dev, __FILE__, __LINE__);
  1303. if (obj_priv->pin_count != 0)
  1304. list_del_init(&obj_priv->list);
  1305. else
  1306. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1307. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1308. obj_priv->last_rendering_seqno = 0;
  1309. obj_priv->ring = NULL;
  1310. if (obj_priv->active) {
  1311. obj_priv->active = 0;
  1312. drm_gem_object_unreference(obj);
  1313. }
  1314. i915_verify_inactive(dev, __FILE__, __LINE__);
  1315. }
  1316. static void
  1317. i915_gem_process_flushing_list(struct drm_device *dev,
  1318. uint32_t flush_domains, uint32_t seqno,
  1319. struct intel_ring_buffer *ring)
  1320. {
  1321. drm_i915_private_t *dev_priv = dev->dev_private;
  1322. struct drm_i915_gem_object *obj_priv, *next;
  1323. list_for_each_entry_safe(obj_priv, next,
  1324. &dev_priv->mm.gpu_write_list,
  1325. gpu_write_list) {
  1326. struct drm_gem_object *obj = &obj_priv->base;
  1327. if ((obj->write_domain & flush_domains) ==
  1328. obj->write_domain &&
  1329. obj_priv->ring->ring_flag == ring->ring_flag) {
  1330. uint32_t old_write_domain = obj->write_domain;
  1331. obj->write_domain = 0;
  1332. list_del_init(&obj_priv->gpu_write_list);
  1333. i915_gem_object_move_to_active(obj, seqno, ring);
  1334. /* update the fence lru list */
  1335. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1336. struct drm_i915_fence_reg *reg =
  1337. &dev_priv->fence_regs[obj_priv->fence_reg];
  1338. list_move_tail(&reg->lru_list,
  1339. &dev_priv->mm.fence_list);
  1340. }
  1341. trace_i915_gem_object_change_domain(obj,
  1342. obj->read_domains,
  1343. old_write_domain);
  1344. }
  1345. }
  1346. }
  1347. uint32_t
  1348. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1349. uint32_t flush_domains, struct intel_ring_buffer *ring)
  1350. {
  1351. drm_i915_private_t *dev_priv = dev->dev_private;
  1352. struct drm_i915_file_private *i915_file_priv = NULL;
  1353. struct drm_i915_gem_request *request;
  1354. uint32_t seqno;
  1355. int was_empty;
  1356. if (file_priv != NULL)
  1357. i915_file_priv = file_priv->driver_priv;
  1358. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1359. if (request == NULL)
  1360. return 0;
  1361. seqno = ring->add_request(dev, ring, file_priv, flush_domains);
  1362. request->seqno = seqno;
  1363. request->ring = ring;
  1364. request->emitted_jiffies = jiffies;
  1365. was_empty = list_empty(&ring->request_list);
  1366. list_add_tail(&request->list, &ring->request_list);
  1367. if (i915_file_priv) {
  1368. list_add_tail(&request->client_list,
  1369. &i915_file_priv->mm.request_list);
  1370. } else {
  1371. INIT_LIST_HEAD(&request->client_list);
  1372. }
  1373. /* Associate any objects on the flushing list matching the write
  1374. * domain we're flushing with our flush.
  1375. */
  1376. if (flush_domains != 0)
  1377. i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
  1378. if (!dev_priv->mm.suspended) {
  1379. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1380. if (was_empty)
  1381. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1382. }
  1383. return seqno;
  1384. }
  1385. /**
  1386. * Command execution barrier
  1387. *
  1388. * Ensures that all commands in the ring are finished
  1389. * before signalling the CPU
  1390. */
  1391. static uint32_t
  1392. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1393. {
  1394. uint32_t flush_domains = 0;
  1395. /* The sampler always gets flushed on i965 (sigh) */
  1396. if (IS_I965G(dev))
  1397. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1398. ring->flush(dev, ring,
  1399. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1400. return flush_domains;
  1401. }
  1402. /**
  1403. * Moves buffers associated only with the given active seqno from the active
  1404. * to inactive list, potentially freeing them.
  1405. */
  1406. static void
  1407. i915_gem_retire_request(struct drm_device *dev,
  1408. struct drm_i915_gem_request *request)
  1409. {
  1410. drm_i915_private_t *dev_priv = dev->dev_private;
  1411. trace_i915_gem_request_retire(dev, request->seqno);
  1412. /* Move any buffers on the active list that are no longer referenced
  1413. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1414. */
  1415. spin_lock(&dev_priv->mm.active_list_lock);
  1416. while (!list_empty(&request->ring->active_list)) {
  1417. struct drm_gem_object *obj;
  1418. struct drm_i915_gem_object *obj_priv;
  1419. obj_priv = list_first_entry(&request->ring->active_list,
  1420. struct drm_i915_gem_object,
  1421. list);
  1422. obj = &obj_priv->base;
  1423. /* If the seqno being retired doesn't match the oldest in the
  1424. * list, then the oldest in the list must still be newer than
  1425. * this seqno.
  1426. */
  1427. if (obj_priv->last_rendering_seqno != request->seqno)
  1428. goto out;
  1429. #if WATCH_LRU
  1430. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1431. __func__, request->seqno, obj);
  1432. #endif
  1433. if (obj->write_domain != 0)
  1434. i915_gem_object_move_to_flushing(obj);
  1435. else {
  1436. /* Take a reference on the object so it won't be
  1437. * freed while the spinlock is held. The list
  1438. * protection for this spinlock is safe when breaking
  1439. * the lock like this since the next thing we do
  1440. * is just get the head of the list again.
  1441. */
  1442. drm_gem_object_reference(obj);
  1443. i915_gem_object_move_to_inactive(obj);
  1444. spin_unlock(&dev_priv->mm.active_list_lock);
  1445. drm_gem_object_unreference(obj);
  1446. spin_lock(&dev_priv->mm.active_list_lock);
  1447. }
  1448. }
  1449. out:
  1450. spin_unlock(&dev_priv->mm.active_list_lock);
  1451. }
  1452. /**
  1453. * Returns true if seq1 is later than seq2.
  1454. */
  1455. bool
  1456. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1457. {
  1458. return (int32_t)(seq1 - seq2) >= 0;
  1459. }
  1460. uint32_t
  1461. i915_get_gem_seqno(struct drm_device *dev,
  1462. struct intel_ring_buffer *ring)
  1463. {
  1464. return ring->get_gem_seqno(dev, ring);
  1465. }
  1466. /**
  1467. * This function clears the request list as sequence numbers are passed.
  1468. */
  1469. static void
  1470. i915_gem_retire_requests_ring(struct drm_device *dev,
  1471. struct intel_ring_buffer *ring)
  1472. {
  1473. drm_i915_private_t *dev_priv = dev->dev_private;
  1474. uint32_t seqno;
  1475. if (!ring->status_page.page_addr
  1476. || list_empty(&ring->request_list))
  1477. return;
  1478. seqno = i915_get_gem_seqno(dev, ring);
  1479. while (!list_empty(&ring->request_list)) {
  1480. struct drm_i915_gem_request *request;
  1481. uint32_t retiring_seqno;
  1482. request = list_first_entry(&ring->request_list,
  1483. struct drm_i915_gem_request,
  1484. list);
  1485. retiring_seqno = request->seqno;
  1486. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1487. atomic_read(&dev_priv->mm.wedged)) {
  1488. i915_gem_retire_request(dev, request);
  1489. list_del(&request->list);
  1490. list_del(&request->client_list);
  1491. kfree(request);
  1492. } else
  1493. break;
  1494. }
  1495. if (unlikely (dev_priv->trace_irq_seqno &&
  1496. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1497. ring->user_irq_put(dev, ring);
  1498. dev_priv->trace_irq_seqno = 0;
  1499. }
  1500. }
  1501. void
  1502. i915_gem_retire_requests(struct drm_device *dev)
  1503. {
  1504. drm_i915_private_t *dev_priv = dev->dev_private;
  1505. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1506. struct drm_i915_gem_object *obj_priv, *tmp;
  1507. /* We must be careful that during unbind() we do not
  1508. * accidentally infinitely recurse into retire requests.
  1509. * Currently:
  1510. * retire -> free -> unbind -> wait -> retire_ring
  1511. */
  1512. list_for_each_entry_safe(obj_priv, tmp,
  1513. &dev_priv->mm.deferred_free_list,
  1514. list)
  1515. i915_gem_free_object_tail(&obj_priv->base);
  1516. }
  1517. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1518. if (HAS_BSD(dev))
  1519. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1520. }
  1521. void
  1522. i915_gem_retire_work_handler(struct work_struct *work)
  1523. {
  1524. drm_i915_private_t *dev_priv;
  1525. struct drm_device *dev;
  1526. dev_priv = container_of(work, drm_i915_private_t,
  1527. mm.retire_work.work);
  1528. dev = dev_priv->dev;
  1529. mutex_lock(&dev->struct_mutex);
  1530. i915_gem_retire_requests(dev);
  1531. if (!dev_priv->mm.suspended &&
  1532. (!list_empty(&dev_priv->render_ring.request_list) ||
  1533. (HAS_BSD(dev) &&
  1534. !list_empty(&dev_priv->bsd_ring.request_list))))
  1535. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1536. mutex_unlock(&dev->struct_mutex);
  1537. }
  1538. int
  1539. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1540. int interruptible, struct intel_ring_buffer *ring)
  1541. {
  1542. drm_i915_private_t *dev_priv = dev->dev_private;
  1543. u32 ier;
  1544. int ret = 0;
  1545. BUG_ON(seqno == 0);
  1546. if (atomic_read(&dev_priv->mm.wedged))
  1547. return -EIO;
  1548. if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
  1549. if (HAS_PCH_SPLIT(dev))
  1550. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1551. else
  1552. ier = I915_READ(IER);
  1553. if (!ier) {
  1554. DRM_ERROR("something (likely vbetool) disabled "
  1555. "interrupts, re-enabling\n");
  1556. i915_driver_irq_preinstall(dev);
  1557. i915_driver_irq_postinstall(dev);
  1558. }
  1559. trace_i915_gem_request_wait_begin(dev, seqno);
  1560. ring->waiting_gem_seqno = seqno;
  1561. ring->user_irq_get(dev, ring);
  1562. if (interruptible)
  1563. ret = wait_event_interruptible(ring->irq_queue,
  1564. i915_seqno_passed(
  1565. ring->get_gem_seqno(dev, ring), seqno)
  1566. || atomic_read(&dev_priv->mm.wedged));
  1567. else
  1568. wait_event(ring->irq_queue,
  1569. i915_seqno_passed(
  1570. ring->get_gem_seqno(dev, ring), seqno)
  1571. || atomic_read(&dev_priv->mm.wedged));
  1572. ring->user_irq_put(dev, ring);
  1573. ring->waiting_gem_seqno = 0;
  1574. trace_i915_gem_request_wait_end(dev, seqno);
  1575. }
  1576. if (atomic_read(&dev_priv->mm.wedged))
  1577. ret = -EIO;
  1578. if (ret && ret != -ERESTARTSYS)
  1579. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1580. __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
  1581. /* Directly dispatch request retiring. While we have the work queue
  1582. * to handle this, the waiter on a request often wants an associated
  1583. * buffer to have made it to the inactive list, and we would need
  1584. * a separate wait queue to handle that.
  1585. */
  1586. if (ret == 0)
  1587. i915_gem_retire_requests_ring(dev, ring);
  1588. return ret;
  1589. }
  1590. /**
  1591. * Waits for a sequence number to be signaled, and cleans up the
  1592. * request and object lists appropriately for that event.
  1593. */
  1594. static int
  1595. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1596. struct intel_ring_buffer *ring)
  1597. {
  1598. return i915_do_wait_request(dev, seqno, 1, ring);
  1599. }
  1600. static void
  1601. i915_gem_flush(struct drm_device *dev,
  1602. uint32_t invalidate_domains,
  1603. uint32_t flush_domains)
  1604. {
  1605. drm_i915_private_t *dev_priv = dev->dev_private;
  1606. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1607. drm_agp_chipset_flush(dev);
  1608. dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
  1609. invalidate_domains,
  1610. flush_domains);
  1611. if (HAS_BSD(dev))
  1612. dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
  1613. invalidate_domains,
  1614. flush_domains);
  1615. }
  1616. /**
  1617. * Ensures that all rendering to the object has completed and the object is
  1618. * safe to unbind from the GTT or access from the CPU.
  1619. */
  1620. static int
  1621. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1622. {
  1623. struct drm_device *dev = obj->dev;
  1624. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1625. int ret;
  1626. /* This function only exists to support waiting for existing rendering,
  1627. * not for emitting required flushes.
  1628. */
  1629. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1630. /* If there is rendering queued on the buffer being evicted, wait for
  1631. * it.
  1632. */
  1633. if (obj_priv->active) {
  1634. #if WATCH_BUF
  1635. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1636. __func__, obj, obj_priv->last_rendering_seqno);
  1637. #endif
  1638. ret = i915_wait_request(dev,
  1639. obj_priv->last_rendering_seqno, obj_priv->ring);
  1640. if (ret != 0)
  1641. return ret;
  1642. }
  1643. return 0;
  1644. }
  1645. /**
  1646. * Unbinds an object from the GTT aperture.
  1647. */
  1648. int
  1649. i915_gem_object_unbind(struct drm_gem_object *obj)
  1650. {
  1651. struct drm_device *dev = obj->dev;
  1652. drm_i915_private_t *dev_priv = dev->dev_private;
  1653. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1654. int ret = 0;
  1655. #if WATCH_BUF
  1656. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1657. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1658. #endif
  1659. if (obj_priv->gtt_space == NULL)
  1660. return 0;
  1661. if (obj_priv->pin_count != 0) {
  1662. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1663. return -EINVAL;
  1664. }
  1665. /* blow away mappings if mapped through GTT */
  1666. i915_gem_release_mmap(obj);
  1667. /* Move the object to the CPU domain to ensure that
  1668. * any possible CPU writes while it's not in the GTT
  1669. * are flushed when we go to remap it. This will
  1670. * also ensure that all pending GPU writes are finished
  1671. * before we unbind.
  1672. */
  1673. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1674. if (ret == -ERESTARTSYS)
  1675. return ret;
  1676. /* Continue on if we fail due to EIO, the GPU is hung so we
  1677. * should be safe and we need to cleanup or else we might
  1678. * cause memory corruption through use-after-free.
  1679. */
  1680. /* release the fence reg _after_ flushing */
  1681. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1682. i915_gem_clear_fence_reg(obj);
  1683. if (obj_priv->agp_mem != NULL) {
  1684. drm_unbind_agp(obj_priv->agp_mem);
  1685. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1686. obj_priv->agp_mem = NULL;
  1687. }
  1688. i915_gem_object_put_pages(obj);
  1689. BUG_ON(obj_priv->pages_refcount);
  1690. if (obj_priv->gtt_space) {
  1691. atomic_dec(&dev->gtt_count);
  1692. atomic_sub(obj->size, &dev->gtt_memory);
  1693. drm_mm_put_block(obj_priv->gtt_space);
  1694. obj_priv->gtt_space = NULL;
  1695. }
  1696. /* Remove ourselves from the LRU list if present. */
  1697. spin_lock(&dev_priv->mm.active_list_lock);
  1698. if (!list_empty(&obj_priv->list))
  1699. list_del_init(&obj_priv->list);
  1700. spin_unlock(&dev_priv->mm.active_list_lock);
  1701. if (i915_gem_object_is_purgeable(obj_priv))
  1702. i915_gem_object_truncate(obj);
  1703. trace_i915_gem_object_unbind(obj);
  1704. return ret;
  1705. }
  1706. int
  1707. i915_gpu_idle(struct drm_device *dev)
  1708. {
  1709. drm_i915_private_t *dev_priv = dev->dev_private;
  1710. bool lists_empty;
  1711. uint32_t seqno1, seqno2;
  1712. int ret;
  1713. spin_lock(&dev_priv->mm.active_list_lock);
  1714. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1715. list_empty(&dev_priv->render_ring.active_list) &&
  1716. (!HAS_BSD(dev) ||
  1717. list_empty(&dev_priv->bsd_ring.active_list)));
  1718. spin_unlock(&dev_priv->mm.active_list_lock);
  1719. if (lists_empty)
  1720. return 0;
  1721. /* Flush everything onto the inactive list. */
  1722. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1723. seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1724. &dev_priv->render_ring);
  1725. if (seqno1 == 0)
  1726. return -ENOMEM;
  1727. ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
  1728. if (HAS_BSD(dev)) {
  1729. seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1730. &dev_priv->bsd_ring);
  1731. if (seqno2 == 0)
  1732. return -ENOMEM;
  1733. ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
  1734. if (ret)
  1735. return ret;
  1736. }
  1737. return ret;
  1738. }
  1739. int
  1740. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1741. gfp_t gfpmask)
  1742. {
  1743. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1744. int page_count, i;
  1745. struct address_space *mapping;
  1746. struct inode *inode;
  1747. struct page *page;
  1748. BUG_ON(obj_priv->pages_refcount
  1749. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1750. if (obj_priv->pages_refcount++ != 0)
  1751. return 0;
  1752. /* Get the list of pages out of our struct file. They'll be pinned
  1753. * at this point until we release them.
  1754. */
  1755. page_count = obj->size / PAGE_SIZE;
  1756. BUG_ON(obj_priv->pages != NULL);
  1757. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1758. if (obj_priv->pages == NULL) {
  1759. obj_priv->pages_refcount--;
  1760. return -ENOMEM;
  1761. }
  1762. inode = obj->filp->f_path.dentry->d_inode;
  1763. mapping = inode->i_mapping;
  1764. for (i = 0; i < page_count; i++) {
  1765. page = read_cache_page_gfp(mapping, i,
  1766. GFP_HIGHUSER |
  1767. __GFP_COLD |
  1768. __GFP_RECLAIMABLE |
  1769. gfpmask);
  1770. if (IS_ERR(page))
  1771. goto err_pages;
  1772. obj_priv->pages[i] = page;
  1773. }
  1774. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1775. i915_gem_object_do_bit_17_swizzle(obj);
  1776. return 0;
  1777. err_pages:
  1778. while (i--)
  1779. page_cache_release(obj_priv->pages[i]);
  1780. drm_free_large(obj_priv->pages);
  1781. obj_priv->pages = NULL;
  1782. obj_priv->pages_refcount--;
  1783. return PTR_ERR(page);
  1784. }
  1785. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1786. {
  1787. struct drm_gem_object *obj = reg->obj;
  1788. struct drm_device *dev = obj->dev;
  1789. drm_i915_private_t *dev_priv = dev->dev_private;
  1790. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1791. int regnum = obj_priv->fence_reg;
  1792. uint64_t val;
  1793. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1794. 0xfffff000) << 32;
  1795. val |= obj_priv->gtt_offset & 0xfffff000;
  1796. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1797. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1798. if (obj_priv->tiling_mode == I915_TILING_Y)
  1799. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1800. val |= I965_FENCE_REG_VALID;
  1801. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1802. }
  1803. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1804. {
  1805. struct drm_gem_object *obj = reg->obj;
  1806. struct drm_device *dev = obj->dev;
  1807. drm_i915_private_t *dev_priv = dev->dev_private;
  1808. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1809. int regnum = obj_priv->fence_reg;
  1810. uint64_t val;
  1811. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1812. 0xfffff000) << 32;
  1813. val |= obj_priv->gtt_offset & 0xfffff000;
  1814. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1815. if (obj_priv->tiling_mode == I915_TILING_Y)
  1816. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1817. val |= I965_FENCE_REG_VALID;
  1818. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1819. }
  1820. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1821. {
  1822. struct drm_gem_object *obj = reg->obj;
  1823. struct drm_device *dev = obj->dev;
  1824. drm_i915_private_t *dev_priv = dev->dev_private;
  1825. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1826. int regnum = obj_priv->fence_reg;
  1827. int tile_width;
  1828. uint32_t fence_reg, val;
  1829. uint32_t pitch_val;
  1830. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1831. (obj_priv->gtt_offset & (obj->size - 1))) {
  1832. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1833. __func__, obj_priv->gtt_offset, obj->size);
  1834. return;
  1835. }
  1836. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1837. HAS_128_BYTE_Y_TILING(dev))
  1838. tile_width = 128;
  1839. else
  1840. tile_width = 512;
  1841. /* Note: pitch better be a power of two tile widths */
  1842. pitch_val = obj_priv->stride / tile_width;
  1843. pitch_val = ffs(pitch_val) - 1;
  1844. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1845. HAS_128_BYTE_Y_TILING(dev))
  1846. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1847. else
  1848. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1849. val = obj_priv->gtt_offset;
  1850. if (obj_priv->tiling_mode == I915_TILING_Y)
  1851. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1852. val |= I915_FENCE_SIZE_BITS(obj->size);
  1853. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1854. val |= I830_FENCE_REG_VALID;
  1855. if (regnum < 8)
  1856. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1857. else
  1858. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1859. I915_WRITE(fence_reg, val);
  1860. }
  1861. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1862. {
  1863. struct drm_gem_object *obj = reg->obj;
  1864. struct drm_device *dev = obj->dev;
  1865. drm_i915_private_t *dev_priv = dev->dev_private;
  1866. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1867. int regnum = obj_priv->fence_reg;
  1868. uint32_t val;
  1869. uint32_t pitch_val;
  1870. uint32_t fence_size_bits;
  1871. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1872. (obj_priv->gtt_offset & (obj->size - 1))) {
  1873. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1874. __func__, obj_priv->gtt_offset);
  1875. return;
  1876. }
  1877. pitch_val = obj_priv->stride / 128;
  1878. pitch_val = ffs(pitch_val) - 1;
  1879. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1880. val = obj_priv->gtt_offset;
  1881. if (obj_priv->tiling_mode == I915_TILING_Y)
  1882. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1883. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1884. WARN_ON(fence_size_bits & ~0x00000f00);
  1885. val |= fence_size_bits;
  1886. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1887. val |= I830_FENCE_REG_VALID;
  1888. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1889. }
  1890. static int i915_find_fence_reg(struct drm_device *dev)
  1891. {
  1892. struct drm_i915_fence_reg *reg = NULL;
  1893. struct drm_i915_gem_object *obj_priv = NULL;
  1894. struct drm_i915_private *dev_priv = dev->dev_private;
  1895. struct drm_gem_object *obj = NULL;
  1896. int i, avail, ret;
  1897. /* First try to find a free reg */
  1898. avail = 0;
  1899. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1900. reg = &dev_priv->fence_regs[i];
  1901. if (!reg->obj)
  1902. return i;
  1903. obj_priv = to_intel_bo(reg->obj);
  1904. if (!obj_priv->pin_count)
  1905. avail++;
  1906. }
  1907. if (avail == 0)
  1908. return -ENOSPC;
  1909. /* None available, try to steal one or wait for a user to finish */
  1910. i = I915_FENCE_REG_NONE;
  1911. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1912. lru_list) {
  1913. obj = reg->obj;
  1914. obj_priv = to_intel_bo(obj);
  1915. if (obj_priv->pin_count)
  1916. continue;
  1917. /* found one! */
  1918. i = obj_priv->fence_reg;
  1919. break;
  1920. }
  1921. BUG_ON(i == I915_FENCE_REG_NONE);
  1922. /* We only have a reference on obj from the active list. put_fence_reg
  1923. * might drop that one, causing a use-after-free in it. So hold a
  1924. * private reference to obj like the other callers of put_fence_reg
  1925. * (set_tiling ioctl) do. */
  1926. drm_gem_object_reference(obj);
  1927. ret = i915_gem_object_put_fence_reg(obj);
  1928. drm_gem_object_unreference(obj);
  1929. if (ret != 0)
  1930. return ret;
  1931. return i;
  1932. }
  1933. /**
  1934. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1935. * @obj: object to map through a fence reg
  1936. *
  1937. * When mapping objects through the GTT, userspace wants to be able to write
  1938. * to them without having to worry about swizzling if the object is tiled.
  1939. *
  1940. * This function walks the fence regs looking for a free one for @obj,
  1941. * stealing one if it can't find any.
  1942. *
  1943. * It then sets up the reg based on the object's properties: address, pitch
  1944. * and tiling format.
  1945. */
  1946. int
  1947. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1948. {
  1949. struct drm_device *dev = obj->dev;
  1950. struct drm_i915_private *dev_priv = dev->dev_private;
  1951. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1952. struct drm_i915_fence_reg *reg = NULL;
  1953. int ret;
  1954. /* Just update our place in the LRU if our fence is getting used. */
  1955. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1956. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1957. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1958. return 0;
  1959. }
  1960. switch (obj_priv->tiling_mode) {
  1961. case I915_TILING_NONE:
  1962. WARN(1, "allocating a fence for non-tiled object?\n");
  1963. break;
  1964. case I915_TILING_X:
  1965. if (!obj_priv->stride)
  1966. return -EINVAL;
  1967. WARN((obj_priv->stride & (512 - 1)),
  1968. "object 0x%08x is X tiled but has non-512B pitch\n",
  1969. obj_priv->gtt_offset);
  1970. break;
  1971. case I915_TILING_Y:
  1972. if (!obj_priv->stride)
  1973. return -EINVAL;
  1974. WARN((obj_priv->stride & (128 - 1)),
  1975. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1976. obj_priv->gtt_offset);
  1977. break;
  1978. }
  1979. ret = i915_find_fence_reg(dev);
  1980. if (ret < 0)
  1981. return ret;
  1982. obj_priv->fence_reg = ret;
  1983. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1984. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1985. reg->obj = obj;
  1986. if (IS_GEN6(dev))
  1987. sandybridge_write_fence_reg(reg);
  1988. else if (IS_I965G(dev))
  1989. i965_write_fence_reg(reg);
  1990. else if (IS_I9XX(dev))
  1991. i915_write_fence_reg(reg);
  1992. else
  1993. i830_write_fence_reg(reg);
  1994. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  1995. obj_priv->tiling_mode);
  1996. return 0;
  1997. }
  1998. /**
  1999. * i915_gem_clear_fence_reg - clear out fence register info
  2000. * @obj: object to clear
  2001. *
  2002. * Zeroes out the fence register itself and clears out the associated
  2003. * data structures in dev_priv and obj_priv.
  2004. */
  2005. static void
  2006. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2007. {
  2008. struct drm_device *dev = obj->dev;
  2009. drm_i915_private_t *dev_priv = dev->dev_private;
  2010. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2011. struct drm_i915_fence_reg *reg =
  2012. &dev_priv->fence_regs[obj_priv->fence_reg];
  2013. if (IS_GEN6(dev)) {
  2014. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2015. (obj_priv->fence_reg * 8), 0);
  2016. } else if (IS_I965G(dev)) {
  2017. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2018. } else {
  2019. uint32_t fence_reg;
  2020. if (obj_priv->fence_reg < 8)
  2021. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2022. else
  2023. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2024. 8) * 4;
  2025. I915_WRITE(fence_reg, 0);
  2026. }
  2027. reg->obj = NULL;
  2028. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2029. list_del_init(&reg->lru_list);
  2030. }
  2031. /**
  2032. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2033. * to the buffer to finish, and then resets the fence register.
  2034. * @obj: tiled object holding a fence register.
  2035. *
  2036. * Zeroes out the fence register itself and clears out the associated
  2037. * data structures in dev_priv and obj_priv.
  2038. */
  2039. int
  2040. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2041. {
  2042. struct drm_device *dev = obj->dev;
  2043. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2044. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2045. return 0;
  2046. /* If we've changed tiling, GTT-mappings of the object
  2047. * need to re-fault to ensure that the correct fence register
  2048. * setup is in place.
  2049. */
  2050. i915_gem_release_mmap(obj);
  2051. /* On the i915, GPU access to tiled buffers is via a fence,
  2052. * therefore we must wait for any outstanding access to complete
  2053. * before clearing the fence.
  2054. */
  2055. if (!IS_I965G(dev)) {
  2056. int ret;
  2057. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2058. if (ret != 0)
  2059. return ret;
  2060. ret = i915_gem_object_wait_rendering(obj);
  2061. if (ret != 0)
  2062. return ret;
  2063. }
  2064. i915_gem_object_flush_gtt_write_domain(obj);
  2065. i915_gem_clear_fence_reg (obj);
  2066. return 0;
  2067. }
  2068. /**
  2069. * Finds free space in the GTT aperture and binds the object there.
  2070. */
  2071. static int
  2072. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2073. {
  2074. struct drm_device *dev = obj->dev;
  2075. drm_i915_private_t *dev_priv = dev->dev_private;
  2076. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2077. struct drm_mm_node *free_space;
  2078. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2079. int ret;
  2080. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2081. DRM_ERROR("Attempting to bind a purgeable object\n");
  2082. return -EINVAL;
  2083. }
  2084. if (alignment == 0)
  2085. alignment = i915_gem_get_gtt_alignment(obj);
  2086. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2087. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2088. return -EINVAL;
  2089. }
  2090. /* If the object is bigger than the entire aperture, reject it early
  2091. * before evicting everything in a vain attempt to find space.
  2092. */
  2093. if (obj->size > dev->gtt_total) {
  2094. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2095. return -E2BIG;
  2096. }
  2097. search_free:
  2098. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2099. obj->size, alignment, 0);
  2100. if (free_space != NULL) {
  2101. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2102. alignment);
  2103. if (obj_priv->gtt_space != NULL)
  2104. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2105. }
  2106. if (obj_priv->gtt_space == NULL) {
  2107. /* If the gtt is empty and we're still having trouble
  2108. * fitting our object in, we're out of memory.
  2109. */
  2110. #if WATCH_LRU
  2111. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2112. #endif
  2113. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2114. if (ret)
  2115. return ret;
  2116. goto search_free;
  2117. }
  2118. #if WATCH_BUF
  2119. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2120. obj->size, obj_priv->gtt_offset);
  2121. #endif
  2122. ret = i915_gem_object_get_pages(obj, gfpmask);
  2123. if (ret) {
  2124. drm_mm_put_block(obj_priv->gtt_space);
  2125. obj_priv->gtt_space = NULL;
  2126. if (ret == -ENOMEM) {
  2127. /* first try to clear up some space from the GTT */
  2128. ret = i915_gem_evict_something(dev, obj->size,
  2129. alignment);
  2130. if (ret) {
  2131. /* now try to shrink everyone else */
  2132. if (gfpmask) {
  2133. gfpmask = 0;
  2134. goto search_free;
  2135. }
  2136. return ret;
  2137. }
  2138. goto search_free;
  2139. }
  2140. return ret;
  2141. }
  2142. /* Create an AGP memory structure pointing at our pages, and bind it
  2143. * into the GTT.
  2144. */
  2145. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2146. obj_priv->pages,
  2147. obj->size >> PAGE_SHIFT,
  2148. obj_priv->gtt_offset,
  2149. obj_priv->agp_type);
  2150. if (obj_priv->agp_mem == NULL) {
  2151. i915_gem_object_put_pages(obj);
  2152. drm_mm_put_block(obj_priv->gtt_space);
  2153. obj_priv->gtt_space = NULL;
  2154. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2155. if (ret)
  2156. return ret;
  2157. goto search_free;
  2158. }
  2159. atomic_inc(&dev->gtt_count);
  2160. atomic_add(obj->size, &dev->gtt_memory);
  2161. /* keep track of bounds object by adding it to the inactive list */
  2162. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2163. /* Assert that the object is not currently in any GPU domain. As it
  2164. * wasn't in the GTT, there shouldn't be any way it could have been in
  2165. * a GPU cache
  2166. */
  2167. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2168. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2169. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2170. return 0;
  2171. }
  2172. void
  2173. i915_gem_clflush_object(struct drm_gem_object *obj)
  2174. {
  2175. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2176. /* If we don't have a page list set up, then we're not pinned
  2177. * to GPU, and we can ignore the cache flush because it'll happen
  2178. * again at bind time.
  2179. */
  2180. if (obj_priv->pages == NULL)
  2181. return;
  2182. trace_i915_gem_object_clflush(obj);
  2183. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2184. }
  2185. /** Flushes any GPU write domain for the object if it's dirty. */
  2186. static int
  2187. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2188. {
  2189. struct drm_device *dev = obj->dev;
  2190. uint32_t old_write_domain;
  2191. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2192. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2193. return 0;
  2194. /* Queue the GPU write cache flushing we need. */
  2195. old_write_domain = obj->write_domain;
  2196. i915_gem_flush(dev, 0, obj->write_domain);
  2197. if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
  2198. return -ENOMEM;
  2199. trace_i915_gem_object_change_domain(obj,
  2200. obj->read_domains,
  2201. old_write_domain);
  2202. return 0;
  2203. }
  2204. /** Flushes the GTT write domain for the object if it's dirty. */
  2205. static void
  2206. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2207. {
  2208. uint32_t old_write_domain;
  2209. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2210. return;
  2211. /* No actual flushing is required for the GTT write domain. Writes
  2212. * to it immediately go to main memory as far as we know, so there's
  2213. * no chipset flush. It also doesn't land in render cache.
  2214. */
  2215. old_write_domain = obj->write_domain;
  2216. obj->write_domain = 0;
  2217. trace_i915_gem_object_change_domain(obj,
  2218. obj->read_domains,
  2219. old_write_domain);
  2220. }
  2221. /** Flushes the CPU write domain for the object if it's dirty. */
  2222. static void
  2223. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2224. {
  2225. struct drm_device *dev = obj->dev;
  2226. uint32_t old_write_domain;
  2227. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2228. return;
  2229. i915_gem_clflush_object(obj);
  2230. drm_agp_chipset_flush(dev);
  2231. old_write_domain = obj->write_domain;
  2232. obj->write_domain = 0;
  2233. trace_i915_gem_object_change_domain(obj,
  2234. obj->read_domains,
  2235. old_write_domain);
  2236. }
  2237. int
  2238. i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
  2239. {
  2240. int ret = 0;
  2241. switch (obj->write_domain) {
  2242. case I915_GEM_DOMAIN_GTT:
  2243. i915_gem_object_flush_gtt_write_domain(obj);
  2244. break;
  2245. case I915_GEM_DOMAIN_CPU:
  2246. i915_gem_object_flush_cpu_write_domain(obj);
  2247. break;
  2248. default:
  2249. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2250. break;
  2251. }
  2252. return ret;
  2253. }
  2254. /**
  2255. * Moves a single object to the GTT read, and possibly write domain.
  2256. *
  2257. * This function returns when the move is complete, including waiting on
  2258. * flushes to occur.
  2259. */
  2260. int
  2261. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2262. {
  2263. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2264. uint32_t old_write_domain, old_read_domains;
  2265. int ret;
  2266. /* Not valid to be called on unbound objects. */
  2267. if (obj_priv->gtt_space == NULL)
  2268. return -EINVAL;
  2269. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2270. if (ret != 0)
  2271. return ret;
  2272. /* Wait on any GPU rendering and flushing to occur. */
  2273. ret = i915_gem_object_wait_rendering(obj);
  2274. if (ret != 0)
  2275. return ret;
  2276. old_write_domain = obj->write_domain;
  2277. old_read_domains = obj->read_domains;
  2278. /* If we're writing through the GTT domain, then CPU and GPU caches
  2279. * will need to be invalidated at next use.
  2280. */
  2281. if (write)
  2282. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2283. i915_gem_object_flush_cpu_write_domain(obj);
  2284. /* It should now be out of any other write domains, and we can update
  2285. * the domain values for our changes.
  2286. */
  2287. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2288. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2289. if (write) {
  2290. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2291. obj_priv->dirty = 1;
  2292. }
  2293. trace_i915_gem_object_change_domain(obj,
  2294. old_read_domains,
  2295. old_write_domain);
  2296. return 0;
  2297. }
  2298. /*
  2299. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2300. * wait, as in modesetting process we're not supposed to be interrupted.
  2301. */
  2302. int
  2303. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
  2304. {
  2305. struct drm_device *dev = obj->dev;
  2306. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2307. uint32_t old_write_domain, old_read_domains;
  2308. int ret;
  2309. /* Not valid to be called on unbound objects. */
  2310. if (obj_priv->gtt_space == NULL)
  2311. return -EINVAL;
  2312. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2313. if (ret)
  2314. return ret;
  2315. /* Wait on any GPU rendering and flushing to occur. */
  2316. if (obj_priv->active) {
  2317. #if WATCH_BUF
  2318. DRM_INFO("%s: object %p wait for seqno %08x\n",
  2319. __func__, obj, obj_priv->last_rendering_seqno);
  2320. #endif
  2321. ret = i915_do_wait_request(dev,
  2322. obj_priv->last_rendering_seqno,
  2323. 0,
  2324. obj_priv->ring);
  2325. if (ret != 0)
  2326. return ret;
  2327. }
  2328. i915_gem_object_flush_cpu_write_domain(obj);
  2329. old_write_domain = obj->write_domain;
  2330. old_read_domains = obj->read_domains;
  2331. /* It should now be out of any other write domains, and we can update
  2332. * the domain values for our changes.
  2333. */
  2334. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2335. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2336. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2337. obj_priv->dirty = 1;
  2338. trace_i915_gem_object_change_domain(obj,
  2339. old_read_domains,
  2340. old_write_domain);
  2341. return 0;
  2342. }
  2343. /**
  2344. * Moves a single object to the CPU read, and possibly write domain.
  2345. *
  2346. * This function returns when the move is complete, including waiting on
  2347. * flushes to occur.
  2348. */
  2349. static int
  2350. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2351. {
  2352. uint32_t old_write_domain, old_read_domains;
  2353. int ret;
  2354. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2355. if (ret)
  2356. return ret;
  2357. /* Wait on any GPU rendering and flushing to occur. */
  2358. ret = i915_gem_object_wait_rendering(obj);
  2359. if (ret != 0)
  2360. return ret;
  2361. i915_gem_object_flush_gtt_write_domain(obj);
  2362. /* If we have a partially-valid cache of the object in the CPU,
  2363. * finish invalidating it and free the per-page flags.
  2364. */
  2365. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2366. old_write_domain = obj->write_domain;
  2367. old_read_domains = obj->read_domains;
  2368. /* Flush the CPU cache if it's still invalid. */
  2369. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2370. i915_gem_clflush_object(obj);
  2371. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2372. }
  2373. /* It should now be out of any other write domains, and we can update
  2374. * the domain values for our changes.
  2375. */
  2376. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2377. /* If we're writing through the CPU, then the GPU read domains will
  2378. * need to be invalidated at next use.
  2379. */
  2380. if (write) {
  2381. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2382. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2383. }
  2384. trace_i915_gem_object_change_domain(obj,
  2385. old_read_domains,
  2386. old_write_domain);
  2387. return 0;
  2388. }
  2389. /*
  2390. * Set the next domain for the specified object. This
  2391. * may not actually perform the necessary flushing/invaliding though,
  2392. * as that may want to be batched with other set_domain operations
  2393. *
  2394. * This is (we hope) the only really tricky part of gem. The goal
  2395. * is fairly simple -- track which caches hold bits of the object
  2396. * and make sure they remain coherent. A few concrete examples may
  2397. * help to explain how it works. For shorthand, we use the notation
  2398. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2399. * a pair of read and write domain masks.
  2400. *
  2401. * Case 1: the batch buffer
  2402. *
  2403. * 1. Allocated
  2404. * 2. Written by CPU
  2405. * 3. Mapped to GTT
  2406. * 4. Read by GPU
  2407. * 5. Unmapped from GTT
  2408. * 6. Freed
  2409. *
  2410. * Let's take these a step at a time
  2411. *
  2412. * 1. Allocated
  2413. * Pages allocated from the kernel may still have
  2414. * cache contents, so we set them to (CPU, CPU) always.
  2415. * 2. Written by CPU (using pwrite)
  2416. * The pwrite function calls set_domain (CPU, CPU) and
  2417. * this function does nothing (as nothing changes)
  2418. * 3. Mapped by GTT
  2419. * This function asserts that the object is not
  2420. * currently in any GPU-based read or write domains
  2421. * 4. Read by GPU
  2422. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2423. * As write_domain is zero, this function adds in the
  2424. * current read domains (CPU+COMMAND, 0).
  2425. * flush_domains is set to CPU.
  2426. * invalidate_domains is set to COMMAND
  2427. * clflush is run to get data out of the CPU caches
  2428. * then i915_dev_set_domain calls i915_gem_flush to
  2429. * emit an MI_FLUSH and drm_agp_chipset_flush
  2430. * 5. Unmapped from GTT
  2431. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2432. * flush_domains and invalidate_domains end up both zero
  2433. * so no flushing/invalidating happens
  2434. * 6. Freed
  2435. * yay, done
  2436. *
  2437. * Case 2: The shared render buffer
  2438. *
  2439. * 1. Allocated
  2440. * 2. Mapped to GTT
  2441. * 3. Read/written by GPU
  2442. * 4. set_domain to (CPU,CPU)
  2443. * 5. Read/written by CPU
  2444. * 6. Read/written by GPU
  2445. *
  2446. * 1. Allocated
  2447. * Same as last example, (CPU, CPU)
  2448. * 2. Mapped to GTT
  2449. * Nothing changes (assertions find that it is not in the GPU)
  2450. * 3. Read/written by GPU
  2451. * execbuffer calls set_domain (RENDER, RENDER)
  2452. * flush_domains gets CPU
  2453. * invalidate_domains gets GPU
  2454. * clflush (obj)
  2455. * MI_FLUSH and drm_agp_chipset_flush
  2456. * 4. set_domain (CPU, CPU)
  2457. * flush_domains gets GPU
  2458. * invalidate_domains gets CPU
  2459. * wait_rendering (obj) to make sure all drawing is complete.
  2460. * This will include an MI_FLUSH to get the data from GPU
  2461. * to memory
  2462. * clflush (obj) to invalidate the CPU cache
  2463. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2464. * 5. Read/written by CPU
  2465. * cache lines are loaded and dirtied
  2466. * 6. Read written by GPU
  2467. * Same as last GPU access
  2468. *
  2469. * Case 3: The constant buffer
  2470. *
  2471. * 1. Allocated
  2472. * 2. Written by CPU
  2473. * 3. Read by GPU
  2474. * 4. Updated (written) by CPU again
  2475. * 5. Read by GPU
  2476. *
  2477. * 1. Allocated
  2478. * (CPU, CPU)
  2479. * 2. Written by CPU
  2480. * (CPU, CPU)
  2481. * 3. Read by GPU
  2482. * (CPU+RENDER, 0)
  2483. * flush_domains = CPU
  2484. * invalidate_domains = RENDER
  2485. * clflush (obj)
  2486. * MI_FLUSH
  2487. * drm_agp_chipset_flush
  2488. * 4. Updated (written) by CPU again
  2489. * (CPU, CPU)
  2490. * flush_domains = 0 (no previous write domain)
  2491. * invalidate_domains = 0 (no new read domains)
  2492. * 5. Read by GPU
  2493. * (CPU+RENDER, 0)
  2494. * flush_domains = CPU
  2495. * invalidate_domains = RENDER
  2496. * clflush (obj)
  2497. * MI_FLUSH
  2498. * drm_agp_chipset_flush
  2499. */
  2500. static void
  2501. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2502. {
  2503. struct drm_device *dev = obj->dev;
  2504. drm_i915_private_t *dev_priv = dev->dev_private;
  2505. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2506. uint32_t invalidate_domains = 0;
  2507. uint32_t flush_domains = 0;
  2508. uint32_t old_read_domains;
  2509. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2510. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2511. intel_mark_busy(dev, obj);
  2512. #if WATCH_BUF
  2513. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2514. __func__, obj,
  2515. obj->read_domains, obj->pending_read_domains,
  2516. obj->write_domain, obj->pending_write_domain);
  2517. #endif
  2518. /*
  2519. * If the object isn't moving to a new write domain,
  2520. * let the object stay in multiple read domains
  2521. */
  2522. if (obj->pending_write_domain == 0)
  2523. obj->pending_read_domains |= obj->read_domains;
  2524. else
  2525. obj_priv->dirty = 1;
  2526. /*
  2527. * Flush the current write domain if
  2528. * the new read domains don't match. Invalidate
  2529. * any read domains which differ from the old
  2530. * write domain
  2531. */
  2532. if (obj->write_domain &&
  2533. obj->write_domain != obj->pending_read_domains) {
  2534. flush_domains |= obj->write_domain;
  2535. invalidate_domains |=
  2536. obj->pending_read_domains & ~obj->write_domain;
  2537. }
  2538. /*
  2539. * Invalidate any read caches which may have
  2540. * stale data. That is, any new read domains.
  2541. */
  2542. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2543. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2544. #if WATCH_BUF
  2545. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2546. __func__, flush_domains, invalidate_domains);
  2547. #endif
  2548. i915_gem_clflush_object(obj);
  2549. }
  2550. old_read_domains = obj->read_domains;
  2551. /* The actual obj->write_domain will be updated with
  2552. * pending_write_domain after we emit the accumulated flush for all
  2553. * of our domain changes in execbuffers (which clears objects'
  2554. * write_domains). So if we have a current write domain that we
  2555. * aren't changing, set pending_write_domain to that.
  2556. */
  2557. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2558. obj->pending_write_domain = obj->write_domain;
  2559. obj->read_domains = obj->pending_read_domains;
  2560. if (flush_domains & I915_GEM_GPU_DOMAINS) {
  2561. if (obj_priv->ring == &dev_priv->render_ring)
  2562. dev_priv->flush_rings |= FLUSH_RENDER_RING;
  2563. else if (obj_priv->ring == &dev_priv->bsd_ring)
  2564. dev_priv->flush_rings |= FLUSH_BSD_RING;
  2565. }
  2566. dev->invalidate_domains |= invalidate_domains;
  2567. dev->flush_domains |= flush_domains;
  2568. #if WATCH_BUF
  2569. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2570. __func__,
  2571. obj->read_domains, obj->write_domain,
  2572. dev->invalidate_domains, dev->flush_domains);
  2573. #endif
  2574. trace_i915_gem_object_change_domain(obj,
  2575. old_read_domains,
  2576. obj->write_domain);
  2577. }
  2578. /**
  2579. * Moves the object from a partially CPU read to a full one.
  2580. *
  2581. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2582. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2583. */
  2584. static void
  2585. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2586. {
  2587. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2588. if (!obj_priv->page_cpu_valid)
  2589. return;
  2590. /* If we're partially in the CPU read domain, finish moving it in.
  2591. */
  2592. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2593. int i;
  2594. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2595. if (obj_priv->page_cpu_valid[i])
  2596. continue;
  2597. drm_clflush_pages(obj_priv->pages + i, 1);
  2598. }
  2599. }
  2600. /* Free the page_cpu_valid mappings which are now stale, whether
  2601. * or not we've got I915_GEM_DOMAIN_CPU.
  2602. */
  2603. kfree(obj_priv->page_cpu_valid);
  2604. obj_priv->page_cpu_valid = NULL;
  2605. }
  2606. /**
  2607. * Set the CPU read domain on a range of the object.
  2608. *
  2609. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2610. * not entirely valid. The page_cpu_valid member of the object flags which
  2611. * pages have been flushed, and will be respected by
  2612. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2613. * of the whole object.
  2614. *
  2615. * This function returns when the move is complete, including waiting on
  2616. * flushes to occur.
  2617. */
  2618. static int
  2619. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2620. uint64_t offset, uint64_t size)
  2621. {
  2622. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2623. uint32_t old_read_domains;
  2624. int i, ret;
  2625. if (offset == 0 && size == obj->size)
  2626. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2627. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2628. if (ret)
  2629. return ret;
  2630. /* Wait on any GPU rendering and flushing to occur. */
  2631. ret = i915_gem_object_wait_rendering(obj);
  2632. if (ret != 0)
  2633. return ret;
  2634. i915_gem_object_flush_gtt_write_domain(obj);
  2635. /* If we're already fully in the CPU read domain, we're done. */
  2636. if (obj_priv->page_cpu_valid == NULL &&
  2637. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2638. return 0;
  2639. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2640. * newly adding I915_GEM_DOMAIN_CPU
  2641. */
  2642. if (obj_priv->page_cpu_valid == NULL) {
  2643. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2644. GFP_KERNEL);
  2645. if (obj_priv->page_cpu_valid == NULL)
  2646. return -ENOMEM;
  2647. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2648. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2649. /* Flush the cache on any pages that are still invalid from the CPU's
  2650. * perspective.
  2651. */
  2652. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2653. i++) {
  2654. if (obj_priv->page_cpu_valid[i])
  2655. continue;
  2656. drm_clflush_pages(obj_priv->pages + i, 1);
  2657. obj_priv->page_cpu_valid[i] = 1;
  2658. }
  2659. /* It should now be out of any other write domains, and we can update
  2660. * the domain values for our changes.
  2661. */
  2662. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2663. old_read_domains = obj->read_domains;
  2664. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2665. trace_i915_gem_object_change_domain(obj,
  2666. old_read_domains,
  2667. obj->write_domain);
  2668. return 0;
  2669. }
  2670. /**
  2671. * Pin an object to the GTT and evaluate the relocations landing in it.
  2672. */
  2673. static int
  2674. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2675. struct drm_file *file_priv,
  2676. struct drm_i915_gem_exec_object2 *entry,
  2677. struct drm_i915_gem_relocation_entry *relocs)
  2678. {
  2679. struct drm_device *dev = obj->dev;
  2680. drm_i915_private_t *dev_priv = dev->dev_private;
  2681. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2682. int i, ret;
  2683. void __iomem *reloc_page;
  2684. bool need_fence;
  2685. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2686. obj_priv->tiling_mode != I915_TILING_NONE;
  2687. /* Check fence reg constraints and rebind if necessary */
  2688. if (need_fence &&
  2689. !i915_gem_object_fence_offset_ok(obj,
  2690. obj_priv->tiling_mode)) {
  2691. ret = i915_gem_object_unbind(obj);
  2692. if (ret)
  2693. return ret;
  2694. }
  2695. /* Choose the GTT offset for our buffer and put it there. */
  2696. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2697. if (ret)
  2698. return ret;
  2699. /*
  2700. * Pre-965 chips need a fence register set up in order to
  2701. * properly handle blits to/from tiled surfaces.
  2702. */
  2703. if (need_fence) {
  2704. ret = i915_gem_object_get_fence_reg(obj);
  2705. if (ret != 0) {
  2706. i915_gem_object_unpin(obj);
  2707. return ret;
  2708. }
  2709. }
  2710. entry->offset = obj_priv->gtt_offset;
  2711. /* Apply the relocations, using the GTT aperture to avoid cache
  2712. * flushing requirements.
  2713. */
  2714. for (i = 0; i < entry->relocation_count; i++) {
  2715. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2716. struct drm_gem_object *target_obj;
  2717. struct drm_i915_gem_object *target_obj_priv;
  2718. uint32_t reloc_val, reloc_offset;
  2719. uint32_t __iomem *reloc_entry;
  2720. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2721. reloc->target_handle);
  2722. if (target_obj == NULL) {
  2723. i915_gem_object_unpin(obj);
  2724. return -ENOENT;
  2725. }
  2726. target_obj_priv = to_intel_bo(target_obj);
  2727. #if WATCH_RELOC
  2728. DRM_INFO("%s: obj %p offset %08x target %d "
  2729. "read %08x write %08x gtt %08x "
  2730. "presumed %08x delta %08x\n",
  2731. __func__,
  2732. obj,
  2733. (int) reloc->offset,
  2734. (int) reloc->target_handle,
  2735. (int) reloc->read_domains,
  2736. (int) reloc->write_domain,
  2737. (int) target_obj_priv->gtt_offset,
  2738. (int) reloc->presumed_offset,
  2739. reloc->delta);
  2740. #endif
  2741. /* The target buffer should have appeared before us in the
  2742. * exec_object list, so it should have a GTT space bound by now.
  2743. */
  2744. if (target_obj_priv->gtt_space == NULL) {
  2745. DRM_ERROR("No GTT space found for object %d\n",
  2746. reloc->target_handle);
  2747. drm_gem_object_unreference(target_obj);
  2748. i915_gem_object_unpin(obj);
  2749. return -EINVAL;
  2750. }
  2751. /* Validate that the target is in a valid r/w GPU domain */
  2752. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2753. DRM_ERROR("reloc with multiple write domains: "
  2754. "obj %p target %d offset %d "
  2755. "read %08x write %08x",
  2756. obj, reloc->target_handle,
  2757. (int) reloc->offset,
  2758. reloc->read_domains,
  2759. reloc->write_domain);
  2760. return -EINVAL;
  2761. }
  2762. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2763. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2764. DRM_ERROR("reloc with read/write CPU domains: "
  2765. "obj %p target %d offset %d "
  2766. "read %08x write %08x",
  2767. obj, reloc->target_handle,
  2768. (int) reloc->offset,
  2769. reloc->read_domains,
  2770. reloc->write_domain);
  2771. drm_gem_object_unreference(target_obj);
  2772. i915_gem_object_unpin(obj);
  2773. return -EINVAL;
  2774. }
  2775. if (reloc->write_domain && target_obj->pending_write_domain &&
  2776. reloc->write_domain != target_obj->pending_write_domain) {
  2777. DRM_ERROR("Write domain conflict: "
  2778. "obj %p target %d offset %d "
  2779. "new %08x old %08x\n",
  2780. obj, reloc->target_handle,
  2781. (int) reloc->offset,
  2782. reloc->write_domain,
  2783. target_obj->pending_write_domain);
  2784. drm_gem_object_unreference(target_obj);
  2785. i915_gem_object_unpin(obj);
  2786. return -EINVAL;
  2787. }
  2788. target_obj->pending_read_domains |= reloc->read_domains;
  2789. target_obj->pending_write_domain |= reloc->write_domain;
  2790. /* If the relocation already has the right value in it, no
  2791. * more work needs to be done.
  2792. */
  2793. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2794. drm_gem_object_unreference(target_obj);
  2795. continue;
  2796. }
  2797. /* Check that the relocation address is valid... */
  2798. if (reloc->offset > obj->size - 4) {
  2799. DRM_ERROR("Relocation beyond object bounds: "
  2800. "obj %p target %d offset %d size %d.\n",
  2801. obj, reloc->target_handle,
  2802. (int) reloc->offset, (int) obj->size);
  2803. drm_gem_object_unreference(target_obj);
  2804. i915_gem_object_unpin(obj);
  2805. return -EINVAL;
  2806. }
  2807. if (reloc->offset & 3) {
  2808. DRM_ERROR("Relocation not 4-byte aligned: "
  2809. "obj %p target %d offset %d.\n",
  2810. obj, reloc->target_handle,
  2811. (int) reloc->offset);
  2812. drm_gem_object_unreference(target_obj);
  2813. i915_gem_object_unpin(obj);
  2814. return -EINVAL;
  2815. }
  2816. /* and points to somewhere within the target object. */
  2817. if (reloc->delta >= target_obj->size) {
  2818. DRM_ERROR("Relocation beyond target object bounds: "
  2819. "obj %p target %d delta %d size %d.\n",
  2820. obj, reloc->target_handle,
  2821. (int) reloc->delta, (int) target_obj->size);
  2822. drm_gem_object_unreference(target_obj);
  2823. i915_gem_object_unpin(obj);
  2824. return -EINVAL;
  2825. }
  2826. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2827. if (ret != 0) {
  2828. drm_gem_object_unreference(target_obj);
  2829. i915_gem_object_unpin(obj);
  2830. return -EINVAL;
  2831. }
  2832. /* Map the page containing the relocation we're going to
  2833. * perform.
  2834. */
  2835. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2836. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2837. (reloc_offset &
  2838. ~(PAGE_SIZE - 1)),
  2839. KM_USER0);
  2840. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2841. (reloc_offset & (PAGE_SIZE - 1)));
  2842. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2843. #if WATCH_BUF
  2844. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2845. obj, (unsigned int) reloc->offset,
  2846. readl(reloc_entry), reloc_val);
  2847. #endif
  2848. writel(reloc_val, reloc_entry);
  2849. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2850. /* The updated presumed offset for this entry will be
  2851. * copied back out to the user.
  2852. */
  2853. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2854. drm_gem_object_unreference(target_obj);
  2855. }
  2856. #if WATCH_BUF
  2857. if (0)
  2858. i915_gem_dump_object(obj, 128, __func__, ~0);
  2859. #endif
  2860. return 0;
  2861. }
  2862. /* Throttle our rendering by waiting until the ring has completed our requests
  2863. * emitted over 20 msec ago.
  2864. *
  2865. * Note that if we were to use the current jiffies each time around the loop,
  2866. * we wouldn't escape the function with any frames outstanding if the time to
  2867. * render a frame was over 20ms.
  2868. *
  2869. * This should get us reasonable parallelism between CPU and GPU but also
  2870. * relatively low latency when blocking on a particular request to finish.
  2871. */
  2872. static int
  2873. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2874. {
  2875. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2876. int ret = 0;
  2877. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2878. mutex_lock(&dev->struct_mutex);
  2879. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2880. struct drm_i915_gem_request *request;
  2881. request = list_first_entry(&i915_file_priv->mm.request_list,
  2882. struct drm_i915_gem_request,
  2883. client_list);
  2884. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2885. break;
  2886. ret = i915_wait_request(dev, request->seqno, request->ring);
  2887. if (ret != 0)
  2888. break;
  2889. }
  2890. mutex_unlock(&dev->struct_mutex);
  2891. return ret;
  2892. }
  2893. static int
  2894. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2895. uint32_t buffer_count,
  2896. struct drm_i915_gem_relocation_entry **relocs)
  2897. {
  2898. uint32_t reloc_count = 0, reloc_index = 0, i;
  2899. int ret;
  2900. *relocs = NULL;
  2901. for (i = 0; i < buffer_count; i++) {
  2902. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2903. return -EINVAL;
  2904. reloc_count += exec_list[i].relocation_count;
  2905. }
  2906. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2907. if (*relocs == NULL) {
  2908. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2909. return -ENOMEM;
  2910. }
  2911. for (i = 0; i < buffer_count; i++) {
  2912. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2913. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2914. ret = copy_from_user(&(*relocs)[reloc_index],
  2915. user_relocs,
  2916. exec_list[i].relocation_count *
  2917. sizeof(**relocs));
  2918. if (ret != 0) {
  2919. drm_free_large(*relocs);
  2920. *relocs = NULL;
  2921. return -EFAULT;
  2922. }
  2923. reloc_index += exec_list[i].relocation_count;
  2924. }
  2925. return 0;
  2926. }
  2927. static int
  2928. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2929. uint32_t buffer_count,
  2930. struct drm_i915_gem_relocation_entry *relocs)
  2931. {
  2932. uint32_t reloc_count = 0, i;
  2933. int ret = 0;
  2934. if (relocs == NULL)
  2935. return 0;
  2936. for (i = 0; i < buffer_count; i++) {
  2937. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2938. int unwritten;
  2939. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2940. unwritten = copy_to_user(user_relocs,
  2941. &relocs[reloc_count],
  2942. exec_list[i].relocation_count *
  2943. sizeof(*relocs));
  2944. if (unwritten) {
  2945. ret = -EFAULT;
  2946. goto err;
  2947. }
  2948. reloc_count += exec_list[i].relocation_count;
  2949. }
  2950. err:
  2951. drm_free_large(relocs);
  2952. return ret;
  2953. }
  2954. static int
  2955. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  2956. uint64_t exec_offset)
  2957. {
  2958. uint32_t exec_start, exec_len;
  2959. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2960. exec_len = (uint32_t) exec->batch_len;
  2961. if ((exec_start | exec_len) & 0x7)
  2962. return -EINVAL;
  2963. if (!exec_start)
  2964. return -EINVAL;
  2965. return 0;
  2966. }
  2967. static int
  2968. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  2969. struct drm_gem_object **object_list,
  2970. int count)
  2971. {
  2972. drm_i915_private_t *dev_priv = dev->dev_private;
  2973. struct drm_i915_gem_object *obj_priv;
  2974. DEFINE_WAIT(wait);
  2975. int i, ret = 0;
  2976. for (;;) {
  2977. prepare_to_wait(&dev_priv->pending_flip_queue,
  2978. &wait, TASK_INTERRUPTIBLE);
  2979. for (i = 0; i < count; i++) {
  2980. obj_priv = to_intel_bo(object_list[i]);
  2981. if (atomic_read(&obj_priv->pending_flip) > 0)
  2982. break;
  2983. }
  2984. if (i == count)
  2985. break;
  2986. if (!signal_pending(current)) {
  2987. mutex_unlock(&dev->struct_mutex);
  2988. schedule();
  2989. mutex_lock(&dev->struct_mutex);
  2990. continue;
  2991. }
  2992. ret = -ERESTARTSYS;
  2993. break;
  2994. }
  2995. finish_wait(&dev_priv->pending_flip_queue, &wait);
  2996. return ret;
  2997. }
  2998. int
  2999. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3000. struct drm_file *file_priv,
  3001. struct drm_i915_gem_execbuffer2 *args,
  3002. struct drm_i915_gem_exec_object2 *exec_list)
  3003. {
  3004. drm_i915_private_t *dev_priv = dev->dev_private;
  3005. struct drm_gem_object **object_list = NULL;
  3006. struct drm_gem_object *batch_obj;
  3007. struct drm_i915_gem_object *obj_priv;
  3008. struct drm_clip_rect *cliprects = NULL;
  3009. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3010. int ret = 0, ret2, i, pinned = 0;
  3011. uint64_t exec_offset;
  3012. uint32_t seqno, flush_domains, reloc_index;
  3013. int pin_tries, flips;
  3014. struct intel_ring_buffer *ring = NULL;
  3015. #if WATCH_EXEC
  3016. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3017. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3018. #endif
  3019. if (args->flags & I915_EXEC_BSD) {
  3020. if (!HAS_BSD(dev)) {
  3021. DRM_ERROR("execbuf with wrong flag\n");
  3022. return -EINVAL;
  3023. }
  3024. ring = &dev_priv->bsd_ring;
  3025. } else {
  3026. ring = &dev_priv->render_ring;
  3027. }
  3028. if (args->buffer_count < 1) {
  3029. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3030. return -EINVAL;
  3031. }
  3032. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3033. if (object_list == NULL) {
  3034. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3035. args->buffer_count);
  3036. ret = -ENOMEM;
  3037. goto pre_mutex_err;
  3038. }
  3039. if (args->num_cliprects != 0) {
  3040. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3041. GFP_KERNEL);
  3042. if (cliprects == NULL) {
  3043. ret = -ENOMEM;
  3044. goto pre_mutex_err;
  3045. }
  3046. ret = copy_from_user(cliprects,
  3047. (struct drm_clip_rect __user *)
  3048. (uintptr_t) args->cliprects_ptr,
  3049. sizeof(*cliprects) * args->num_cliprects);
  3050. if (ret != 0) {
  3051. DRM_ERROR("copy %d cliprects failed: %d\n",
  3052. args->num_cliprects, ret);
  3053. ret = -EFAULT;
  3054. goto pre_mutex_err;
  3055. }
  3056. }
  3057. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3058. &relocs);
  3059. if (ret != 0)
  3060. goto pre_mutex_err;
  3061. mutex_lock(&dev->struct_mutex);
  3062. i915_verify_inactive(dev, __FILE__, __LINE__);
  3063. if (atomic_read(&dev_priv->mm.wedged)) {
  3064. mutex_unlock(&dev->struct_mutex);
  3065. ret = -EIO;
  3066. goto pre_mutex_err;
  3067. }
  3068. if (dev_priv->mm.suspended) {
  3069. mutex_unlock(&dev->struct_mutex);
  3070. ret = -EBUSY;
  3071. goto pre_mutex_err;
  3072. }
  3073. /* Look up object handles */
  3074. flips = 0;
  3075. for (i = 0; i < args->buffer_count; i++) {
  3076. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3077. exec_list[i].handle);
  3078. if (object_list[i] == NULL) {
  3079. DRM_ERROR("Invalid object handle %d at index %d\n",
  3080. exec_list[i].handle, i);
  3081. /* prevent error path from reading uninitialized data */
  3082. args->buffer_count = i + 1;
  3083. ret = -ENOENT;
  3084. goto err;
  3085. }
  3086. obj_priv = to_intel_bo(object_list[i]);
  3087. if (obj_priv->in_execbuffer) {
  3088. DRM_ERROR("Object %p appears more than once in object list\n",
  3089. object_list[i]);
  3090. /* prevent error path from reading uninitialized data */
  3091. args->buffer_count = i + 1;
  3092. ret = -EINVAL;
  3093. goto err;
  3094. }
  3095. obj_priv->in_execbuffer = true;
  3096. flips += atomic_read(&obj_priv->pending_flip);
  3097. }
  3098. if (flips > 0) {
  3099. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3100. args->buffer_count);
  3101. if (ret)
  3102. goto err;
  3103. }
  3104. /* Pin and relocate */
  3105. for (pin_tries = 0; ; pin_tries++) {
  3106. ret = 0;
  3107. reloc_index = 0;
  3108. for (i = 0; i < args->buffer_count; i++) {
  3109. object_list[i]->pending_read_domains = 0;
  3110. object_list[i]->pending_write_domain = 0;
  3111. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3112. file_priv,
  3113. &exec_list[i],
  3114. &relocs[reloc_index]);
  3115. if (ret)
  3116. break;
  3117. pinned = i + 1;
  3118. reloc_index += exec_list[i].relocation_count;
  3119. }
  3120. /* success */
  3121. if (ret == 0)
  3122. break;
  3123. /* error other than GTT full, or we've already tried again */
  3124. if (ret != -ENOSPC || pin_tries >= 1) {
  3125. if (ret != -ERESTARTSYS) {
  3126. unsigned long long total_size = 0;
  3127. int num_fences = 0;
  3128. for (i = 0; i < args->buffer_count; i++) {
  3129. obj_priv = to_intel_bo(object_list[i]);
  3130. total_size += object_list[i]->size;
  3131. num_fences +=
  3132. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3133. obj_priv->tiling_mode != I915_TILING_NONE;
  3134. }
  3135. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3136. pinned+1, args->buffer_count,
  3137. total_size, num_fences,
  3138. ret);
  3139. DRM_ERROR("%d objects [%d pinned], "
  3140. "%d object bytes [%d pinned], "
  3141. "%d/%d gtt bytes\n",
  3142. atomic_read(&dev->object_count),
  3143. atomic_read(&dev->pin_count),
  3144. atomic_read(&dev->object_memory),
  3145. atomic_read(&dev->pin_memory),
  3146. atomic_read(&dev->gtt_memory),
  3147. dev->gtt_total);
  3148. }
  3149. goto err;
  3150. }
  3151. /* unpin all of our buffers */
  3152. for (i = 0; i < pinned; i++)
  3153. i915_gem_object_unpin(object_list[i]);
  3154. pinned = 0;
  3155. /* evict everyone we can from the aperture */
  3156. ret = i915_gem_evict_everything(dev);
  3157. if (ret && ret != -ENOSPC)
  3158. goto err;
  3159. }
  3160. /* Set the pending read domains for the batch buffer to COMMAND */
  3161. batch_obj = object_list[args->buffer_count-1];
  3162. if (batch_obj->pending_write_domain) {
  3163. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3164. ret = -EINVAL;
  3165. goto err;
  3166. }
  3167. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3168. /* Sanity check the batch buffer, prior to moving objects */
  3169. exec_offset = exec_list[args->buffer_count - 1].offset;
  3170. ret = i915_gem_check_execbuffer (args, exec_offset);
  3171. if (ret != 0) {
  3172. DRM_ERROR("execbuf with invalid offset/length\n");
  3173. goto err;
  3174. }
  3175. i915_verify_inactive(dev, __FILE__, __LINE__);
  3176. /* Zero the global flush/invalidate flags. These
  3177. * will be modified as new domains are computed
  3178. * for each object
  3179. */
  3180. dev->invalidate_domains = 0;
  3181. dev->flush_domains = 0;
  3182. dev_priv->flush_rings = 0;
  3183. for (i = 0; i < args->buffer_count; i++) {
  3184. struct drm_gem_object *obj = object_list[i];
  3185. /* Compute new gpu domains and update invalidate/flush */
  3186. i915_gem_object_set_to_gpu_domain(obj);
  3187. }
  3188. i915_verify_inactive(dev, __FILE__, __LINE__);
  3189. if (dev->invalidate_domains | dev->flush_domains) {
  3190. #if WATCH_EXEC
  3191. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3192. __func__,
  3193. dev->invalidate_domains,
  3194. dev->flush_domains);
  3195. #endif
  3196. i915_gem_flush(dev,
  3197. dev->invalidate_domains,
  3198. dev->flush_domains);
  3199. if (dev_priv->flush_rings & FLUSH_RENDER_RING)
  3200. (void)i915_add_request(dev, file_priv,
  3201. dev->flush_domains,
  3202. &dev_priv->render_ring);
  3203. if (dev_priv->flush_rings & FLUSH_BSD_RING)
  3204. (void)i915_add_request(dev, file_priv,
  3205. dev->flush_domains,
  3206. &dev_priv->bsd_ring);
  3207. }
  3208. for (i = 0; i < args->buffer_count; i++) {
  3209. struct drm_gem_object *obj = object_list[i];
  3210. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3211. uint32_t old_write_domain = obj->write_domain;
  3212. obj->write_domain = obj->pending_write_domain;
  3213. if (obj->write_domain)
  3214. list_move_tail(&obj_priv->gpu_write_list,
  3215. &dev_priv->mm.gpu_write_list);
  3216. else
  3217. list_del_init(&obj_priv->gpu_write_list);
  3218. trace_i915_gem_object_change_domain(obj,
  3219. obj->read_domains,
  3220. old_write_domain);
  3221. }
  3222. i915_verify_inactive(dev, __FILE__, __LINE__);
  3223. #if WATCH_COHERENCY
  3224. for (i = 0; i < args->buffer_count; i++) {
  3225. i915_gem_object_check_coherency(object_list[i],
  3226. exec_list[i].handle);
  3227. }
  3228. #endif
  3229. #if WATCH_EXEC
  3230. i915_gem_dump_object(batch_obj,
  3231. args->batch_len,
  3232. __func__,
  3233. ~0);
  3234. #endif
  3235. /* Exec the batchbuffer */
  3236. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3237. cliprects, exec_offset);
  3238. if (ret) {
  3239. DRM_ERROR("dispatch failed %d\n", ret);
  3240. goto err;
  3241. }
  3242. /*
  3243. * Ensure that the commands in the batch buffer are
  3244. * finished before the interrupt fires
  3245. */
  3246. flush_domains = i915_retire_commands(dev, ring);
  3247. i915_verify_inactive(dev, __FILE__, __LINE__);
  3248. /*
  3249. * Get a seqno representing the execution of the current buffer,
  3250. * which we can wait on. We would like to mitigate these interrupts,
  3251. * likely by only creating seqnos occasionally (so that we have
  3252. * *some* interrupts representing completion of buffers that we can
  3253. * wait on when trying to clear up gtt space).
  3254. */
  3255. seqno = i915_add_request(dev, file_priv, flush_domains, ring);
  3256. BUG_ON(seqno == 0);
  3257. for (i = 0; i < args->buffer_count; i++) {
  3258. struct drm_gem_object *obj = object_list[i];
  3259. obj_priv = to_intel_bo(obj);
  3260. i915_gem_object_move_to_active(obj, seqno, ring);
  3261. #if WATCH_LRU
  3262. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3263. #endif
  3264. }
  3265. #if WATCH_LRU
  3266. i915_dump_lru(dev, __func__);
  3267. #endif
  3268. i915_verify_inactive(dev, __FILE__, __LINE__);
  3269. err:
  3270. for (i = 0; i < pinned; i++)
  3271. i915_gem_object_unpin(object_list[i]);
  3272. for (i = 0; i < args->buffer_count; i++) {
  3273. if (object_list[i]) {
  3274. obj_priv = to_intel_bo(object_list[i]);
  3275. obj_priv->in_execbuffer = false;
  3276. }
  3277. drm_gem_object_unreference(object_list[i]);
  3278. }
  3279. mutex_unlock(&dev->struct_mutex);
  3280. pre_mutex_err:
  3281. /* Copy the updated relocations out regardless of current error
  3282. * state. Failure to update the relocs would mean that the next
  3283. * time userland calls execbuf, it would do so with presumed offset
  3284. * state that didn't match the actual object state.
  3285. */
  3286. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3287. relocs);
  3288. if (ret2 != 0) {
  3289. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3290. if (ret == 0)
  3291. ret = ret2;
  3292. }
  3293. drm_free_large(object_list);
  3294. kfree(cliprects);
  3295. return ret;
  3296. }
  3297. /*
  3298. * Legacy execbuffer just creates an exec2 list from the original exec object
  3299. * list array and passes it to the real function.
  3300. */
  3301. int
  3302. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3303. struct drm_file *file_priv)
  3304. {
  3305. struct drm_i915_gem_execbuffer *args = data;
  3306. struct drm_i915_gem_execbuffer2 exec2;
  3307. struct drm_i915_gem_exec_object *exec_list = NULL;
  3308. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3309. int ret, i;
  3310. #if WATCH_EXEC
  3311. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3312. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3313. #endif
  3314. if (args->buffer_count < 1) {
  3315. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3316. return -EINVAL;
  3317. }
  3318. /* Copy in the exec list from userland */
  3319. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3320. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3321. if (exec_list == NULL || exec2_list == NULL) {
  3322. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3323. args->buffer_count);
  3324. drm_free_large(exec_list);
  3325. drm_free_large(exec2_list);
  3326. return -ENOMEM;
  3327. }
  3328. ret = copy_from_user(exec_list,
  3329. (struct drm_i915_relocation_entry __user *)
  3330. (uintptr_t) args->buffers_ptr,
  3331. sizeof(*exec_list) * args->buffer_count);
  3332. if (ret != 0) {
  3333. DRM_ERROR("copy %d exec entries failed %d\n",
  3334. args->buffer_count, ret);
  3335. drm_free_large(exec_list);
  3336. drm_free_large(exec2_list);
  3337. return -EFAULT;
  3338. }
  3339. for (i = 0; i < args->buffer_count; i++) {
  3340. exec2_list[i].handle = exec_list[i].handle;
  3341. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3342. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3343. exec2_list[i].alignment = exec_list[i].alignment;
  3344. exec2_list[i].offset = exec_list[i].offset;
  3345. if (!IS_I965G(dev))
  3346. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3347. else
  3348. exec2_list[i].flags = 0;
  3349. }
  3350. exec2.buffers_ptr = args->buffers_ptr;
  3351. exec2.buffer_count = args->buffer_count;
  3352. exec2.batch_start_offset = args->batch_start_offset;
  3353. exec2.batch_len = args->batch_len;
  3354. exec2.DR1 = args->DR1;
  3355. exec2.DR4 = args->DR4;
  3356. exec2.num_cliprects = args->num_cliprects;
  3357. exec2.cliprects_ptr = args->cliprects_ptr;
  3358. exec2.flags = I915_EXEC_RENDER;
  3359. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3360. if (!ret) {
  3361. /* Copy the new buffer offsets back to the user's exec list. */
  3362. for (i = 0; i < args->buffer_count; i++)
  3363. exec_list[i].offset = exec2_list[i].offset;
  3364. /* ... and back out to userspace */
  3365. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3366. (uintptr_t) args->buffers_ptr,
  3367. exec_list,
  3368. sizeof(*exec_list) * args->buffer_count);
  3369. if (ret) {
  3370. ret = -EFAULT;
  3371. DRM_ERROR("failed to copy %d exec entries "
  3372. "back to user (%d)\n",
  3373. args->buffer_count, ret);
  3374. }
  3375. }
  3376. drm_free_large(exec_list);
  3377. drm_free_large(exec2_list);
  3378. return ret;
  3379. }
  3380. int
  3381. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3382. struct drm_file *file_priv)
  3383. {
  3384. struct drm_i915_gem_execbuffer2 *args = data;
  3385. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3386. int ret;
  3387. #if WATCH_EXEC
  3388. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3389. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3390. #endif
  3391. if (args->buffer_count < 1) {
  3392. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3393. return -EINVAL;
  3394. }
  3395. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3396. if (exec2_list == NULL) {
  3397. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3398. args->buffer_count);
  3399. return -ENOMEM;
  3400. }
  3401. ret = copy_from_user(exec2_list,
  3402. (struct drm_i915_relocation_entry __user *)
  3403. (uintptr_t) args->buffers_ptr,
  3404. sizeof(*exec2_list) * args->buffer_count);
  3405. if (ret != 0) {
  3406. DRM_ERROR("copy %d exec entries failed %d\n",
  3407. args->buffer_count, ret);
  3408. drm_free_large(exec2_list);
  3409. return -EFAULT;
  3410. }
  3411. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3412. if (!ret) {
  3413. /* Copy the new buffer offsets back to the user's exec list. */
  3414. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3415. (uintptr_t) args->buffers_ptr,
  3416. exec2_list,
  3417. sizeof(*exec2_list) * args->buffer_count);
  3418. if (ret) {
  3419. ret = -EFAULT;
  3420. DRM_ERROR("failed to copy %d exec entries "
  3421. "back to user (%d)\n",
  3422. args->buffer_count, ret);
  3423. }
  3424. }
  3425. drm_free_large(exec2_list);
  3426. return ret;
  3427. }
  3428. int
  3429. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3430. {
  3431. struct drm_device *dev = obj->dev;
  3432. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3433. int ret;
  3434. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3435. i915_verify_inactive(dev, __FILE__, __LINE__);
  3436. if (obj_priv->gtt_space != NULL) {
  3437. if (alignment == 0)
  3438. alignment = i915_gem_get_gtt_alignment(obj);
  3439. if (obj_priv->gtt_offset & (alignment - 1)) {
  3440. WARN(obj_priv->pin_count,
  3441. "bo is already pinned with incorrect alignment:"
  3442. " offset=%x, req.alignment=%x\n",
  3443. obj_priv->gtt_offset, alignment);
  3444. ret = i915_gem_object_unbind(obj);
  3445. if (ret)
  3446. return ret;
  3447. }
  3448. }
  3449. if (obj_priv->gtt_space == NULL) {
  3450. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3451. if (ret)
  3452. return ret;
  3453. }
  3454. obj_priv->pin_count++;
  3455. /* If the object is not active and not pending a flush,
  3456. * remove it from the inactive list
  3457. */
  3458. if (obj_priv->pin_count == 1) {
  3459. atomic_inc(&dev->pin_count);
  3460. atomic_add(obj->size, &dev->pin_memory);
  3461. if (!obj_priv->active &&
  3462. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3463. list_del_init(&obj_priv->list);
  3464. }
  3465. i915_verify_inactive(dev, __FILE__, __LINE__);
  3466. return 0;
  3467. }
  3468. void
  3469. i915_gem_object_unpin(struct drm_gem_object *obj)
  3470. {
  3471. struct drm_device *dev = obj->dev;
  3472. drm_i915_private_t *dev_priv = dev->dev_private;
  3473. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3474. i915_verify_inactive(dev, __FILE__, __LINE__);
  3475. obj_priv->pin_count--;
  3476. BUG_ON(obj_priv->pin_count < 0);
  3477. BUG_ON(obj_priv->gtt_space == NULL);
  3478. /* If the object is no longer pinned, and is
  3479. * neither active nor being flushed, then stick it on
  3480. * the inactive list
  3481. */
  3482. if (obj_priv->pin_count == 0) {
  3483. if (!obj_priv->active &&
  3484. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3485. list_move_tail(&obj_priv->list,
  3486. &dev_priv->mm.inactive_list);
  3487. atomic_dec(&dev->pin_count);
  3488. atomic_sub(obj->size, &dev->pin_memory);
  3489. }
  3490. i915_verify_inactive(dev, __FILE__, __LINE__);
  3491. }
  3492. int
  3493. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3494. struct drm_file *file_priv)
  3495. {
  3496. struct drm_i915_gem_pin *args = data;
  3497. struct drm_gem_object *obj;
  3498. struct drm_i915_gem_object *obj_priv;
  3499. int ret;
  3500. mutex_lock(&dev->struct_mutex);
  3501. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3502. if (obj == NULL) {
  3503. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3504. args->handle);
  3505. mutex_unlock(&dev->struct_mutex);
  3506. return -ENOENT;
  3507. }
  3508. obj_priv = to_intel_bo(obj);
  3509. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3510. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3511. drm_gem_object_unreference(obj);
  3512. mutex_unlock(&dev->struct_mutex);
  3513. return -EINVAL;
  3514. }
  3515. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3516. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3517. args->handle);
  3518. drm_gem_object_unreference(obj);
  3519. mutex_unlock(&dev->struct_mutex);
  3520. return -EINVAL;
  3521. }
  3522. obj_priv->user_pin_count++;
  3523. obj_priv->pin_filp = file_priv;
  3524. if (obj_priv->user_pin_count == 1) {
  3525. ret = i915_gem_object_pin(obj, args->alignment);
  3526. if (ret != 0) {
  3527. drm_gem_object_unreference(obj);
  3528. mutex_unlock(&dev->struct_mutex);
  3529. return ret;
  3530. }
  3531. }
  3532. /* XXX - flush the CPU caches for pinned objects
  3533. * as the X server doesn't manage domains yet
  3534. */
  3535. i915_gem_object_flush_cpu_write_domain(obj);
  3536. args->offset = obj_priv->gtt_offset;
  3537. drm_gem_object_unreference(obj);
  3538. mutex_unlock(&dev->struct_mutex);
  3539. return 0;
  3540. }
  3541. int
  3542. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3543. struct drm_file *file_priv)
  3544. {
  3545. struct drm_i915_gem_pin *args = data;
  3546. struct drm_gem_object *obj;
  3547. struct drm_i915_gem_object *obj_priv;
  3548. mutex_lock(&dev->struct_mutex);
  3549. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3550. if (obj == NULL) {
  3551. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3552. args->handle);
  3553. mutex_unlock(&dev->struct_mutex);
  3554. return -ENOENT;
  3555. }
  3556. obj_priv = to_intel_bo(obj);
  3557. if (obj_priv->pin_filp != file_priv) {
  3558. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3559. args->handle);
  3560. drm_gem_object_unreference(obj);
  3561. mutex_unlock(&dev->struct_mutex);
  3562. return -EINVAL;
  3563. }
  3564. obj_priv->user_pin_count--;
  3565. if (obj_priv->user_pin_count == 0) {
  3566. obj_priv->pin_filp = NULL;
  3567. i915_gem_object_unpin(obj);
  3568. }
  3569. drm_gem_object_unreference(obj);
  3570. mutex_unlock(&dev->struct_mutex);
  3571. return 0;
  3572. }
  3573. int
  3574. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3575. struct drm_file *file_priv)
  3576. {
  3577. struct drm_i915_gem_busy *args = data;
  3578. struct drm_gem_object *obj;
  3579. struct drm_i915_gem_object *obj_priv;
  3580. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3581. if (obj == NULL) {
  3582. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3583. args->handle);
  3584. return -ENOENT;
  3585. }
  3586. mutex_lock(&dev->struct_mutex);
  3587. /* Count all active objects as busy, even if they are currently not used
  3588. * by the gpu. Users of this interface expect objects to eventually
  3589. * become non-busy without any further actions, therefore emit any
  3590. * necessary flushes here.
  3591. */
  3592. obj_priv = to_intel_bo(obj);
  3593. args->busy = obj_priv->active;
  3594. if (args->busy) {
  3595. /* Unconditionally flush objects, even when the gpu still uses this
  3596. * object. Userspace calling this function indicates that it wants to
  3597. * use this buffer rather sooner than later, so issuing the required
  3598. * flush earlier is beneficial.
  3599. */
  3600. if (obj->write_domain) {
  3601. i915_gem_flush(dev, 0, obj->write_domain);
  3602. (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
  3603. }
  3604. /* Update the active list for the hardware's current position.
  3605. * Otherwise this only updates on a delayed timer or when irqs
  3606. * are actually unmasked, and our working set ends up being
  3607. * larger than required.
  3608. */
  3609. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3610. args->busy = obj_priv->active;
  3611. }
  3612. drm_gem_object_unreference(obj);
  3613. mutex_unlock(&dev->struct_mutex);
  3614. return 0;
  3615. }
  3616. int
  3617. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3618. struct drm_file *file_priv)
  3619. {
  3620. return i915_gem_ring_throttle(dev, file_priv);
  3621. }
  3622. int
  3623. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3624. struct drm_file *file_priv)
  3625. {
  3626. struct drm_i915_gem_madvise *args = data;
  3627. struct drm_gem_object *obj;
  3628. struct drm_i915_gem_object *obj_priv;
  3629. switch (args->madv) {
  3630. case I915_MADV_DONTNEED:
  3631. case I915_MADV_WILLNEED:
  3632. break;
  3633. default:
  3634. return -EINVAL;
  3635. }
  3636. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3637. if (obj == NULL) {
  3638. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3639. args->handle);
  3640. return -ENOENT;
  3641. }
  3642. mutex_lock(&dev->struct_mutex);
  3643. obj_priv = to_intel_bo(obj);
  3644. if (obj_priv->pin_count) {
  3645. drm_gem_object_unreference(obj);
  3646. mutex_unlock(&dev->struct_mutex);
  3647. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3648. return -EINVAL;
  3649. }
  3650. if (obj_priv->madv != __I915_MADV_PURGED)
  3651. obj_priv->madv = args->madv;
  3652. /* if the object is no longer bound, discard its backing storage */
  3653. if (i915_gem_object_is_purgeable(obj_priv) &&
  3654. obj_priv->gtt_space == NULL)
  3655. i915_gem_object_truncate(obj);
  3656. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3657. drm_gem_object_unreference(obj);
  3658. mutex_unlock(&dev->struct_mutex);
  3659. return 0;
  3660. }
  3661. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3662. size_t size)
  3663. {
  3664. struct drm_i915_gem_object *obj;
  3665. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3666. if (obj == NULL)
  3667. return NULL;
  3668. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3669. kfree(obj);
  3670. return NULL;
  3671. }
  3672. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3673. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3674. obj->agp_type = AGP_USER_MEMORY;
  3675. obj->base.driver_private = NULL;
  3676. obj->fence_reg = I915_FENCE_REG_NONE;
  3677. INIT_LIST_HEAD(&obj->list);
  3678. INIT_LIST_HEAD(&obj->gpu_write_list);
  3679. obj->madv = I915_MADV_WILLNEED;
  3680. trace_i915_gem_object_create(&obj->base);
  3681. return &obj->base;
  3682. }
  3683. int i915_gem_init_object(struct drm_gem_object *obj)
  3684. {
  3685. BUG();
  3686. return 0;
  3687. }
  3688. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3689. {
  3690. struct drm_device *dev = obj->dev;
  3691. drm_i915_private_t *dev_priv = dev->dev_private;
  3692. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3693. int ret;
  3694. ret = i915_gem_object_unbind(obj);
  3695. if (ret == -ERESTARTSYS) {
  3696. list_move(&obj_priv->list,
  3697. &dev_priv->mm.deferred_free_list);
  3698. return;
  3699. }
  3700. if (obj_priv->mmap_offset)
  3701. i915_gem_free_mmap_offset(obj);
  3702. drm_gem_object_release(obj);
  3703. kfree(obj_priv->page_cpu_valid);
  3704. kfree(obj_priv->bit_17);
  3705. kfree(obj_priv);
  3706. }
  3707. void i915_gem_free_object(struct drm_gem_object *obj)
  3708. {
  3709. struct drm_device *dev = obj->dev;
  3710. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3711. trace_i915_gem_object_destroy(obj);
  3712. while (obj_priv->pin_count > 0)
  3713. i915_gem_object_unpin(obj);
  3714. if (obj_priv->phys_obj)
  3715. i915_gem_detach_phys_object(dev, obj);
  3716. i915_gem_free_object_tail(obj);
  3717. }
  3718. int
  3719. i915_gem_idle(struct drm_device *dev)
  3720. {
  3721. drm_i915_private_t *dev_priv = dev->dev_private;
  3722. int ret;
  3723. mutex_lock(&dev->struct_mutex);
  3724. if (dev_priv->mm.suspended ||
  3725. (dev_priv->render_ring.gem_object == NULL) ||
  3726. (HAS_BSD(dev) &&
  3727. dev_priv->bsd_ring.gem_object == NULL)) {
  3728. mutex_unlock(&dev->struct_mutex);
  3729. return 0;
  3730. }
  3731. ret = i915_gpu_idle(dev);
  3732. if (ret) {
  3733. mutex_unlock(&dev->struct_mutex);
  3734. return ret;
  3735. }
  3736. /* Under UMS, be paranoid and evict. */
  3737. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3738. ret = i915_gem_evict_inactive(dev);
  3739. if (ret) {
  3740. mutex_unlock(&dev->struct_mutex);
  3741. return ret;
  3742. }
  3743. }
  3744. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3745. * We need to replace this with a semaphore, or something.
  3746. * And not confound mm.suspended!
  3747. */
  3748. dev_priv->mm.suspended = 1;
  3749. del_timer(&dev_priv->hangcheck_timer);
  3750. i915_kernel_lost_context(dev);
  3751. i915_gem_cleanup_ringbuffer(dev);
  3752. mutex_unlock(&dev->struct_mutex);
  3753. /* Cancel the retire work handler, which should be idle now. */
  3754. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3755. return 0;
  3756. }
  3757. /*
  3758. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3759. * over cache flushing.
  3760. */
  3761. static int
  3762. i915_gem_init_pipe_control(struct drm_device *dev)
  3763. {
  3764. drm_i915_private_t *dev_priv = dev->dev_private;
  3765. struct drm_gem_object *obj;
  3766. struct drm_i915_gem_object *obj_priv;
  3767. int ret;
  3768. obj = i915_gem_alloc_object(dev, 4096);
  3769. if (obj == NULL) {
  3770. DRM_ERROR("Failed to allocate seqno page\n");
  3771. ret = -ENOMEM;
  3772. goto err;
  3773. }
  3774. obj_priv = to_intel_bo(obj);
  3775. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3776. ret = i915_gem_object_pin(obj, 4096);
  3777. if (ret)
  3778. goto err_unref;
  3779. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3780. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3781. if (dev_priv->seqno_page == NULL)
  3782. goto err_unpin;
  3783. dev_priv->seqno_obj = obj;
  3784. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3785. return 0;
  3786. err_unpin:
  3787. i915_gem_object_unpin(obj);
  3788. err_unref:
  3789. drm_gem_object_unreference(obj);
  3790. err:
  3791. return ret;
  3792. }
  3793. static void
  3794. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3795. {
  3796. drm_i915_private_t *dev_priv = dev->dev_private;
  3797. struct drm_gem_object *obj;
  3798. struct drm_i915_gem_object *obj_priv;
  3799. obj = dev_priv->seqno_obj;
  3800. obj_priv = to_intel_bo(obj);
  3801. kunmap(obj_priv->pages[0]);
  3802. i915_gem_object_unpin(obj);
  3803. drm_gem_object_unreference(obj);
  3804. dev_priv->seqno_obj = NULL;
  3805. dev_priv->seqno_page = NULL;
  3806. }
  3807. int
  3808. i915_gem_init_ringbuffer(struct drm_device *dev)
  3809. {
  3810. drm_i915_private_t *dev_priv = dev->dev_private;
  3811. int ret;
  3812. dev_priv->render_ring = render_ring;
  3813. if (!I915_NEED_GFX_HWS(dev)) {
  3814. dev_priv->render_ring.status_page.page_addr
  3815. = dev_priv->status_page_dmah->vaddr;
  3816. memset(dev_priv->render_ring.status_page.page_addr,
  3817. 0, PAGE_SIZE);
  3818. }
  3819. if (HAS_PIPE_CONTROL(dev)) {
  3820. ret = i915_gem_init_pipe_control(dev);
  3821. if (ret)
  3822. return ret;
  3823. }
  3824. ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
  3825. if (ret)
  3826. goto cleanup_pipe_control;
  3827. if (HAS_BSD(dev)) {
  3828. dev_priv->bsd_ring = bsd_ring;
  3829. ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
  3830. if (ret)
  3831. goto cleanup_render_ring;
  3832. }
  3833. dev_priv->next_seqno = 1;
  3834. return 0;
  3835. cleanup_render_ring:
  3836. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3837. cleanup_pipe_control:
  3838. if (HAS_PIPE_CONTROL(dev))
  3839. i915_gem_cleanup_pipe_control(dev);
  3840. return ret;
  3841. }
  3842. void
  3843. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3844. {
  3845. drm_i915_private_t *dev_priv = dev->dev_private;
  3846. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3847. if (HAS_BSD(dev))
  3848. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3849. if (HAS_PIPE_CONTROL(dev))
  3850. i915_gem_cleanup_pipe_control(dev);
  3851. }
  3852. int
  3853. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3854. struct drm_file *file_priv)
  3855. {
  3856. drm_i915_private_t *dev_priv = dev->dev_private;
  3857. int ret;
  3858. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3859. return 0;
  3860. if (atomic_read(&dev_priv->mm.wedged)) {
  3861. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3862. atomic_set(&dev_priv->mm.wedged, 0);
  3863. }
  3864. mutex_lock(&dev->struct_mutex);
  3865. dev_priv->mm.suspended = 0;
  3866. ret = i915_gem_init_ringbuffer(dev);
  3867. if (ret != 0) {
  3868. mutex_unlock(&dev->struct_mutex);
  3869. return ret;
  3870. }
  3871. spin_lock(&dev_priv->mm.active_list_lock);
  3872. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3873. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3874. spin_unlock(&dev_priv->mm.active_list_lock);
  3875. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3876. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3877. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3878. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3879. mutex_unlock(&dev->struct_mutex);
  3880. ret = drm_irq_install(dev);
  3881. if (ret)
  3882. goto cleanup_ringbuffer;
  3883. return 0;
  3884. cleanup_ringbuffer:
  3885. mutex_lock(&dev->struct_mutex);
  3886. i915_gem_cleanup_ringbuffer(dev);
  3887. dev_priv->mm.suspended = 1;
  3888. mutex_unlock(&dev->struct_mutex);
  3889. return ret;
  3890. }
  3891. int
  3892. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3893. struct drm_file *file_priv)
  3894. {
  3895. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3896. return 0;
  3897. drm_irq_uninstall(dev);
  3898. return i915_gem_idle(dev);
  3899. }
  3900. void
  3901. i915_gem_lastclose(struct drm_device *dev)
  3902. {
  3903. int ret;
  3904. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3905. return;
  3906. ret = i915_gem_idle(dev);
  3907. if (ret)
  3908. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3909. }
  3910. void
  3911. i915_gem_load(struct drm_device *dev)
  3912. {
  3913. int i;
  3914. drm_i915_private_t *dev_priv = dev->dev_private;
  3915. spin_lock_init(&dev_priv->mm.active_list_lock);
  3916. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3917. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3918. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3919. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3920. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3921. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3922. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3923. if (HAS_BSD(dev)) {
  3924. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3925. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3926. }
  3927. for (i = 0; i < 16; i++)
  3928. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3929. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3930. i915_gem_retire_work_handler);
  3931. spin_lock(&shrink_list_lock);
  3932. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3933. spin_unlock(&shrink_list_lock);
  3934. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3935. if (IS_GEN3(dev)) {
  3936. u32 tmp = I915_READ(MI_ARB_STATE);
  3937. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3938. /* arb state is a masked write, so set bit + bit in mask */
  3939. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3940. I915_WRITE(MI_ARB_STATE, tmp);
  3941. }
  3942. }
  3943. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3944. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3945. dev_priv->fence_reg_start = 3;
  3946. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3947. dev_priv->num_fence_regs = 16;
  3948. else
  3949. dev_priv->num_fence_regs = 8;
  3950. /* Initialize fence registers to zero */
  3951. if (IS_I965G(dev)) {
  3952. for (i = 0; i < 16; i++)
  3953. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3954. } else {
  3955. for (i = 0; i < 8; i++)
  3956. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3957. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3958. for (i = 0; i < 8; i++)
  3959. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3960. }
  3961. i915_gem_detect_bit_6_swizzle(dev);
  3962. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3963. }
  3964. /*
  3965. * Create a physically contiguous memory object for this object
  3966. * e.g. for cursor + overlay regs
  3967. */
  3968. int i915_gem_init_phys_object(struct drm_device *dev,
  3969. int id, int size, int align)
  3970. {
  3971. drm_i915_private_t *dev_priv = dev->dev_private;
  3972. struct drm_i915_gem_phys_object *phys_obj;
  3973. int ret;
  3974. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3975. return 0;
  3976. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3977. if (!phys_obj)
  3978. return -ENOMEM;
  3979. phys_obj->id = id;
  3980. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3981. if (!phys_obj->handle) {
  3982. ret = -ENOMEM;
  3983. goto kfree_obj;
  3984. }
  3985. #ifdef CONFIG_X86
  3986. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3987. #endif
  3988. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3989. return 0;
  3990. kfree_obj:
  3991. kfree(phys_obj);
  3992. return ret;
  3993. }
  3994. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3995. {
  3996. drm_i915_private_t *dev_priv = dev->dev_private;
  3997. struct drm_i915_gem_phys_object *phys_obj;
  3998. if (!dev_priv->mm.phys_objs[id - 1])
  3999. return;
  4000. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4001. if (phys_obj->cur_obj) {
  4002. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4003. }
  4004. #ifdef CONFIG_X86
  4005. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4006. #endif
  4007. drm_pci_free(dev, phys_obj->handle);
  4008. kfree(phys_obj);
  4009. dev_priv->mm.phys_objs[id - 1] = NULL;
  4010. }
  4011. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4012. {
  4013. int i;
  4014. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4015. i915_gem_free_phys_object(dev, i);
  4016. }
  4017. void i915_gem_detach_phys_object(struct drm_device *dev,
  4018. struct drm_gem_object *obj)
  4019. {
  4020. struct drm_i915_gem_object *obj_priv;
  4021. int i;
  4022. int ret;
  4023. int page_count;
  4024. obj_priv = to_intel_bo(obj);
  4025. if (!obj_priv->phys_obj)
  4026. return;
  4027. ret = i915_gem_object_get_pages(obj, 0);
  4028. if (ret)
  4029. goto out;
  4030. page_count = obj->size / PAGE_SIZE;
  4031. for (i = 0; i < page_count; i++) {
  4032. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4033. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4034. memcpy(dst, src, PAGE_SIZE);
  4035. kunmap_atomic(dst, KM_USER0);
  4036. }
  4037. drm_clflush_pages(obj_priv->pages, page_count);
  4038. drm_agp_chipset_flush(dev);
  4039. i915_gem_object_put_pages(obj);
  4040. out:
  4041. obj_priv->phys_obj->cur_obj = NULL;
  4042. obj_priv->phys_obj = NULL;
  4043. }
  4044. int
  4045. i915_gem_attach_phys_object(struct drm_device *dev,
  4046. struct drm_gem_object *obj,
  4047. int id,
  4048. int align)
  4049. {
  4050. drm_i915_private_t *dev_priv = dev->dev_private;
  4051. struct drm_i915_gem_object *obj_priv;
  4052. int ret = 0;
  4053. int page_count;
  4054. int i;
  4055. if (id > I915_MAX_PHYS_OBJECT)
  4056. return -EINVAL;
  4057. obj_priv = to_intel_bo(obj);
  4058. if (obj_priv->phys_obj) {
  4059. if (obj_priv->phys_obj->id == id)
  4060. return 0;
  4061. i915_gem_detach_phys_object(dev, obj);
  4062. }
  4063. /* create a new object */
  4064. if (!dev_priv->mm.phys_objs[id - 1]) {
  4065. ret = i915_gem_init_phys_object(dev, id,
  4066. obj->size, align);
  4067. if (ret) {
  4068. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4069. goto out;
  4070. }
  4071. }
  4072. /* bind to the object */
  4073. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4074. obj_priv->phys_obj->cur_obj = obj;
  4075. ret = i915_gem_object_get_pages(obj, 0);
  4076. if (ret) {
  4077. DRM_ERROR("failed to get page list\n");
  4078. goto out;
  4079. }
  4080. page_count = obj->size / PAGE_SIZE;
  4081. for (i = 0; i < page_count; i++) {
  4082. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4083. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4084. memcpy(dst, src, PAGE_SIZE);
  4085. kunmap_atomic(src, KM_USER0);
  4086. }
  4087. i915_gem_object_put_pages(obj);
  4088. return 0;
  4089. out:
  4090. return ret;
  4091. }
  4092. static int
  4093. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4094. struct drm_i915_gem_pwrite *args,
  4095. struct drm_file *file_priv)
  4096. {
  4097. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4098. void *obj_addr;
  4099. int ret;
  4100. char __user *user_data;
  4101. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4102. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4103. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4104. ret = copy_from_user(obj_addr, user_data, args->size);
  4105. if (ret)
  4106. return -EFAULT;
  4107. drm_agp_chipset_flush(dev);
  4108. return 0;
  4109. }
  4110. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4111. {
  4112. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4113. /* Clean up our request list when the client is going away, so that
  4114. * later retire_requests won't dereference our soon-to-be-gone
  4115. * file_priv.
  4116. */
  4117. mutex_lock(&dev->struct_mutex);
  4118. while (!list_empty(&i915_file_priv->mm.request_list))
  4119. list_del_init(i915_file_priv->mm.request_list.next);
  4120. mutex_unlock(&dev->struct_mutex);
  4121. }
  4122. static int
  4123. i915_gpu_is_active(struct drm_device *dev)
  4124. {
  4125. drm_i915_private_t *dev_priv = dev->dev_private;
  4126. int lists_empty;
  4127. spin_lock(&dev_priv->mm.active_list_lock);
  4128. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4129. list_empty(&dev_priv->render_ring.active_list);
  4130. if (HAS_BSD(dev))
  4131. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4132. spin_unlock(&dev_priv->mm.active_list_lock);
  4133. return !lists_empty;
  4134. }
  4135. static int
  4136. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4137. {
  4138. drm_i915_private_t *dev_priv, *next_dev;
  4139. struct drm_i915_gem_object *obj_priv, *next_obj;
  4140. int cnt = 0;
  4141. int would_deadlock = 1;
  4142. /* "fast-path" to count number of available objects */
  4143. if (nr_to_scan == 0) {
  4144. spin_lock(&shrink_list_lock);
  4145. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4146. struct drm_device *dev = dev_priv->dev;
  4147. if (mutex_trylock(&dev->struct_mutex)) {
  4148. list_for_each_entry(obj_priv,
  4149. &dev_priv->mm.inactive_list,
  4150. list)
  4151. cnt++;
  4152. mutex_unlock(&dev->struct_mutex);
  4153. }
  4154. }
  4155. spin_unlock(&shrink_list_lock);
  4156. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4157. }
  4158. spin_lock(&shrink_list_lock);
  4159. rescan:
  4160. /* first scan for clean buffers */
  4161. list_for_each_entry_safe(dev_priv, next_dev,
  4162. &shrink_list, mm.shrink_list) {
  4163. struct drm_device *dev = dev_priv->dev;
  4164. if (! mutex_trylock(&dev->struct_mutex))
  4165. continue;
  4166. spin_unlock(&shrink_list_lock);
  4167. i915_gem_retire_requests(dev);
  4168. list_for_each_entry_safe(obj_priv, next_obj,
  4169. &dev_priv->mm.inactive_list,
  4170. list) {
  4171. if (i915_gem_object_is_purgeable(obj_priv)) {
  4172. i915_gem_object_unbind(&obj_priv->base);
  4173. if (--nr_to_scan <= 0)
  4174. break;
  4175. }
  4176. }
  4177. spin_lock(&shrink_list_lock);
  4178. mutex_unlock(&dev->struct_mutex);
  4179. would_deadlock = 0;
  4180. if (nr_to_scan <= 0)
  4181. break;
  4182. }
  4183. /* second pass, evict/count anything still on the inactive list */
  4184. list_for_each_entry_safe(dev_priv, next_dev,
  4185. &shrink_list, mm.shrink_list) {
  4186. struct drm_device *dev = dev_priv->dev;
  4187. if (! mutex_trylock(&dev->struct_mutex))
  4188. continue;
  4189. spin_unlock(&shrink_list_lock);
  4190. list_for_each_entry_safe(obj_priv, next_obj,
  4191. &dev_priv->mm.inactive_list,
  4192. list) {
  4193. if (nr_to_scan > 0) {
  4194. i915_gem_object_unbind(&obj_priv->base);
  4195. nr_to_scan--;
  4196. } else
  4197. cnt++;
  4198. }
  4199. spin_lock(&shrink_list_lock);
  4200. mutex_unlock(&dev->struct_mutex);
  4201. would_deadlock = 0;
  4202. }
  4203. if (nr_to_scan) {
  4204. int active = 0;
  4205. /*
  4206. * We are desperate for pages, so as a last resort, wait
  4207. * for the GPU to finish and discard whatever we can.
  4208. * This has a dramatic impact to reduce the number of
  4209. * OOM-killer events whilst running the GPU aggressively.
  4210. */
  4211. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4212. struct drm_device *dev = dev_priv->dev;
  4213. if (!mutex_trylock(&dev->struct_mutex))
  4214. continue;
  4215. spin_unlock(&shrink_list_lock);
  4216. if (i915_gpu_is_active(dev)) {
  4217. i915_gpu_idle(dev);
  4218. active++;
  4219. }
  4220. spin_lock(&shrink_list_lock);
  4221. mutex_unlock(&dev->struct_mutex);
  4222. }
  4223. if (active)
  4224. goto rescan;
  4225. }
  4226. spin_unlock(&shrink_list_lock);
  4227. if (would_deadlock)
  4228. return -1;
  4229. else if (cnt > 0)
  4230. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4231. else
  4232. return 0;
  4233. }
  4234. static struct shrinker shrinker = {
  4235. .shrink = i915_gem_shrink,
  4236. .seeks = DEFAULT_SEEKS,
  4237. };
  4238. __init void
  4239. i915_gem_shrinker_init(void)
  4240. {
  4241. register_shrinker(&shrinker);
  4242. }
  4243. __exit void
  4244. i915_gem_shrinker_exit(void)
  4245. {
  4246. unregister_shrinker(&shrinker);
  4247. }