pch_dma.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /*
  2. * Topcliff PCH DMA controller driver
  3. * Copyright (c) 2010 Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/dmaengine.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/init.h>
  21. #include <linux/pci.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/module.h>
  24. #include <linux/pch_dma.h>
  25. #define DRV_NAME "pch-dma"
  26. #define DMA_CTL0_DISABLE 0x0
  27. #define DMA_CTL0_SG 0x1
  28. #define DMA_CTL0_ONESHOT 0x2
  29. #define DMA_CTL0_MODE_MASK_BITS 0x3
  30. #define DMA_CTL0_DIR_SHIFT_BITS 2
  31. #define DMA_CTL0_BITS_PER_CH 4
  32. #define DMA_CTL2_START_SHIFT_BITS 8
  33. #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
  34. #define DMA_STATUS_IDLE 0x0
  35. #define DMA_STATUS_DESC_READ 0x1
  36. #define DMA_STATUS_WAIT 0x2
  37. #define DMA_STATUS_ACCESS 0x3
  38. #define DMA_STATUS_BITS_PER_CH 2
  39. #define DMA_STATUS_MASK_BITS 0x3
  40. #define DMA_STATUS_SHIFT_BITS 16
  41. #define DMA_STATUS_IRQ(x) (0x1 << (x))
  42. #define DMA_STATUS_ERR(x) (0x1 << ((x) + 8))
  43. #define DMA_DESC_WIDTH_SHIFT_BITS 12
  44. #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
  45. #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
  46. #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
  47. #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
  48. #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
  49. #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
  50. #define DMA_DESC_END_WITHOUT_IRQ 0x0
  51. #define DMA_DESC_END_WITH_IRQ 0x1
  52. #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
  53. #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
  54. #define MAX_CHAN_NR 8
  55. static unsigned int init_nr_desc_per_channel = 64;
  56. module_param(init_nr_desc_per_channel, uint, 0644);
  57. MODULE_PARM_DESC(init_nr_desc_per_channel,
  58. "initial descriptors per channel (default: 64)");
  59. struct pch_dma_desc_regs {
  60. u32 dev_addr;
  61. u32 mem_addr;
  62. u32 size;
  63. u32 next;
  64. };
  65. struct pch_dma_regs {
  66. u32 dma_ctl0;
  67. u32 dma_ctl1;
  68. u32 dma_ctl2;
  69. u32 reserved1;
  70. u32 dma_sts0;
  71. u32 dma_sts1;
  72. u32 reserved2;
  73. u32 reserved3;
  74. struct pch_dma_desc_regs desc[0];
  75. };
  76. struct pch_dma_desc {
  77. struct pch_dma_desc_regs regs;
  78. struct dma_async_tx_descriptor txd;
  79. struct list_head desc_node;
  80. struct list_head tx_list;
  81. };
  82. struct pch_dma_chan {
  83. struct dma_chan chan;
  84. void __iomem *membase;
  85. enum dma_data_direction dir;
  86. struct tasklet_struct tasklet;
  87. unsigned long err_status;
  88. spinlock_t lock;
  89. dma_cookie_t completed_cookie;
  90. struct list_head active_list;
  91. struct list_head queue;
  92. struct list_head free_list;
  93. unsigned int descs_allocated;
  94. };
  95. #define PDC_DEV_ADDR 0x00
  96. #define PDC_MEM_ADDR 0x04
  97. #define PDC_SIZE 0x08
  98. #define PDC_NEXT 0x0C
  99. #define channel_readl(pdc, name) \
  100. readl((pdc)->membase + PDC_##name)
  101. #define channel_writel(pdc, name, val) \
  102. writel((val), (pdc)->membase + PDC_##name)
  103. struct pch_dma {
  104. struct dma_device dma;
  105. void __iomem *membase;
  106. struct pci_pool *pool;
  107. struct pch_dma_regs regs;
  108. struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
  109. struct pch_dma_chan channels[0];
  110. };
  111. #define PCH_DMA_CTL0 0x00
  112. #define PCH_DMA_CTL1 0x04
  113. #define PCH_DMA_CTL2 0x08
  114. #define PCH_DMA_STS0 0x10
  115. #define PCH_DMA_STS1 0x14
  116. #define dma_readl(pd, name) \
  117. readl((pd)->membase + PCH_DMA_##name)
  118. #define dma_writel(pd, name, val) \
  119. writel((val), (pd)->membase + PCH_DMA_##name)
  120. static inline struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
  121. {
  122. return container_of(txd, struct pch_dma_desc, txd);
  123. }
  124. static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
  125. {
  126. return container_of(chan, struct pch_dma_chan, chan);
  127. }
  128. static inline struct pch_dma *to_pd(struct dma_device *ddev)
  129. {
  130. return container_of(ddev, struct pch_dma, dma);
  131. }
  132. static inline struct device *chan2dev(struct dma_chan *chan)
  133. {
  134. return &chan->dev->device;
  135. }
  136. static inline struct device *chan2parent(struct dma_chan *chan)
  137. {
  138. return chan->dev->device.parent;
  139. }
  140. static inline struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
  141. {
  142. return list_first_entry(&pd_chan->active_list,
  143. struct pch_dma_desc, desc_node);
  144. }
  145. static inline struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
  146. {
  147. return list_first_entry(&pd_chan->queue,
  148. struct pch_dma_desc, desc_node);
  149. }
  150. static void pdc_enable_irq(struct dma_chan *chan, int enable)
  151. {
  152. struct pch_dma *pd = to_pd(chan->device);
  153. u32 val;
  154. val = dma_readl(pd, CTL2);
  155. if (enable)
  156. val |= 0x1 << chan->chan_id;
  157. else
  158. val &= ~(0x1 << chan->chan_id);
  159. dma_writel(pd, CTL2, val);
  160. dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
  161. chan->chan_id, val);
  162. }
  163. static void pdc_set_dir(struct dma_chan *chan)
  164. {
  165. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  166. struct pch_dma *pd = to_pd(chan->device);
  167. u32 val;
  168. val = dma_readl(pd, CTL0);
  169. if (pd_chan->dir == DMA_TO_DEVICE)
  170. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  171. DMA_CTL0_DIR_SHIFT_BITS);
  172. else
  173. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  174. DMA_CTL0_DIR_SHIFT_BITS));
  175. dma_writel(pd, CTL0, val);
  176. dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
  177. chan->chan_id, val);
  178. }
  179. static void pdc_set_mode(struct dma_chan *chan, u32 mode)
  180. {
  181. struct pch_dma *pd = to_pd(chan->device);
  182. u32 val;
  183. val = dma_readl(pd, CTL0);
  184. val &= ~(DMA_CTL0_MODE_MASK_BITS <<
  185. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  186. val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  187. dma_writel(pd, CTL0, val);
  188. dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
  189. chan->chan_id, val);
  190. }
  191. static u32 pdc_get_status(struct pch_dma_chan *pd_chan)
  192. {
  193. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  194. u32 val;
  195. val = dma_readl(pd, STS0);
  196. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  197. DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
  198. }
  199. static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
  200. {
  201. if (pdc_get_status(pd_chan) == DMA_STATUS_IDLE)
  202. return true;
  203. else
  204. return false;
  205. }
  206. static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
  207. {
  208. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  209. u32 val;
  210. if (!pdc_is_idle(pd_chan)) {
  211. dev_err(chan2dev(&pd_chan->chan),
  212. "BUG: Attempt to start non-idle channel\n");
  213. return;
  214. }
  215. channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
  216. channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
  217. channel_writel(pd_chan, SIZE, desc->regs.size);
  218. channel_writel(pd_chan, NEXT, desc->regs.next);
  219. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
  220. pd_chan->chan.chan_id, desc->regs.dev_addr);
  221. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
  222. pd_chan->chan.chan_id, desc->regs.mem_addr);
  223. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
  224. pd_chan->chan.chan_id, desc->regs.size);
  225. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
  226. pd_chan->chan.chan_id, desc->regs.next);
  227. if (list_empty(&desc->tx_list))
  228. pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
  229. else
  230. pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
  231. val = dma_readl(pd, CTL2);
  232. val |= 1 << (DMA_CTL2_START_SHIFT_BITS + pd_chan->chan.chan_id);
  233. dma_writel(pd, CTL2, val);
  234. }
  235. static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
  236. struct pch_dma_desc *desc)
  237. {
  238. struct dma_async_tx_descriptor *txd = &desc->txd;
  239. dma_async_tx_callback callback = txd->callback;
  240. void *param = txd->callback_param;
  241. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  242. list_move(&desc->desc_node, &pd_chan->free_list);
  243. if (callback)
  244. callback(param);
  245. }
  246. static void pdc_complete_all(struct pch_dma_chan *pd_chan)
  247. {
  248. struct pch_dma_desc *desc, *_d;
  249. LIST_HEAD(list);
  250. BUG_ON(!pdc_is_idle(pd_chan));
  251. if (!list_empty(&pd_chan->queue))
  252. pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
  253. list_splice_init(&pd_chan->active_list, &list);
  254. list_splice_init(&pd_chan->queue, &pd_chan->active_list);
  255. list_for_each_entry_safe(desc, _d, &list, desc_node)
  256. pdc_chain_complete(pd_chan, desc);
  257. }
  258. static void pdc_handle_error(struct pch_dma_chan *pd_chan)
  259. {
  260. struct pch_dma_desc *bad_desc;
  261. bad_desc = pdc_first_active(pd_chan);
  262. list_del(&bad_desc->desc_node);
  263. list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
  264. if (!list_empty(&pd_chan->active_list))
  265. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  266. dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
  267. dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
  268. bad_desc->txd.cookie);
  269. pdc_chain_complete(pd_chan, bad_desc);
  270. }
  271. static void pdc_advance_work(struct pch_dma_chan *pd_chan)
  272. {
  273. if (list_empty(&pd_chan->active_list) ||
  274. list_is_singular(&pd_chan->active_list)) {
  275. pdc_complete_all(pd_chan);
  276. } else {
  277. pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
  278. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  279. }
  280. }
  281. static dma_cookie_t pdc_assign_cookie(struct pch_dma_chan *pd_chan,
  282. struct pch_dma_desc *desc)
  283. {
  284. dma_cookie_t cookie = pd_chan->chan.cookie;
  285. if (++cookie < 0)
  286. cookie = 1;
  287. pd_chan->chan.cookie = cookie;
  288. desc->txd.cookie = cookie;
  289. return cookie;
  290. }
  291. static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
  292. {
  293. struct pch_dma_desc *desc = to_pd_desc(txd);
  294. struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
  295. dma_cookie_t cookie;
  296. spin_lock_bh(&pd_chan->lock);
  297. cookie = pdc_assign_cookie(pd_chan, desc);
  298. if (list_empty(&pd_chan->active_list)) {
  299. list_add_tail(&desc->desc_node, &pd_chan->active_list);
  300. pdc_dostart(pd_chan, desc);
  301. } else {
  302. list_add_tail(&desc->desc_node, &pd_chan->queue);
  303. }
  304. spin_unlock_bh(&pd_chan->lock);
  305. return 0;
  306. }
  307. static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
  308. {
  309. struct pch_dma_desc *desc = NULL;
  310. struct pch_dma *pd = to_pd(chan->device);
  311. dma_addr_t addr;
  312. desc = pci_pool_alloc(pd->pool, GFP_KERNEL, &addr);
  313. if (desc) {
  314. memset(desc, 0, sizeof(struct pch_dma_desc));
  315. INIT_LIST_HEAD(&desc->tx_list);
  316. dma_async_tx_descriptor_init(&desc->txd, chan);
  317. desc->txd.tx_submit = pd_tx_submit;
  318. desc->txd.flags = DMA_CTRL_ACK;
  319. desc->txd.phys = addr;
  320. }
  321. return desc;
  322. }
  323. static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
  324. {
  325. struct pch_dma_desc *desc, *_d;
  326. struct pch_dma_desc *ret = NULL;
  327. int i;
  328. spin_lock_bh(&pd_chan->lock);
  329. list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
  330. i++;
  331. if (async_tx_test_ack(&desc->txd)) {
  332. list_del(&desc->desc_node);
  333. ret = desc;
  334. break;
  335. }
  336. dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
  337. }
  338. spin_unlock_bh(&pd_chan->lock);
  339. dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
  340. if (!ret) {
  341. ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
  342. if (ret) {
  343. spin_lock_bh(&pd_chan->lock);
  344. pd_chan->descs_allocated++;
  345. spin_unlock_bh(&pd_chan->lock);
  346. } else {
  347. dev_err(chan2dev(&pd_chan->chan),
  348. "failed to alloc desc\n");
  349. }
  350. }
  351. return ret;
  352. }
  353. static void pdc_desc_put(struct pch_dma_chan *pd_chan,
  354. struct pch_dma_desc *desc)
  355. {
  356. if (desc) {
  357. spin_lock_bh(&pd_chan->lock);
  358. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  359. list_add(&desc->desc_node, &pd_chan->free_list);
  360. spin_unlock_bh(&pd_chan->lock);
  361. }
  362. }
  363. static int pd_alloc_chan_resources(struct dma_chan *chan)
  364. {
  365. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  366. struct pch_dma_desc *desc;
  367. LIST_HEAD(tmp_list);
  368. int i;
  369. if (!pdc_is_idle(pd_chan)) {
  370. dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
  371. return -EIO;
  372. }
  373. if (!list_empty(&pd_chan->free_list))
  374. return pd_chan->descs_allocated;
  375. for (i = 0; i < init_nr_desc_per_channel; i++) {
  376. desc = pdc_alloc_desc(chan, GFP_KERNEL);
  377. if (!desc) {
  378. dev_warn(chan2dev(chan),
  379. "Only allocated %d initial descriptors\n", i);
  380. break;
  381. }
  382. list_add_tail(&desc->desc_node, &tmp_list);
  383. }
  384. spin_lock_bh(&pd_chan->lock);
  385. list_splice(&tmp_list, &pd_chan->free_list);
  386. pd_chan->descs_allocated = i;
  387. pd_chan->completed_cookie = chan->cookie = 1;
  388. spin_unlock_bh(&pd_chan->lock);
  389. pdc_enable_irq(chan, 1);
  390. pdc_set_dir(chan);
  391. return pd_chan->descs_allocated;
  392. }
  393. static void pd_free_chan_resources(struct dma_chan *chan)
  394. {
  395. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  396. struct pch_dma *pd = to_pd(chan->device);
  397. struct pch_dma_desc *desc, *_d;
  398. LIST_HEAD(tmp_list);
  399. BUG_ON(!pdc_is_idle(pd_chan));
  400. BUG_ON(!list_empty(&pd_chan->active_list));
  401. BUG_ON(!list_empty(&pd_chan->queue));
  402. spin_lock_bh(&pd_chan->lock);
  403. list_splice_init(&pd_chan->free_list, &tmp_list);
  404. pd_chan->descs_allocated = 0;
  405. spin_unlock_bh(&pd_chan->lock);
  406. list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
  407. pci_pool_free(pd->pool, desc, desc->txd.phys);
  408. pdc_enable_irq(chan, 0);
  409. }
  410. static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  411. struct dma_tx_state *txstate)
  412. {
  413. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  414. dma_cookie_t last_used;
  415. dma_cookie_t last_completed;
  416. int ret;
  417. spin_lock_bh(&pd_chan->lock);
  418. last_completed = pd_chan->completed_cookie;
  419. last_used = chan->cookie;
  420. spin_unlock_bh(&pd_chan->lock);
  421. ret = dma_async_is_complete(cookie, last_completed, last_used);
  422. dma_set_tx_state(txstate, last_completed, last_used, 0);
  423. return ret;
  424. }
  425. static void pd_issue_pending(struct dma_chan *chan)
  426. {
  427. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  428. if (pdc_is_idle(pd_chan)) {
  429. spin_lock_bh(&pd_chan->lock);
  430. pdc_advance_work(pd_chan);
  431. spin_unlock_bh(&pd_chan->lock);
  432. }
  433. }
  434. static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
  435. struct scatterlist *sgl, unsigned int sg_len,
  436. enum dma_data_direction direction, unsigned long flags)
  437. {
  438. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  439. struct pch_dma_slave *pd_slave = chan->private;
  440. struct pch_dma_desc *first = NULL;
  441. struct pch_dma_desc *prev = NULL;
  442. struct pch_dma_desc *desc = NULL;
  443. struct scatterlist *sg;
  444. dma_addr_t reg;
  445. int i;
  446. if (unlikely(!sg_len)) {
  447. dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
  448. return NULL;
  449. }
  450. if (direction == DMA_FROM_DEVICE)
  451. reg = pd_slave->rx_reg;
  452. else if (direction == DMA_TO_DEVICE)
  453. reg = pd_slave->tx_reg;
  454. else
  455. return NULL;
  456. for_each_sg(sgl, sg, sg_len, i) {
  457. desc = pdc_desc_get(pd_chan);
  458. if (!desc)
  459. goto err_desc_get;
  460. desc->regs.dev_addr = reg;
  461. desc->regs.mem_addr = sg_phys(sg);
  462. desc->regs.size = sg_dma_len(sg);
  463. desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
  464. switch (pd_slave->width) {
  465. case PCH_DMA_WIDTH_1_BYTE:
  466. if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
  467. goto err_desc_get;
  468. desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
  469. break;
  470. case PCH_DMA_WIDTH_2_BYTES:
  471. if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
  472. goto err_desc_get;
  473. desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
  474. break;
  475. case PCH_DMA_WIDTH_4_BYTES:
  476. if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
  477. goto err_desc_get;
  478. desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
  479. break;
  480. default:
  481. goto err_desc_get;
  482. }
  483. if (!first) {
  484. first = desc;
  485. } else {
  486. prev->regs.next |= desc->txd.phys;
  487. list_add_tail(&desc->desc_node, &first->tx_list);
  488. }
  489. prev = desc;
  490. }
  491. if (flags & DMA_PREP_INTERRUPT)
  492. desc->regs.next = DMA_DESC_END_WITH_IRQ;
  493. else
  494. desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
  495. first->txd.cookie = -EBUSY;
  496. desc->txd.flags = flags;
  497. return &first->txd;
  498. err_desc_get:
  499. dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
  500. pdc_desc_put(pd_chan, first);
  501. return NULL;
  502. }
  503. static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  504. unsigned long arg)
  505. {
  506. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  507. struct pch_dma_desc *desc, *_d;
  508. LIST_HEAD(list);
  509. if (cmd != DMA_TERMINATE_ALL)
  510. return -ENXIO;
  511. spin_lock_bh(&pd_chan->lock);
  512. pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
  513. list_splice_init(&pd_chan->active_list, &list);
  514. list_splice_init(&pd_chan->queue, &list);
  515. list_for_each_entry_safe(desc, _d, &list, desc_node)
  516. pdc_chain_complete(pd_chan, desc);
  517. spin_unlock_bh(&pd_chan->lock);
  518. return 0;
  519. }
  520. static void pdc_tasklet(unsigned long data)
  521. {
  522. struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
  523. if (!pdc_is_idle(pd_chan)) {
  524. dev_err(chan2dev(&pd_chan->chan),
  525. "BUG: handle non-idle channel in tasklet\n");
  526. return;
  527. }
  528. spin_lock_bh(&pd_chan->lock);
  529. if (test_and_clear_bit(0, &pd_chan->err_status))
  530. pdc_handle_error(pd_chan);
  531. else
  532. pdc_advance_work(pd_chan);
  533. spin_unlock_bh(&pd_chan->lock);
  534. }
  535. static irqreturn_t pd_irq(int irq, void *devid)
  536. {
  537. struct pch_dma *pd = (struct pch_dma *)devid;
  538. struct pch_dma_chan *pd_chan;
  539. u32 sts0;
  540. int i;
  541. int ret = IRQ_NONE;
  542. sts0 = dma_readl(pd, STS0);
  543. dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
  544. for (i = 0; i < pd->dma.chancnt; i++) {
  545. pd_chan = &pd->channels[i];
  546. if (sts0 & DMA_STATUS_IRQ(i)) {
  547. if (sts0 & DMA_STATUS_ERR(i))
  548. set_bit(0, &pd_chan->err_status);
  549. tasklet_schedule(&pd_chan->tasklet);
  550. ret = IRQ_HANDLED;
  551. }
  552. }
  553. /* clear interrupt bits in status register */
  554. dma_writel(pd, STS0, sts0);
  555. return ret;
  556. }
  557. static void pch_dma_save_regs(struct pch_dma *pd)
  558. {
  559. struct pch_dma_chan *pd_chan;
  560. struct dma_chan *chan, *_c;
  561. int i = 0;
  562. pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
  563. pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
  564. pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
  565. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  566. pd_chan = to_pd_chan(chan);
  567. pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
  568. pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
  569. pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
  570. pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
  571. i++;
  572. }
  573. }
  574. static void pch_dma_restore_regs(struct pch_dma *pd)
  575. {
  576. struct pch_dma_chan *pd_chan;
  577. struct dma_chan *chan, *_c;
  578. int i = 0;
  579. dma_writel(pd, CTL0, pd->regs.dma_ctl0);
  580. dma_writel(pd, CTL1, pd->regs.dma_ctl1);
  581. dma_writel(pd, CTL2, pd->regs.dma_ctl2);
  582. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  583. pd_chan = to_pd_chan(chan);
  584. channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
  585. channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
  586. channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
  587. channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
  588. i++;
  589. }
  590. }
  591. static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
  592. {
  593. struct pch_dma *pd = pci_get_drvdata(pdev);
  594. if (pd)
  595. pch_dma_save_regs(pd);
  596. pci_save_state(pdev);
  597. pci_disable_device(pdev);
  598. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  599. return 0;
  600. }
  601. static int pch_dma_resume(struct pci_dev *pdev)
  602. {
  603. struct pch_dma *pd = pci_get_drvdata(pdev);
  604. int err;
  605. pci_set_power_state(pdev, PCI_D0);
  606. pci_restore_state(pdev);
  607. err = pci_enable_device(pdev);
  608. if (err) {
  609. dev_dbg(&pdev->dev, "failed to enable device\n");
  610. return err;
  611. }
  612. if (pd)
  613. pch_dma_restore_regs(pd);
  614. return 0;
  615. }
  616. static int __devinit pch_dma_probe(struct pci_dev *pdev,
  617. const struct pci_device_id *id)
  618. {
  619. struct pch_dma *pd;
  620. struct pch_dma_regs *regs;
  621. unsigned int nr_channels;
  622. int err;
  623. int i;
  624. nr_channels = id->driver_data;
  625. pd = kzalloc(sizeof(struct pch_dma)+
  626. sizeof(struct pch_dma_chan) * nr_channels, GFP_KERNEL);
  627. if (!pd)
  628. return -ENOMEM;
  629. pci_set_drvdata(pdev, pd);
  630. err = pci_enable_device(pdev);
  631. if (err) {
  632. dev_err(&pdev->dev, "Cannot enable PCI device\n");
  633. goto err_free_mem;
  634. }
  635. if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
  636. dev_err(&pdev->dev, "Cannot find proper base address\n");
  637. goto err_disable_pdev;
  638. }
  639. err = pci_request_regions(pdev, DRV_NAME);
  640. if (err) {
  641. dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
  642. goto err_disable_pdev;
  643. }
  644. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  645. if (err) {
  646. dev_err(&pdev->dev, "Cannot set proper DMA config\n");
  647. goto err_free_res;
  648. }
  649. regs = pd->membase = pci_iomap(pdev, 1, 0);
  650. if (!pd->membase) {
  651. dev_err(&pdev->dev, "Cannot map MMIO registers\n");
  652. err = -ENOMEM;
  653. goto err_free_res;
  654. }
  655. pci_set_master(pdev);
  656. err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
  657. if (err) {
  658. dev_err(&pdev->dev, "Failed to request IRQ\n");
  659. goto err_iounmap;
  660. }
  661. pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
  662. sizeof(struct pch_dma_desc), 4, 0);
  663. if (!pd->pool) {
  664. dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
  665. err = -ENOMEM;
  666. goto err_free_irq;
  667. }
  668. pd->dma.dev = &pdev->dev;
  669. pd->dma.chancnt = nr_channels;
  670. INIT_LIST_HEAD(&pd->dma.channels);
  671. for (i = 0; i < nr_channels; i++) {
  672. struct pch_dma_chan *pd_chan = &pd->channels[i];
  673. pd_chan->chan.device = &pd->dma;
  674. pd_chan->chan.cookie = 1;
  675. pd_chan->chan.chan_id = i;
  676. pd_chan->membase = &regs->desc[i];
  677. pd_chan->dir = (i % 2) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
  678. spin_lock_init(&pd_chan->lock);
  679. INIT_LIST_HEAD(&pd_chan->active_list);
  680. INIT_LIST_HEAD(&pd_chan->queue);
  681. INIT_LIST_HEAD(&pd_chan->free_list);
  682. tasklet_init(&pd_chan->tasklet, pdc_tasklet,
  683. (unsigned long)pd_chan);
  684. list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
  685. }
  686. dma_cap_zero(pd->dma.cap_mask);
  687. dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
  688. dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
  689. pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
  690. pd->dma.device_free_chan_resources = pd_free_chan_resources;
  691. pd->dma.device_tx_status = pd_tx_status;
  692. pd->dma.device_issue_pending = pd_issue_pending;
  693. pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
  694. pd->dma.device_control = pd_device_control;
  695. err = dma_async_device_register(&pd->dma);
  696. if (err) {
  697. dev_err(&pdev->dev, "Failed to register DMA device\n");
  698. goto err_free_pool;
  699. }
  700. return 0;
  701. err_free_pool:
  702. pci_pool_destroy(pd->pool);
  703. err_free_irq:
  704. free_irq(pdev->irq, pd);
  705. err_iounmap:
  706. pci_iounmap(pdev, pd->membase);
  707. err_free_res:
  708. pci_release_regions(pdev);
  709. err_disable_pdev:
  710. pci_disable_device(pdev);
  711. err_free_mem:
  712. return err;
  713. }
  714. static void __devexit pch_dma_remove(struct pci_dev *pdev)
  715. {
  716. struct pch_dma *pd = pci_get_drvdata(pdev);
  717. struct pch_dma_chan *pd_chan;
  718. struct dma_chan *chan, *_c;
  719. if (pd) {
  720. dma_async_device_unregister(&pd->dma);
  721. list_for_each_entry_safe(chan, _c, &pd->dma.channels,
  722. device_node) {
  723. pd_chan = to_pd_chan(chan);
  724. tasklet_disable(&pd_chan->tasklet);
  725. tasklet_kill(&pd_chan->tasklet);
  726. }
  727. pci_pool_destroy(pd->pool);
  728. free_irq(pdev->irq, pd);
  729. pci_iounmap(pdev, pd->membase);
  730. pci_release_regions(pdev);
  731. pci_disable_device(pdev);
  732. kfree(pd);
  733. }
  734. }
  735. /* PCI Device ID of DMA device */
  736. #define PCI_DEVICE_ID_PCH_DMA_8CH 0x8810
  737. #define PCI_DEVICE_ID_PCH_DMA_4CH 0x8815
  738. static const struct pci_device_id pch_dma_id_table[] = {
  739. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_DMA_8CH), 8 },
  740. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_DMA_4CH), 4 },
  741. };
  742. static struct pci_driver pch_dma_driver = {
  743. .name = DRV_NAME,
  744. .id_table = pch_dma_id_table,
  745. .probe = pch_dma_probe,
  746. .remove = __devexit_p(pch_dma_remove),
  747. #ifdef CONFIG_PM
  748. .suspend = pch_dma_suspend,
  749. .resume = pch_dma_resume,
  750. #endif
  751. };
  752. static int __init pch_dma_init(void)
  753. {
  754. return pci_register_driver(&pch_dma_driver);
  755. }
  756. static void __exit pch_dma_exit(void)
  757. {
  758. pci_unregister_driver(&pch_dma_driver);
  759. }
  760. module_init(pch_dma_init);
  761. module_exit(pch_dma_exit);
  762. MODULE_DESCRIPTION("Topcliff PCH DMA controller driver");
  763. MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
  764. MODULE_LICENSE("GPL v2");