cfq-iosched.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. struct rb_node *active;
  79. };
  80. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  81. .count = 0, .min_vdisktime = 0, }
  82. /*
  83. * Per process-grouping structure
  84. */
  85. struct cfq_queue {
  86. /* reference count */
  87. atomic_t ref;
  88. /* various state flags, see below */
  89. unsigned int flags;
  90. /* parent cfq_data */
  91. struct cfq_data *cfqd;
  92. /* service_tree member */
  93. struct rb_node rb_node;
  94. /* service_tree key */
  95. unsigned long rb_key;
  96. /* prio tree member */
  97. struct rb_node p_node;
  98. /* prio tree root we belong to, if any */
  99. struct rb_root *p_root;
  100. /* sorted list of pending requests */
  101. struct rb_root sort_list;
  102. /* if fifo isn't expired, next request to serve */
  103. struct request *next_rq;
  104. /* requests queued in sort_list */
  105. int queued[2];
  106. /* currently allocated requests */
  107. int allocated[2];
  108. /* fifo list of requests in sort_list */
  109. struct list_head fifo;
  110. /* time when queue got scheduled in to dispatch first request. */
  111. unsigned long dispatch_start;
  112. unsigned int allocated_slice;
  113. unsigned int slice_dispatch;
  114. /* time when first request from queue completed and slice started. */
  115. unsigned long slice_start;
  116. unsigned long slice_end;
  117. long slice_resid;
  118. /* pending metadata requests */
  119. int meta_pending;
  120. /* number of requests that are on the dispatch list or inside driver */
  121. int dispatched;
  122. /* io prio of this group */
  123. unsigned short ioprio, org_ioprio;
  124. unsigned short ioprio_class, org_ioprio_class;
  125. pid_t pid;
  126. u32 seek_history;
  127. sector_t last_request_pos;
  128. struct cfq_rb_root *service_tree;
  129. struct cfq_queue *new_cfqq;
  130. struct cfq_group *cfqg;
  131. struct cfq_group *orig_cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. };
  144. /*
  145. * Second index in the service_trees.
  146. */
  147. enum wl_type_t {
  148. ASYNC_WORKLOAD = 0,
  149. SYNC_NOIDLE_WORKLOAD = 1,
  150. SYNC_WORKLOAD = 2
  151. };
  152. /* This is per cgroup per device grouping structure */
  153. struct cfq_group {
  154. /* group service_tree member */
  155. struct rb_node rb_node;
  156. /* group service_tree key */
  157. u64 vdisktime;
  158. unsigned int weight;
  159. bool on_st;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /* Per group busy queus average. Useful for workload slice calc. */
  163. unsigned int busy_queues_avg[2];
  164. /*
  165. * rr lists of queues with requests, onle rr for each priority class.
  166. * Counts are embedded in the cfq_rb_root
  167. */
  168. struct cfq_rb_root service_trees[2][3];
  169. struct cfq_rb_root service_tree_idle;
  170. unsigned long saved_workload_slice;
  171. enum wl_type_t saved_workload;
  172. enum wl_prio_t saved_serving_prio;
  173. struct blkio_group blkg;
  174. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  175. struct hlist_node cfqd_node;
  176. atomic_t ref;
  177. #endif
  178. /* number of requests that are on the dispatch list or inside driver */
  179. int dispatched;
  180. };
  181. /*
  182. * Per block device queue structure
  183. */
  184. struct cfq_data {
  185. struct request_queue *queue;
  186. /* Root service tree for cfq_groups */
  187. struct cfq_rb_root grp_service_tree;
  188. struct cfq_group root_group;
  189. /*
  190. * The priority currently being served
  191. */
  192. enum wl_prio_t serving_prio;
  193. enum wl_type_t serving_type;
  194. unsigned long workload_expires;
  195. struct cfq_group *serving_group;
  196. bool noidle_tree_requires_idle;
  197. /*
  198. * Each priority tree is sorted by next_request position. These
  199. * trees are used when determining if two or more queues are
  200. * interleaving requests (see cfq_close_cooperator).
  201. */
  202. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  203. unsigned int busy_queues;
  204. int rq_in_driver;
  205. int rq_in_flight[2];
  206. /*
  207. * queue-depth detection
  208. */
  209. int rq_queued;
  210. int hw_tag;
  211. /*
  212. * hw_tag can be
  213. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  214. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  215. * 0 => no NCQ
  216. */
  217. int hw_tag_est_depth;
  218. unsigned int hw_tag_samples;
  219. /*
  220. * idle window management
  221. */
  222. struct timer_list idle_slice_timer;
  223. struct work_struct unplug_work;
  224. struct cfq_queue *active_queue;
  225. struct cfq_io_context *active_cic;
  226. /*
  227. * async queue for each priority case
  228. */
  229. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  230. struct cfq_queue *async_idle_cfqq;
  231. sector_t last_position;
  232. /*
  233. * tunables, see top of file
  234. */
  235. unsigned int cfq_quantum;
  236. unsigned int cfq_fifo_expire[2];
  237. unsigned int cfq_back_penalty;
  238. unsigned int cfq_back_max;
  239. unsigned int cfq_slice[2];
  240. unsigned int cfq_slice_async_rq;
  241. unsigned int cfq_slice_idle;
  242. unsigned int cfq_group_idle;
  243. unsigned int cfq_latency;
  244. unsigned int cfq_group_isolation;
  245. unsigned int cic_index;
  246. struct list_head cic_list;
  247. /*
  248. * Fallback dummy cfqq for extreme OOM conditions
  249. */
  250. struct cfq_queue oom_cfqq;
  251. unsigned long last_delayed_sync;
  252. /* List of cfq groups being managed on this device*/
  253. struct hlist_head cfqg_list;
  254. struct rcu_head rcu;
  255. };
  256. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  257. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  258. enum wl_prio_t prio,
  259. enum wl_type_t type)
  260. {
  261. if (!cfqg)
  262. return NULL;
  263. if (prio == IDLE_WORKLOAD)
  264. return &cfqg->service_tree_idle;
  265. return &cfqg->service_trees[prio][type];
  266. }
  267. enum cfqq_state_flags {
  268. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  269. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  270. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  271. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  272. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  273. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  274. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  275. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  276. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  277. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  278. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  279. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  280. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  281. };
  282. #define CFQ_CFQQ_FNS(name) \
  283. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  284. { \
  285. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  286. } \
  287. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  288. { \
  289. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  290. } \
  291. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  292. { \
  293. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  294. }
  295. CFQ_CFQQ_FNS(on_rr);
  296. CFQ_CFQQ_FNS(wait_request);
  297. CFQ_CFQQ_FNS(must_dispatch);
  298. CFQ_CFQQ_FNS(must_alloc_slice);
  299. CFQ_CFQQ_FNS(fifo_expire);
  300. CFQ_CFQQ_FNS(idle_window);
  301. CFQ_CFQQ_FNS(prio_changed);
  302. CFQ_CFQQ_FNS(slice_new);
  303. CFQ_CFQQ_FNS(sync);
  304. CFQ_CFQQ_FNS(coop);
  305. CFQ_CFQQ_FNS(split_coop);
  306. CFQ_CFQQ_FNS(deep);
  307. CFQ_CFQQ_FNS(wait_busy);
  308. #undef CFQ_CFQQ_FNS
  309. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  310. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  311. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  312. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  313. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  314. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  315. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  316. blkg_path(&(cfqg)->blkg), ##args); \
  317. #else
  318. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  319. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  320. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  321. #endif
  322. #define cfq_log(cfqd, fmt, args...) \
  323. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  324. /* Traverses through cfq group service trees */
  325. #define for_each_cfqg_st(cfqg, i, j, st) \
  326. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  327. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  328. : &cfqg->service_tree_idle; \
  329. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  330. (i == IDLE_WORKLOAD && j == 0); \
  331. j++, st = i < IDLE_WORKLOAD ? \
  332. &cfqg->service_trees[i][j]: NULL) \
  333. static inline bool iops_mode(struct cfq_data *cfqd)
  334. {
  335. /*
  336. * If we are not idling on queues and it is a NCQ drive, parallel
  337. * execution of requests is on and measuring time is not possible
  338. * in most of the cases until and unless we drive shallower queue
  339. * depths and that becomes a performance bottleneck. In such cases
  340. * switch to start providing fairness in terms of number of IOs.
  341. */
  342. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  343. return true;
  344. else
  345. return false;
  346. }
  347. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  348. {
  349. if (cfq_class_idle(cfqq))
  350. return IDLE_WORKLOAD;
  351. if (cfq_class_rt(cfqq))
  352. return RT_WORKLOAD;
  353. return BE_WORKLOAD;
  354. }
  355. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  356. {
  357. if (!cfq_cfqq_sync(cfqq))
  358. return ASYNC_WORKLOAD;
  359. if (!cfq_cfqq_idle_window(cfqq))
  360. return SYNC_NOIDLE_WORKLOAD;
  361. return SYNC_WORKLOAD;
  362. }
  363. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  364. struct cfq_data *cfqd,
  365. struct cfq_group *cfqg)
  366. {
  367. if (wl == IDLE_WORKLOAD)
  368. return cfqg->service_tree_idle.count;
  369. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  370. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  371. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  372. }
  373. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  374. struct cfq_group *cfqg)
  375. {
  376. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  377. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  378. }
  379. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  380. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  381. struct io_context *, gfp_t);
  382. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  383. struct io_context *);
  384. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  385. bool is_sync)
  386. {
  387. return cic->cfqq[is_sync];
  388. }
  389. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  390. struct cfq_queue *cfqq, bool is_sync)
  391. {
  392. cic->cfqq[is_sync] = cfqq;
  393. }
  394. #define CIC_DEAD_KEY 1ul
  395. #define CIC_DEAD_INDEX_SHIFT 1
  396. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  397. {
  398. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  399. }
  400. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  401. {
  402. struct cfq_data *cfqd = cic->key;
  403. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  404. return NULL;
  405. return cfqd;
  406. }
  407. /*
  408. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  409. * set (in which case it could also be direct WRITE).
  410. */
  411. static inline bool cfq_bio_sync(struct bio *bio)
  412. {
  413. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  414. }
  415. /*
  416. * scheduler run of queue, if there are requests pending and no one in the
  417. * driver that will restart queueing
  418. */
  419. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  420. {
  421. if (cfqd->busy_queues) {
  422. cfq_log(cfqd, "schedule dispatch");
  423. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  424. }
  425. }
  426. static int cfq_queue_empty(struct request_queue *q)
  427. {
  428. struct cfq_data *cfqd = q->elevator->elevator_data;
  429. return !cfqd->rq_queued;
  430. }
  431. /*
  432. * Scale schedule slice based on io priority. Use the sync time slice only
  433. * if a queue is marked sync and has sync io queued. A sync queue with async
  434. * io only, should not get full sync slice length.
  435. */
  436. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  437. unsigned short prio)
  438. {
  439. const int base_slice = cfqd->cfq_slice[sync];
  440. WARN_ON(prio >= IOPRIO_BE_NR);
  441. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  442. }
  443. static inline int
  444. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  445. {
  446. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  447. }
  448. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  449. {
  450. u64 d = delta << CFQ_SERVICE_SHIFT;
  451. d = d * BLKIO_WEIGHT_DEFAULT;
  452. do_div(d, cfqg->weight);
  453. return d;
  454. }
  455. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  456. {
  457. s64 delta = (s64)(vdisktime - min_vdisktime);
  458. if (delta > 0)
  459. min_vdisktime = vdisktime;
  460. return min_vdisktime;
  461. }
  462. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  463. {
  464. s64 delta = (s64)(vdisktime - min_vdisktime);
  465. if (delta < 0)
  466. min_vdisktime = vdisktime;
  467. return min_vdisktime;
  468. }
  469. static void update_min_vdisktime(struct cfq_rb_root *st)
  470. {
  471. u64 vdisktime = st->min_vdisktime;
  472. struct cfq_group *cfqg;
  473. if (st->active) {
  474. cfqg = rb_entry_cfqg(st->active);
  475. vdisktime = cfqg->vdisktime;
  476. }
  477. if (st->left) {
  478. cfqg = rb_entry_cfqg(st->left);
  479. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  480. }
  481. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  482. }
  483. /*
  484. * get averaged number of queues of RT/BE priority.
  485. * average is updated, with a formula that gives more weight to higher numbers,
  486. * to quickly follows sudden increases and decrease slowly
  487. */
  488. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  489. struct cfq_group *cfqg, bool rt)
  490. {
  491. unsigned min_q, max_q;
  492. unsigned mult = cfq_hist_divisor - 1;
  493. unsigned round = cfq_hist_divisor / 2;
  494. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  495. min_q = min(cfqg->busy_queues_avg[rt], busy);
  496. max_q = max(cfqg->busy_queues_avg[rt], busy);
  497. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  498. cfq_hist_divisor;
  499. return cfqg->busy_queues_avg[rt];
  500. }
  501. static inline unsigned
  502. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  503. {
  504. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  505. return cfq_target_latency * cfqg->weight / st->total_weight;
  506. }
  507. static inline void
  508. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  509. {
  510. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  511. if (cfqd->cfq_latency) {
  512. /*
  513. * interested queues (we consider only the ones with the same
  514. * priority class in the cfq group)
  515. */
  516. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  517. cfq_class_rt(cfqq));
  518. unsigned sync_slice = cfqd->cfq_slice[1];
  519. unsigned expect_latency = sync_slice * iq;
  520. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  521. if (expect_latency > group_slice) {
  522. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  523. /* scale low_slice according to IO priority
  524. * and sync vs async */
  525. unsigned low_slice =
  526. min(slice, base_low_slice * slice / sync_slice);
  527. /* the adapted slice value is scaled to fit all iqs
  528. * into the target latency */
  529. slice = max(slice * group_slice / expect_latency,
  530. low_slice);
  531. }
  532. }
  533. cfqq->slice_start = jiffies;
  534. cfqq->slice_end = jiffies + slice;
  535. cfqq->allocated_slice = slice;
  536. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  537. }
  538. /*
  539. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  540. * isn't valid until the first request from the dispatch is activated
  541. * and the slice time set.
  542. */
  543. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  544. {
  545. if (cfq_cfqq_slice_new(cfqq))
  546. return 0;
  547. if (time_before(jiffies, cfqq->slice_end))
  548. return 0;
  549. return 1;
  550. }
  551. /*
  552. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  553. * We choose the request that is closest to the head right now. Distance
  554. * behind the head is penalized and only allowed to a certain extent.
  555. */
  556. static struct request *
  557. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  558. {
  559. sector_t s1, s2, d1 = 0, d2 = 0;
  560. unsigned long back_max;
  561. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  562. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  563. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  564. if (rq1 == NULL || rq1 == rq2)
  565. return rq2;
  566. if (rq2 == NULL)
  567. return rq1;
  568. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  569. return rq1;
  570. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  571. return rq2;
  572. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  573. return rq1;
  574. else if ((rq2->cmd_flags & REQ_META) &&
  575. !(rq1->cmd_flags & REQ_META))
  576. return rq2;
  577. s1 = blk_rq_pos(rq1);
  578. s2 = blk_rq_pos(rq2);
  579. /*
  580. * by definition, 1KiB is 2 sectors
  581. */
  582. back_max = cfqd->cfq_back_max * 2;
  583. /*
  584. * Strict one way elevator _except_ in the case where we allow
  585. * short backward seeks which are biased as twice the cost of a
  586. * similar forward seek.
  587. */
  588. if (s1 >= last)
  589. d1 = s1 - last;
  590. else if (s1 + back_max >= last)
  591. d1 = (last - s1) * cfqd->cfq_back_penalty;
  592. else
  593. wrap |= CFQ_RQ1_WRAP;
  594. if (s2 >= last)
  595. d2 = s2 - last;
  596. else if (s2 + back_max >= last)
  597. d2 = (last - s2) * cfqd->cfq_back_penalty;
  598. else
  599. wrap |= CFQ_RQ2_WRAP;
  600. /* Found required data */
  601. /*
  602. * By doing switch() on the bit mask "wrap" we avoid having to
  603. * check two variables for all permutations: --> faster!
  604. */
  605. switch (wrap) {
  606. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  607. if (d1 < d2)
  608. return rq1;
  609. else if (d2 < d1)
  610. return rq2;
  611. else {
  612. if (s1 >= s2)
  613. return rq1;
  614. else
  615. return rq2;
  616. }
  617. case CFQ_RQ2_WRAP:
  618. return rq1;
  619. case CFQ_RQ1_WRAP:
  620. return rq2;
  621. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  622. default:
  623. /*
  624. * Since both rqs are wrapped,
  625. * start with the one that's further behind head
  626. * (--> only *one* back seek required),
  627. * since back seek takes more time than forward.
  628. */
  629. if (s1 <= s2)
  630. return rq1;
  631. else
  632. return rq2;
  633. }
  634. }
  635. /*
  636. * The below is leftmost cache rbtree addon
  637. */
  638. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  639. {
  640. /* Service tree is empty */
  641. if (!root->count)
  642. return NULL;
  643. if (!root->left)
  644. root->left = rb_first(&root->rb);
  645. if (root->left)
  646. return rb_entry(root->left, struct cfq_queue, rb_node);
  647. return NULL;
  648. }
  649. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  650. {
  651. if (!root->left)
  652. root->left = rb_first(&root->rb);
  653. if (root->left)
  654. return rb_entry_cfqg(root->left);
  655. return NULL;
  656. }
  657. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  658. {
  659. rb_erase(n, root);
  660. RB_CLEAR_NODE(n);
  661. }
  662. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  663. {
  664. if (root->left == n)
  665. root->left = NULL;
  666. rb_erase_init(n, &root->rb);
  667. --root->count;
  668. }
  669. /*
  670. * would be nice to take fifo expire time into account as well
  671. */
  672. static struct request *
  673. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  674. struct request *last)
  675. {
  676. struct rb_node *rbnext = rb_next(&last->rb_node);
  677. struct rb_node *rbprev = rb_prev(&last->rb_node);
  678. struct request *next = NULL, *prev = NULL;
  679. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  680. if (rbprev)
  681. prev = rb_entry_rq(rbprev);
  682. if (rbnext)
  683. next = rb_entry_rq(rbnext);
  684. else {
  685. rbnext = rb_first(&cfqq->sort_list);
  686. if (rbnext && rbnext != &last->rb_node)
  687. next = rb_entry_rq(rbnext);
  688. }
  689. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  690. }
  691. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  692. struct cfq_queue *cfqq)
  693. {
  694. /*
  695. * just an approximation, should be ok.
  696. */
  697. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  698. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  699. }
  700. static inline s64
  701. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  702. {
  703. return cfqg->vdisktime - st->min_vdisktime;
  704. }
  705. static void
  706. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  707. {
  708. struct rb_node **node = &st->rb.rb_node;
  709. struct rb_node *parent = NULL;
  710. struct cfq_group *__cfqg;
  711. s64 key = cfqg_key(st, cfqg);
  712. int left = 1;
  713. while (*node != NULL) {
  714. parent = *node;
  715. __cfqg = rb_entry_cfqg(parent);
  716. if (key < cfqg_key(st, __cfqg))
  717. node = &parent->rb_left;
  718. else {
  719. node = &parent->rb_right;
  720. left = 0;
  721. }
  722. }
  723. if (left)
  724. st->left = &cfqg->rb_node;
  725. rb_link_node(&cfqg->rb_node, parent, node);
  726. rb_insert_color(&cfqg->rb_node, &st->rb);
  727. }
  728. static void
  729. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  730. {
  731. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  732. struct cfq_group *__cfqg;
  733. struct rb_node *n;
  734. cfqg->nr_cfqq++;
  735. if (cfqg->on_st)
  736. return;
  737. /*
  738. * Currently put the group at the end. Later implement something
  739. * so that groups get lesser vtime based on their weights, so that
  740. * if group does not loose all if it was not continously backlogged.
  741. */
  742. n = rb_last(&st->rb);
  743. if (n) {
  744. __cfqg = rb_entry_cfqg(n);
  745. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  746. } else
  747. cfqg->vdisktime = st->min_vdisktime;
  748. __cfq_group_service_tree_add(st, cfqg);
  749. cfqg->on_st = true;
  750. st->total_weight += cfqg->weight;
  751. }
  752. static void
  753. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  754. {
  755. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  756. if (st->active == &cfqg->rb_node)
  757. st->active = NULL;
  758. BUG_ON(cfqg->nr_cfqq < 1);
  759. cfqg->nr_cfqq--;
  760. /* If there are other cfq queues under this group, don't delete it */
  761. if (cfqg->nr_cfqq)
  762. return;
  763. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  764. cfqg->on_st = false;
  765. st->total_weight -= cfqg->weight;
  766. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  767. cfq_rb_erase(&cfqg->rb_node, st);
  768. cfqg->saved_workload_slice = 0;
  769. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  770. }
  771. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  772. {
  773. unsigned int slice_used;
  774. /*
  775. * Queue got expired before even a single request completed or
  776. * got expired immediately after first request completion.
  777. */
  778. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  779. /*
  780. * Also charge the seek time incurred to the group, otherwise
  781. * if there are mutiple queues in the group, each can dispatch
  782. * a single request on seeky media and cause lots of seek time
  783. * and group will never know it.
  784. */
  785. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  786. 1);
  787. } else {
  788. slice_used = jiffies - cfqq->slice_start;
  789. if (slice_used > cfqq->allocated_slice)
  790. slice_used = cfqq->allocated_slice;
  791. }
  792. return slice_used;
  793. }
  794. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  795. struct cfq_queue *cfqq)
  796. {
  797. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  798. unsigned int used_sl, charge;
  799. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  800. - cfqg->service_tree_idle.count;
  801. BUG_ON(nr_sync < 0);
  802. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  803. if (iops_mode(cfqd))
  804. charge = cfqq->slice_dispatch;
  805. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  806. charge = cfqq->allocated_slice;
  807. /* Can't update vdisktime while group is on service tree */
  808. cfq_rb_erase(&cfqg->rb_node, st);
  809. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  810. __cfq_group_service_tree_add(st, cfqg);
  811. /* This group is being expired. Save the context */
  812. if (time_after(cfqd->workload_expires, jiffies)) {
  813. cfqg->saved_workload_slice = cfqd->workload_expires
  814. - jiffies;
  815. cfqg->saved_workload = cfqd->serving_type;
  816. cfqg->saved_serving_prio = cfqd->serving_prio;
  817. } else
  818. cfqg->saved_workload_slice = 0;
  819. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  820. st->min_vdisktime);
  821. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  822. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  823. iops_mode(cfqd), cfqq->nr_sectors);
  824. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  825. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  826. }
  827. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  828. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  829. {
  830. if (blkg)
  831. return container_of(blkg, struct cfq_group, blkg);
  832. return NULL;
  833. }
  834. void
  835. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  836. {
  837. cfqg_of_blkg(blkg)->weight = weight;
  838. }
  839. static struct cfq_group *
  840. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  841. {
  842. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  843. struct cfq_group *cfqg = NULL;
  844. void *key = cfqd;
  845. int i, j;
  846. struct cfq_rb_root *st;
  847. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  848. unsigned int major, minor;
  849. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  850. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  851. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  852. cfqg->blkg.dev = MKDEV(major, minor);
  853. goto done;
  854. }
  855. if (cfqg || !create)
  856. goto done;
  857. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  858. if (!cfqg)
  859. goto done;
  860. for_each_cfqg_st(cfqg, i, j, st)
  861. *st = CFQ_RB_ROOT;
  862. RB_CLEAR_NODE(&cfqg->rb_node);
  863. /*
  864. * Take the initial reference that will be released on destroy
  865. * This can be thought of a joint reference by cgroup and
  866. * elevator which will be dropped by either elevator exit
  867. * or cgroup deletion path depending on who is exiting first.
  868. */
  869. atomic_set(&cfqg->ref, 1);
  870. /* Add group onto cgroup list */
  871. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  872. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  873. MKDEV(major, minor));
  874. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  875. /* Add group on cfqd list */
  876. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  877. done:
  878. return cfqg;
  879. }
  880. /*
  881. * Search for the cfq group current task belongs to. If create = 1, then also
  882. * create the cfq group if it does not exist. request_queue lock must be held.
  883. */
  884. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  885. {
  886. struct cgroup *cgroup;
  887. struct cfq_group *cfqg = NULL;
  888. rcu_read_lock();
  889. cgroup = task_cgroup(current, blkio_subsys_id);
  890. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  891. if (!cfqg && create)
  892. cfqg = &cfqd->root_group;
  893. rcu_read_unlock();
  894. return cfqg;
  895. }
  896. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  897. {
  898. atomic_inc(&cfqg->ref);
  899. return cfqg;
  900. }
  901. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  902. {
  903. /* Currently, all async queues are mapped to root group */
  904. if (!cfq_cfqq_sync(cfqq))
  905. cfqg = &cfqq->cfqd->root_group;
  906. cfqq->cfqg = cfqg;
  907. /* cfqq reference on cfqg */
  908. atomic_inc(&cfqq->cfqg->ref);
  909. }
  910. static void cfq_put_cfqg(struct cfq_group *cfqg)
  911. {
  912. struct cfq_rb_root *st;
  913. int i, j;
  914. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  915. if (!atomic_dec_and_test(&cfqg->ref))
  916. return;
  917. for_each_cfqg_st(cfqg, i, j, st)
  918. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  919. kfree(cfqg);
  920. }
  921. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  922. {
  923. /* Something wrong if we are trying to remove same group twice */
  924. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  925. hlist_del_init(&cfqg->cfqd_node);
  926. /*
  927. * Put the reference taken at the time of creation so that when all
  928. * queues are gone, group can be destroyed.
  929. */
  930. cfq_put_cfqg(cfqg);
  931. }
  932. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  933. {
  934. struct hlist_node *pos, *n;
  935. struct cfq_group *cfqg;
  936. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  937. /*
  938. * If cgroup removal path got to blk_group first and removed
  939. * it from cgroup list, then it will take care of destroying
  940. * cfqg also.
  941. */
  942. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  943. cfq_destroy_cfqg(cfqd, cfqg);
  944. }
  945. }
  946. /*
  947. * Blk cgroup controller notification saying that blkio_group object is being
  948. * delinked as associated cgroup object is going away. That also means that
  949. * no new IO will come in this group. So get rid of this group as soon as
  950. * any pending IO in the group is finished.
  951. *
  952. * This function is called under rcu_read_lock(). key is the rcu protected
  953. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  954. * read lock.
  955. *
  956. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  957. * it should not be NULL as even if elevator was exiting, cgroup deltion
  958. * path got to it first.
  959. */
  960. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  961. {
  962. unsigned long flags;
  963. struct cfq_data *cfqd = key;
  964. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  965. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  966. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  967. }
  968. #else /* GROUP_IOSCHED */
  969. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  970. {
  971. return &cfqd->root_group;
  972. }
  973. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  974. {
  975. return cfqg;
  976. }
  977. static inline void
  978. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  979. cfqq->cfqg = cfqg;
  980. }
  981. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  982. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  983. #endif /* GROUP_IOSCHED */
  984. /*
  985. * The cfqd->service_trees holds all pending cfq_queue's that have
  986. * requests waiting to be processed. It is sorted in the order that
  987. * we will service the queues.
  988. */
  989. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  990. bool add_front)
  991. {
  992. struct rb_node **p, *parent;
  993. struct cfq_queue *__cfqq;
  994. unsigned long rb_key;
  995. struct cfq_rb_root *service_tree;
  996. int left;
  997. int new_cfqq = 1;
  998. int group_changed = 0;
  999. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1000. if (!cfqd->cfq_group_isolation
  1001. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  1002. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  1003. /* Move this cfq to root group */
  1004. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  1005. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1006. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1007. cfqq->orig_cfqg = cfqq->cfqg;
  1008. cfqq->cfqg = &cfqd->root_group;
  1009. atomic_inc(&cfqd->root_group.ref);
  1010. group_changed = 1;
  1011. } else if (!cfqd->cfq_group_isolation
  1012. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1013. /* cfqq is sequential now needs to go to its original group */
  1014. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1015. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1016. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1017. cfq_put_cfqg(cfqq->cfqg);
  1018. cfqq->cfqg = cfqq->orig_cfqg;
  1019. cfqq->orig_cfqg = NULL;
  1020. group_changed = 1;
  1021. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1022. }
  1023. #endif
  1024. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1025. cfqq_type(cfqq));
  1026. if (cfq_class_idle(cfqq)) {
  1027. rb_key = CFQ_IDLE_DELAY;
  1028. parent = rb_last(&service_tree->rb);
  1029. if (parent && parent != &cfqq->rb_node) {
  1030. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1031. rb_key += __cfqq->rb_key;
  1032. } else
  1033. rb_key += jiffies;
  1034. } else if (!add_front) {
  1035. /*
  1036. * Get our rb key offset. Subtract any residual slice
  1037. * value carried from last service. A negative resid
  1038. * count indicates slice overrun, and this should position
  1039. * the next service time further away in the tree.
  1040. */
  1041. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1042. rb_key -= cfqq->slice_resid;
  1043. cfqq->slice_resid = 0;
  1044. } else {
  1045. rb_key = -HZ;
  1046. __cfqq = cfq_rb_first(service_tree);
  1047. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1048. }
  1049. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1050. new_cfqq = 0;
  1051. /*
  1052. * same position, nothing more to do
  1053. */
  1054. if (rb_key == cfqq->rb_key &&
  1055. cfqq->service_tree == service_tree)
  1056. return;
  1057. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1058. cfqq->service_tree = NULL;
  1059. }
  1060. left = 1;
  1061. parent = NULL;
  1062. cfqq->service_tree = service_tree;
  1063. p = &service_tree->rb.rb_node;
  1064. while (*p) {
  1065. struct rb_node **n;
  1066. parent = *p;
  1067. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1068. /*
  1069. * sort by key, that represents service time.
  1070. */
  1071. if (time_before(rb_key, __cfqq->rb_key))
  1072. n = &(*p)->rb_left;
  1073. else {
  1074. n = &(*p)->rb_right;
  1075. left = 0;
  1076. }
  1077. p = n;
  1078. }
  1079. if (left)
  1080. service_tree->left = &cfqq->rb_node;
  1081. cfqq->rb_key = rb_key;
  1082. rb_link_node(&cfqq->rb_node, parent, p);
  1083. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1084. service_tree->count++;
  1085. if ((add_front || !new_cfqq) && !group_changed)
  1086. return;
  1087. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1088. }
  1089. static struct cfq_queue *
  1090. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1091. sector_t sector, struct rb_node **ret_parent,
  1092. struct rb_node ***rb_link)
  1093. {
  1094. struct rb_node **p, *parent;
  1095. struct cfq_queue *cfqq = NULL;
  1096. parent = NULL;
  1097. p = &root->rb_node;
  1098. while (*p) {
  1099. struct rb_node **n;
  1100. parent = *p;
  1101. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1102. /*
  1103. * Sort strictly based on sector. Smallest to the left,
  1104. * largest to the right.
  1105. */
  1106. if (sector > blk_rq_pos(cfqq->next_rq))
  1107. n = &(*p)->rb_right;
  1108. else if (sector < blk_rq_pos(cfqq->next_rq))
  1109. n = &(*p)->rb_left;
  1110. else
  1111. break;
  1112. p = n;
  1113. cfqq = NULL;
  1114. }
  1115. *ret_parent = parent;
  1116. if (rb_link)
  1117. *rb_link = p;
  1118. return cfqq;
  1119. }
  1120. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1121. {
  1122. struct rb_node **p, *parent;
  1123. struct cfq_queue *__cfqq;
  1124. if (cfqq->p_root) {
  1125. rb_erase(&cfqq->p_node, cfqq->p_root);
  1126. cfqq->p_root = NULL;
  1127. }
  1128. if (cfq_class_idle(cfqq))
  1129. return;
  1130. if (!cfqq->next_rq)
  1131. return;
  1132. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1133. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1134. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1135. if (!__cfqq) {
  1136. rb_link_node(&cfqq->p_node, parent, p);
  1137. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1138. } else
  1139. cfqq->p_root = NULL;
  1140. }
  1141. /*
  1142. * Update cfqq's position in the service tree.
  1143. */
  1144. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1145. {
  1146. /*
  1147. * Resorting requires the cfqq to be on the RR list already.
  1148. */
  1149. if (cfq_cfqq_on_rr(cfqq)) {
  1150. cfq_service_tree_add(cfqd, cfqq, 0);
  1151. cfq_prio_tree_add(cfqd, cfqq);
  1152. }
  1153. }
  1154. /*
  1155. * add to busy list of queues for service, trying to be fair in ordering
  1156. * the pending list according to last request service
  1157. */
  1158. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1159. {
  1160. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1161. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1162. cfq_mark_cfqq_on_rr(cfqq);
  1163. cfqd->busy_queues++;
  1164. cfq_resort_rr_list(cfqd, cfqq);
  1165. }
  1166. /*
  1167. * Called when the cfqq no longer has requests pending, remove it from
  1168. * the service tree.
  1169. */
  1170. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1171. {
  1172. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1173. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1174. cfq_clear_cfqq_on_rr(cfqq);
  1175. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1176. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1177. cfqq->service_tree = NULL;
  1178. }
  1179. if (cfqq->p_root) {
  1180. rb_erase(&cfqq->p_node, cfqq->p_root);
  1181. cfqq->p_root = NULL;
  1182. }
  1183. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1184. BUG_ON(!cfqd->busy_queues);
  1185. cfqd->busy_queues--;
  1186. }
  1187. /*
  1188. * rb tree support functions
  1189. */
  1190. static void cfq_del_rq_rb(struct request *rq)
  1191. {
  1192. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1193. const int sync = rq_is_sync(rq);
  1194. BUG_ON(!cfqq->queued[sync]);
  1195. cfqq->queued[sync]--;
  1196. elv_rb_del(&cfqq->sort_list, rq);
  1197. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1198. /*
  1199. * Queue will be deleted from service tree when we actually
  1200. * expire it later. Right now just remove it from prio tree
  1201. * as it is empty.
  1202. */
  1203. if (cfqq->p_root) {
  1204. rb_erase(&cfqq->p_node, cfqq->p_root);
  1205. cfqq->p_root = NULL;
  1206. }
  1207. }
  1208. }
  1209. static void cfq_add_rq_rb(struct request *rq)
  1210. {
  1211. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1212. struct cfq_data *cfqd = cfqq->cfqd;
  1213. struct request *__alias, *prev;
  1214. cfqq->queued[rq_is_sync(rq)]++;
  1215. /*
  1216. * looks a little odd, but the first insert might return an alias.
  1217. * if that happens, put the alias on the dispatch list
  1218. */
  1219. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1220. cfq_dispatch_insert(cfqd->queue, __alias);
  1221. if (!cfq_cfqq_on_rr(cfqq))
  1222. cfq_add_cfqq_rr(cfqd, cfqq);
  1223. /*
  1224. * check if this request is a better next-serve candidate
  1225. */
  1226. prev = cfqq->next_rq;
  1227. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1228. /*
  1229. * adjust priority tree position, if ->next_rq changes
  1230. */
  1231. if (prev != cfqq->next_rq)
  1232. cfq_prio_tree_add(cfqd, cfqq);
  1233. BUG_ON(!cfqq->next_rq);
  1234. }
  1235. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1236. {
  1237. elv_rb_del(&cfqq->sort_list, rq);
  1238. cfqq->queued[rq_is_sync(rq)]--;
  1239. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1240. rq_data_dir(rq), rq_is_sync(rq));
  1241. cfq_add_rq_rb(rq);
  1242. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1243. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1244. rq_is_sync(rq));
  1245. }
  1246. static struct request *
  1247. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1248. {
  1249. struct task_struct *tsk = current;
  1250. struct cfq_io_context *cic;
  1251. struct cfq_queue *cfqq;
  1252. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1253. if (!cic)
  1254. return NULL;
  1255. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1256. if (cfqq) {
  1257. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1258. return elv_rb_find(&cfqq->sort_list, sector);
  1259. }
  1260. return NULL;
  1261. }
  1262. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1263. {
  1264. struct cfq_data *cfqd = q->elevator->elevator_data;
  1265. cfqd->rq_in_driver++;
  1266. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1267. cfqd->rq_in_driver);
  1268. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1269. }
  1270. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1271. {
  1272. struct cfq_data *cfqd = q->elevator->elevator_data;
  1273. WARN_ON(!cfqd->rq_in_driver);
  1274. cfqd->rq_in_driver--;
  1275. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1276. cfqd->rq_in_driver);
  1277. }
  1278. static void cfq_remove_request(struct request *rq)
  1279. {
  1280. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1281. if (cfqq->next_rq == rq)
  1282. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1283. list_del_init(&rq->queuelist);
  1284. cfq_del_rq_rb(rq);
  1285. cfqq->cfqd->rq_queued--;
  1286. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1287. rq_data_dir(rq), rq_is_sync(rq));
  1288. if (rq->cmd_flags & REQ_META) {
  1289. WARN_ON(!cfqq->meta_pending);
  1290. cfqq->meta_pending--;
  1291. }
  1292. }
  1293. static int cfq_merge(struct request_queue *q, struct request **req,
  1294. struct bio *bio)
  1295. {
  1296. struct cfq_data *cfqd = q->elevator->elevator_data;
  1297. struct request *__rq;
  1298. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1299. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1300. *req = __rq;
  1301. return ELEVATOR_FRONT_MERGE;
  1302. }
  1303. return ELEVATOR_NO_MERGE;
  1304. }
  1305. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1306. int type)
  1307. {
  1308. if (type == ELEVATOR_FRONT_MERGE) {
  1309. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1310. cfq_reposition_rq_rb(cfqq, req);
  1311. }
  1312. }
  1313. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1314. struct bio *bio)
  1315. {
  1316. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1317. bio_data_dir(bio), cfq_bio_sync(bio));
  1318. }
  1319. static void
  1320. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1321. struct request *next)
  1322. {
  1323. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1324. /*
  1325. * reposition in fifo if next is older than rq
  1326. */
  1327. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1328. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1329. list_move(&rq->queuelist, &next->queuelist);
  1330. rq_set_fifo_time(rq, rq_fifo_time(next));
  1331. }
  1332. if (cfqq->next_rq == next)
  1333. cfqq->next_rq = rq;
  1334. cfq_remove_request(next);
  1335. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1336. rq_data_dir(next), rq_is_sync(next));
  1337. }
  1338. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1339. struct bio *bio)
  1340. {
  1341. struct cfq_data *cfqd = q->elevator->elevator_data;
  1342. struct cfq_io_context *cic;
  1343. struct cfq_queue *cfqq;
  1344. /*
  1345. * Disallow merge of a sync bio into an async request.
  1346. */
  1347. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1348. return false;
  1349. /*
  1350. * Lookup the cfqq that this bio will be queued with. Allow
  1351. * merge only if rq is queued there.
  1352. */
  1353. cic = cfq_cic_lookup(cfqd, current->io_context);
  1354. if (!cic)
  1355. return false;
  1356. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1357. return cfqq == RQ_CFQQ(rq);
  1358. }
  1359. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1360. {
  1361. del_timer(&cfqd->idle_slice_timer);
  1362. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1363. }
  1364. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1365. struct cfq_queue *cfqq)
  1366. {
  1367. if (cfqq) {
  1368. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1369. cfqd->serving_prio, cfqd->serving_type);
  1370. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1371. cfqq->slice_start = 0;
  1372. cfqq->dispatch_start = jiffies;
  1373. cfqq->allocated_slice = 0;
  1374. cfqq->slice_end = 0;
  1375. cfqq->slice_dispatch = 0;
  1376. cfqq->nr_sectors = 0;
  1377. cfq_clear_cfqq_wait_request(cfqq);
  1378. cfq_clear_cfqq_must_dispatch(cfqq);
  1379. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1380. cfq_clear_cfqq_fifo_expire(cfqq);
  1381. cfq_mark_cfqq_slice_new(cfqq);
  1382. cfq_del_timer(cfqd, cfqq);
  1383. }
  1384. cfqd->active_queue = cfqq;
  1385. }
  1386. /*
  1387. * current cfqq expired its slice (or was too idle), select new one
  1388. */
  1389. static void
  1390. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1391. bool timed_out)
  1392. {
  1393. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1394. if (cfq_cfqq_wait_request(cfqq))
  1395. cfq_del_timer(cfqd, cfqq);
  1396. cfq_clear_cfqq_wait_request(cfqq);
  1397. cfq_clear_cfqq_wait_busy(cfqq);
  1398. /*
  1399. * If this cfqq is shared between multiple processes, check to
  1400. * make sure that those processes are still issuing I/Os within
  1401. * the mean seek distance. If not, it may be time to break the
  1402. * queues apart again.
  1403. */
  1404. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1405. cfq_mark_cfqq_split_coop(cfqq);
  1406. /*
  1407. * store what was left of this slice, if the queue idled/timed out
  1408. */
  1409. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1410. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1411. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1412. }
  1413. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1414. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1415. cfq_del_cfqq_rr(cfqd, cfqq);
  1416. cfq_resort_rr_list(cfqd, cfqq);
  1417. if (cfqq == cfqd->active_queue)
  1418. cfqd->active_queue = NULL;
  1419. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1420. cfqd->grp_service_tree.active = NULL;
  1421. if (cfqd->active_cic) {
  1422. put_io_context(cfqd->active_cic->ioc);
  1423. cfqd->active_cic = NULL;
  1424. }
  1425. }
  1426. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1427. {
  1428. struct cfq_queue *cfqq = cfqd->active_queue;
  1429. if (cfqq)
  1430. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1431. }
  1432. /*
  1433. * Get next queue for service. Unless we have a queue preemption,
  1434. * we'll simply select the first cfqq in the service tree.
  1435. */
  1436. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1437. {
  1438. struct cfq_rb_root *service_tree =
  1439. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1440. cfqd->serving_type);
  1441. if (!cfqd->rq_queued)
  1442. return NULL;
  1443. /* There is nothing to dispatch */
  1444. if (!service_tree)
  1445. return NULL;
  1446. if (RB_EMPTY_ROOT(&service_tree->rb))
  1447. return NULL;
  1448. return cfq_rb_first(service_tree);
  1449. }
  1450. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1451. {
  1452. struct cfq_group *cfqg;
  1453. struct cfq_queue *cfqq;
  1454. int i, j;
  1455. struct cfq_rb_root *st;
  1456. if (!cfqd->rq_queued)
  1457. return NULL;
  1458. cfqg = cfq_get_next_cfqg(cfqd);
  1459. if (!cfqg)
  1460. return NULL;
  1461. for_each_cfqg_st(cfqg, i, j, st)
  1462. if ((cfqq = cfq_rb_first(st)) != NULL)
  1463. return cfqq;
  1464. return NULL;
  1465. }
  1466. /*
  1467. * Get and set a new active queue for service.
  1468. */
  1469. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1470. struct cfq_queue *cfqq)
  1471. {
  1472. if (!cfqq)
  1473. cfqq = cfq_get_next_queue(cfqd);
  1474. __cfq_set_active_queue(cfqd, cfqq);
  1475. return cfqq;
  1476. }
  1477. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1478. struct request *rq)
  1479. {
  1480. if (blk_rq_pos(rq) >= cfqd->last_position)
  1481. return blk_rq_pos(rq) - cfqd->last_position;
  1482. else
  1483. return cfqd->last_position - blk_rq_pos(rq);
  1484. }
  1485. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1486. struct request *rq)
  1487. {
  1488. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1489. }
  1490. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1491. struct cfq_queue *cur_cfqq)
  1492. {
  1493. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1494. struct rb_node *parent, *node;
  1495. struct cfq_queue *__cfqq;
  1496. sector_t sector = cfqd->last_position;
  1497. if (RB_EMPTY_ROOT(root))
  1498. return NULL;
  1499. /*
  1500. * First, if we find a request starting at the end of the last
  1501. * request, choose it.
  1502. */
  1503. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1504. if (__cfqq)
  1505. return __cfqq;
  1506. /*
  1507. * If the exact sector wasn't found, the parent of the NULL leaf
  1508. * will contain the closest sector.
  1509. */
  1510. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1511. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1512. return __cfqq;
  1513. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1514. node = rb_next(&__cfqq->p_node);
  1515. else
  1516. node = rb_prev(&__cfqq->p_node);
  1517. if (!node)
  1518. return NULL;
  1519. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1520. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1521. return __cfqq;
  1522. return NULL;
  1523. }
  1524. /*
  1525. * cfqd - obvious
  1526. * cur_cfqq - passed in so that we don't decide that the current queue is
  1527. * closely cooperating with itself.
  1528. *
  1529. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1530. * one request, and that cfqd->last_position reflects a position on the disk
  1531. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1532. * assumption.
  1533. */
  1534. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1535. struct cfq_queue *cur_cfqq)
  1536. {
  1537. struct cfq_queue *cfqq;
  1538. if (cfq_class_idle(cur_cfqq))
  1539. return NULL;
  1540. if (!cfq_cfqq_sync(cur_cfqq))
  1541. return NULL;
  1542. if (CFQQ_SEEKY(cur_cfqq))
  1543. return NULL;
  1544. /*
  1545. * Don't search priority tree if it's the only queue in the group.
  1546. */
  1547. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1548. return NULL;
  1549. /*
  1550. * We should notice if some of the queues are cooperating, eg
  1551. * working closely on the same area of the disk. In that case,
  1552. * we can group them together and don't waste time idling.
  1553. */
  1554. cfqq = cfqq_close(cfqd, cur_cfqq);
  1555. if (!cfqq)
  1556. return NULL;
  1557. /* If new queue belongs to different cfq_group, don't choose it */
  1558. if (cur_cfqq->cfqg != cfqq->cfqg)
  1559. return NULL;
  1560. /*
  1561. * It only makes sense to merge sync queues.
  1562. */
  1563. if (!cfq_cfqq_sync(cfqq))
  1564. return NULL;
  1565. if (CFQQ_SEEKY(cfqq))
  1566. return NULL;
  1567. /*
  1568. * Do not merge queues of different priority classes
  1569. */
  1570. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1571. return NULL;
  1572. return cfqq;
  1573. }
  1574. /*
  1575. * Determine whether we should enforce idle window for this queue.
  1576. */
  1577. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1578. {
  1579. enum wl_prio_t prio = cfqq_prio(cfqq);
  1580. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1581. BUG_ON(!service_tree);
  1582. BUG_ON(!service_tree->count);
  1583. if (!cfqd->cfq_slice_idle)
  1584. return false;
  1585. /* We never do for idle class queues. */
  1586. if (prio == IDLE_WORKLOAD)
  1587. return false;
  1588. /* We do for queues that were marked with idle window flag. */
  1589. if (cfq_cfqq_idle_window(cfqq) &&
  1590. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1591. return true;
  1592. /*
  1593. * Otherwise, we do only if they are the last ones
  1594. * in their service tree.
  1595. */
  1596. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1597. return 1;
  1598. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1599. service_tree->count);
  1600. return 0;
  1601. }
  1602. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1603. {
  1604. struct cfq_queue *cfqq = cfqd->active_queue;
  1605. struct cfq_io_context *cic;
  1606. unsigned long sl, group_idle = 0;
  1607. /*
  1608. * SSD device without seek penalty, disable idling. But only do so
  1609. * for devices that support queuing, otherwise we still have a problem
  1610. * with sync vs async workloads.
  1611. */
  1612. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1613. return;
  1614. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1615. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1616. /*
  1617. * idle is disabled, either manually or by past process history
  1618. */
  1619. if (!cfq_should_idle(cfqd, cfqq)) {
  1620. /* no queue idling. Check for group idling */
  1621. if (cfqd->cfq_group_idle)
  1622. group_idle = cfqd->cfq_group_idle;
  1623. else
  1624. return;
  1625. }
  1626. /*
  1627. * still active requests from this queue, don't idle
  1628. */
  1629. if (cfqq->dispatched)
  1630. return;
  1631. /*
  1632. * task has exited, don't wait
  1633. */
  1634. cic = cfqd->active_cic;
  1635. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1636. return;
  1637. /*
  1638. * If our average think time is larger than the remaining time
  1639. * slice, then don't idle. This avoids overrunning the allotted
  1640. * time slice.
  1641. */
  1642. if (sample_valid(cic->ttime_samples) &&
  1643. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1644. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1645. cic->ttime_mean);
  1646. return;
  1647. }
  1648. /* There are other queues in the group, don't do group idle */
  1649. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1650. return;
  1651. cfq_mark_cfqq_wait_request(cfqq);
  1652. if (group_idle)
  1653. sl = cfqd->cfq_group_idle;
  1654. else
  1655. sl = cfqd->cfq_slice_idle;
  1656. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1657. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1658. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1659. group_idle ? 1 : 0);
  1660. }
  1661. /*
  1662. * Move request from internal lists to the request queue dispatch list.
  1663. */
  1664. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1665. {
  1666. struct cfq_data *cfqd = q->elevator->elevator_data;
  1667. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1668. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1669. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1670. cfq_remove_request(rq);
  1671. cfqq->dispatched++;
  1672. (RQ_CFQG(rq))->dispatched++;
  1673. elv_dispatch_sort(q, rq);
  1674. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1675. cfqq->nr_sectors += blk_rq_sectors(rq);
  1676. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1677. rq_data_dir(rq), rq_is_sync(rq));
  1678. }
  1679. /*
  1680. * return expired entry, or NULL to just start from scratch in rbtree
  1681. */
  1682. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1683. {
  1684. struct request *rq = NULL;
  1685. if (cfq_cfqq_fifo_expire(cfqq))
  1686. return NULL;
  1687. cfq_mark_cfqq_fifo_expire(cfqq);
  1688. if (list_empty(&cfqq->fifo))
  1689. return NULL;
  1690. rq = rq_entry_fifo(cfqq->fifo.next);
  1691. if (time_before(jiffies, rq_fifo_time(rq)))
  1692. rq = NULL;
  1693. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1694. return rq;
  1695. }
  1696. static inline int
  1697. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1698. {
  1699. const int base_rq = cfqd->cfq_slice_async_rq;
  1700. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1701. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1702. }
  1703. /*
  1704. * Must be called with the queue_lock held.
  1705. */
  1706. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1707. {
  1708. int process_refs, io_refs;
  1709. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1710. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1711. BUG_ON(process_refs < 0);
  1712. return process_refs;
  1713. }
  1714. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1715. {
  1716. int process_refs, new_process_refs;
  1717. struct cfq_queue *__cfqq;
  1718. /*
  1719. * If there are no process references on the new_cfqq, then it is
  1720. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1721. * chain may have dropped their last reference (not just their
  1722. * last process reference).
  1723. */
  1724. if (!cfqq_process_refs(new_cfqq))
  1725. return;
  1726. /* Avoid a circular list and skip interim queue merges */
  1727. while ((__cfqq = new_cfqq->new_cfqq)) {
  1728. if (__cfqq == cfqq)
  1729. return;
  1730. new_cfqq = __cfqq;
  1731. }
  1732. process_refs = cfqq_process_refs(cfqq);
  1733. new_process_refs = cfqq_process_refs(new_cfqq);
  1734. /*
  1735. * If the process for the cfqq has gone away, there is no
  1736. * sense in merging the queues.
  1737. */
  1738. if (process_refs == 0 || new_process_refs == 0)
  1739. return;
  1740. /*
  1741. * Merge in the direction of the lesser amount of work.
  1742. */
  1743. if (new_process_refs >= process_refs) {
  1744. cfqq->new_cfqq = new_cfqq;
  1745. atomic_add(process_refs, &new_cfqq->ref);
  1746. } else {
  1747. new_cfqq->new_cfqq = cfqq;
  1748. atomic_add(new_process_refs, &cfqq->ref);
  1749. }
  1750. }
  1751. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1752. struct cfq_group *cfqg, enum wl_prio_t prio)
  1753. {
  1754. struct cfq_queue *queue;
  1755. int i;
  1756. bool key_valid = false;
  1757. unsigned long lowest_key = 0;
  1758. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1759. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1760. /* select the one with lowest rb_key */
  1761. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1762. if (queue &&
  1763. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1764. lowest_key = queue->rb_key;
  1765. cur_best = i;
  1766. key_valid = true;
  1767. }
  1768. }
  1769. return cur_best;
  1770. }
  1771. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1772. {
  1773. unsigned slice;
  1774. unsigned count;
  1775. struct cfq_rb_root *st;
  1776. unsigned group_slice;
  1777. if (!cfqg) {
  1778. cfqd->serving_prio = IDLE_WORKLOAD;
  1779. cfqd->workload_expires = jiffies + 1;
  1780. return;
  1781. }
  1782. /* Choose next priority. RT > BE > IDLE */
  1783. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1784. cfqd->serving_prio = RT_WORKLOAD;
  1785. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1786. cfqd->serving_prio = BE_WORKLOAD;
  1787. else {
  1788. cfqd->serving_prio = IDLE_WORKLOAD;
  1789. cfqd->workload_expires = jiffies + 1;
  1790. return;
  1791. }
  1792. /*
  1793. * For RT and BE, we have to choose also the type
  1794. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1795. * expiration time
  1796. */
  1797. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1798. count = st->count;
  1799. /*
  1800. * check workload expiration, and that we still have other queues ready
  1801. */
  1802. if (count && !time_after(jiffies, cfqd->workload_expires))
  1803. return;
  1804. /* otherwise select new workload type */
  1805. cfqd->serving_type =
  1806. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1807. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1808. count = st->count;
  1809. /*
  1810. * the workload slice is computed as a fraction of target latency
  1811. * proportional to the number of queues in that workload, over
  1812. * all the queues in the same priority class
  1813. */
  1814. group_slice = cfq_group_slice(cfqd, cfqg);
  1815. slice = group_slice * count /
  1816. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1817. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1818. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1819. unsigned int tmp;
  1820. /*
  1821. * Async queues are currently system wide. Just taking
  1822. * proportion of queues with-in same group will lead to higher
  1823. * async ratio system wide as generally root group is going
  1824. * to have higher weight. A more accurate thing would be to
  1825. * calculate system wide asnc/sync ratio.
  1826. */
  1827. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1828. tmp = tmp/cfqd->busy_queues;
  1829. slice = min_t(unsigned, slice, tmp);
  1830. /* async workload slice is scaled down according to
  1831. * the sync/async slice ratio. */
  1832. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1833. } else
  1834. /* sync workload slice is at least 2 * cfq_slice_idle */
  1835. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1836. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1837. cfq_log(cfqd, "workload slice:%d", slice);
  1838. cfqd->workload_expires = jiffies + slice;
  1839. cfqd->noidle_tree_requires_idle = false;
  1840. }
  1841. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1842. {
  1843. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1844. struct cfq_group *cfqg;
  1845. if (RB_EMPTY_ROOT(&st->rb))
  1846. return NULL;
  1847. cfqg = cfq_rb_first_group(st);
  1848. st->active = &cfqg->rb_node;
  1849. update_min_vdisktime(st);
  1850. return cfqg;
  1851. }
  1852. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1853. {
  1854. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1855. cfqd->serving_group = cfqg;
  1856. /* Restore the workload type data */
  1857. if (cfqg->saved_workload_slice) {
  1858. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1859. cfqd->serving_type = cfqg->saved_workload;
  1860. cfqd->serving_prio = cfqg->saved_serving_prio;
  1861. } else
  1862. cfqd->workload_expires = jiffies - 1;
  1863. choose_service_tree(cfqd, cfqg);
  1864. }
  1865. /*
  1866. * Select a queue for service. If we have a current active queue,
  1867. * check whether to continue servicing it, or retrieve and set a new one.
  1868. */
  1869. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1870. {
  1871. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1872. cfqq = cfqd->active_queue;
  1873. if (!cfqq)
  1874. goto new_queue;
  1875. if (!cfqd->rq_queued)
  1876. return NULL;
  1877. /*
  1878. * We were waiting for group to get backlogged. Expire the queue
  1879. */
  1880. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1881. goto expire;
  1882. /*
  1883. * The active queue has run out of time, expire it and select new.
  1884. */
  1885. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1886. /*
  1887. * If slice had not expired at the completion of last request
  1888. * we might not have turned on wait_busy flag. Don't expire
  1889. * the queue yet. Allow the group to get backlogged.
  1890. *
  1891. * The very fact that we have used the slice, that means we
  1892. * have been idling all along on this queue and it should be
  1893. * ok to wait for this request to complete.
  1894. */
  1895. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1896. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1897. cfqq = NULL;
  1898. goto keep_queue;
  1899. } else
  1900. goto check_group_idle;
  1901. }
  1902. /*
  1903. * The active queue has requests and isn't expired, allow it to
  1904. * dispatch.
  1905. */
  1906. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1907. goto keep_queue;
  1908. /*
  1909. * If another queue has a request waiting within our mean seek
  1910. * distance, let it run. The expire code will check for close
  1911. * cooperators and put the close queue at the front of the service
  1912. * tree. If possible, merge the expiring queue with the new cfqq.
  1913. */
  1914. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1915. if (new_cfqq) {
  1916. if (!cfqq->new_cfqq)
  1917. cfq_setup_merge(cfqq, new_cfqq);
  1918. goto expire;
  1919. }
  1920. /*
  1921. * No requests pending. If the active queue still has requests in
  1922. * flight or is idling for a new request, allow either of these
  1923. * conditions to happen (or time out) before selecting a new queue.
  1924. */
  1925. if (timer_pending(&cfqd->idle_slice_timer)) {
  1926. cfqq = NULL;
  1927. goto keep_queue;
  1928. }
  1929. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1930. cfqq = NULL;
  1931. goto keep_queue;
  1932. }
  1933. /*
  1934. * If group idle is enabled and there are requests dispatched from
  1935. * this group, wait for requests to complete.
  1936. */
  1937. check_group_idle:
  1938. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1939. && cfqq->cfqg->dispatched) {
  1940. cfqq = NULL;
  1941. goto keep_queue;
  1942. }
  1943. expire:
  1944. cfq_slice_expired(cfqd, 0);
  1945. new_queue:
  1946. /*
  1947. * Current queue expired. Check if we have to switch to a new
  1948. * service tree
  1949. */
  1950. if (!new_cfqq)
  1951. cfq_choose_cfqg(cfqd);
  1952. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1953. keep_queue:
  1954. return cfqq;
  1955. }
  1956. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1957. {
  1958. int dispatched = 0;
  1959. while (cfqq->next_rq) {
  1960. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1961. dispatched++;
  1962. }
  1963. BUG_ON(!list_empty(&cfqq->fifo));
  1964. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1965. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1966. return dispatched;
  1967. }
  1968. /*
  1969. * Drain our current requests. Used for barriers and when switching
  1970. * io schedulers on-the-fly.
  1971. */
  1972. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1973. {
  1974. struct cfq_queue *cfqq;
  1975. int dispatched = 0;
  1976. /* Expire the timeslice of the current active queue first */
  1977. cfq_slice_expired(cfqd, 0);
  1978. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1979. __cfq_set_active_queue(cfqd, cfqq);
  1980. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1981. }
  1982. BUG_ON(cfqd->busy_queues);
  1983. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1984. return dispatched;
  1985. }
  1986. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1987. struct cfq_queue *cfqq)
  1988. {
  1989. /* the queue hasn't finished any request, can't estimate */
  1990. if (cfq_cfqq_slice_new(cfqq))
  1991. return 1;
  1992. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1993. cfqq->slice_end))
  1994. return 1;
  1995. return 0;
  1996. }
  1997. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1998. {
  1999. unsigned int max_dispatch;
  2000. /*
  2001. * Drain async requests before we start sync IO
  2002. */
  2003. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2004. return false;
  2005. /*
  2006. * If this is an async queue and we have sync IO in flight, let it wait
  2007. */
  2008. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2009. return false;
  2010. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2011. if (cfq_class_idle(cfqq))
  2012. max_dispatch = 1;
  2013. /*
  2014. * Does this cfqq already have too much IO in flight?
  2015. */
  2016. if (cfqq->dispatched >= max_dispatch) {
  2017. /*
  2018. * idle queue must always only have a single IO in flight
  2019. */
  2020. if (cfq_class_idle(cfqq))
  2021. return false;
  2022. /*
  2023. * We have other queues, don't allow more IO from this one
  2024. */
  2025. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  2026. return false;
  2027. /*
  2028. * Sole queue user, no limit
  2029. */
  2030. if (cfqd->busy_queues == 1)
  2031. max_dispatch = -1;
  2032. else
  2033. /*
  2034. * Normally we start throttling cfqq when cfq_quantum/2
  2035. * requests have been dispatched. But we can drive
  2036. * deeper queue depths at the beginning of slice
  2037. * subjected to upper limit of cfq_quantum.
  2038. * */
  2039. max_dispatch = cfqd->cfq_quantum;
  2040. }
  2041. /*
  2042. * Async queues must wait a bit before being allowed dispatch.
  2043. * We also ramp up the dispatch depth gradually for async IO,
  2044. * based on the last sync IO we serviced
  2045. */
  2046. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2047. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2048. unsigned int depth;
  2049. depth = last_sync / cfqd->cfq_slice[1];
  2050. if (!depth && !cfqq->dispatched)
  2051. depth = 1;
  2052. if (depth < max_dispatch)
  2053. max_dispatch = depth;
  2054. }
  2055. /*
  2056. * If we're below the current max, allow a dispatch
  2057. */
  2058. return cfqq->dispatched < max_dispatch;
  2059. }
  2060. /*
  2061. * Dispatch a request from cfqq, moving them to the request queue
  2062. * dispatch list.
  2063. */
  2064. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2065. {
  2066. struct request *rq;
  2067. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2068. if (!cfq_may_dispatch(cfqd, cfqq))
  2069. return false;
  2070. /*
  2071. * follow expired path, else get first next available
  2072. */
  2073. rq = cfq_check_fifo(cfqq);
  2074. if (!rq)
  2075. rq = cfqq->next_rq;
  2076. /*
  2077. * insert request into driver dispatch list
  2078. */
  2079. cfq_dispatch_insert(cfqd->queue, rq);
  2080. if (!cfqd->active_cic) {
  2081. struct cfq_io_context *cic = RQ_CIC(rq);
  2082. atomic_long_inc(&cic->ioc->refcount);
  2083. cfqd->active_cic = cic;
  2084. }
  2085. return true;
  2086. }
  2087. /*
  2088. * Find the cfqq that we need to service and move a request from that to the
  2089. * dispatch list
  2090. */
  2091. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2092. {
  2093. struct cfq_data *cfqd = q->elevator->elevator_data;
  2094. struct cfq_queue *cfqq;
  2095. if (!cfqd->busy_queues)
  2096. return 0;
  2097. if (unlikely(force))
  2098. return cfq_forced_dispatch(cfqd);
  2099. cfqq = cfq_select_queue(cfqd);
  2100. if (!cfqq)
  2101. return 0;
  2102. /*
  2103. * Dispatch a request from this cfqq, if it is allowed
  2104. */
  2105. if (!cfq_dispatch_request(cfqd, cfqq))
  2106. return 0;
  2107. cfqq->slice_dispatch++;
  2108. cfq_clear_cfqq_must_dispatch(cfqq);
  2109. /*
  2110. * expire an async queue immediately if it has used up its slice. idle
  2111. * queue always expire after 1 dispatch round.
  2112. */
  2113. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2114. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2115. cfq_class_idle(cfqq))) {
  2116. cfqq->slice_end = jiffies + 1;
  2117. cfq_slice_expired(cfqd, 0);
  2118. }
  2119. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2120. return 1;
  2121. }
  2122. /*
  2123. * task holds one reference to the queue, dropped when task exits. each rq
  2124. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2125. *
  2126. * Each cfq queue took a reference on the parent group. Drop it now.
  2127. * queue lock must be held here.
  2128. */
  2129. static void cfq_put_queue(struct cfq_queue *cfqq)
  2130. {
  2131. struct cfq_data *cfqd = cfqq->cfqd;
  2132. struct cfq_group *cfqg, *orig_cfqg;
  2133. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2134. if (!atomic_dec_and_test(&cfqq->ref))
  2135. return;
  2136. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2137. BUG_ON(rb_first(&cfqq->sort_list));
  2138. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2139. cfqg = cfqq->cfqg;
  2140. orig_cfqg = cfqq->orig_cfqg;
  2141. if (unlikely(cfqd->active_queue == cfqq)) {
  2142. __cfq_slice_expired(cfqd, cfqq, 0);
  2143. cfq_schedule_dispatch(cfqd);
  2144. }
  2145. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2146. kmem_cache_free(cfq_pool, cfqq);
  2147. cfq_put_cfqg(cfqg);
  2148. if (orig_cfqg)
  2149. cfq_put_cfqg(orig_cfqg);
  2150. }
  2151. /*
  2152. * Must always be called with the rcu_read_lock() held
  2153. */
  2154. static void
  2155. __call_for_each_cic(struct io_context *ioc,
  2156. void (*func)(struct io_context *, struct cfq_io_context *))
  2157. {
  2158. struct cfq_io_context *cic;
  2159. struct hlist_node *n;
  2160. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2161. func(ioc, cic);
  2162. }
  2163. /*
  2164. * Call func for each cic attached to this ioc.
  2165. */
  2166. static void
  2167. call_for_each_cic(struct io_context *ioc,
  2168. void (*func)(struct io_context *, struct cfq_io_context *))
  2169. {
  2170. rcu_read_lock();
  2171. __call_for_each_cic(ioc, func);
  2172. rcu_read_unlock();
  2173. }
  2174. static void cfq_cic_free_rcu(struct rcu_head *head)
  2175. {
  2176. struct cfq_io_context *cic;
  2177. cic = container_of(head, struct cfq_io_context, rcu_head);
  2178. kmem_cache_free(cfq_ioc_pool, cic);
  2179. elv_ioc_count_dec(cfq_ioc_count);
  2180. if (ioc_gone) {
  2181. /*
  2182. * CFQ scheduler is exiting, grab exit lock and check
  2183. * the pending io context count. If it hits zero,
  2184. * complete ioc_gone and set it back to NULL
  2185. */
  2186. spin_lock(&ioc_gone_lock);
  2187. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2188. complete(ioc_gone);
  2189. ioc_gone = NULL;
  2190. }
  2191. spin_unlock(&ioc_gone_lock);
  2192. }
  2193. }
  2194. static void cfq_cic_free(struct cfq_io_context *cic)
  2195. {
  2196. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2197. }
  2198. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2199. {
  2200. unsigned long flags;
  2201. unsigned long dead_key = (unsigned long) cic->key;
  2202. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2203. spin_lock_irqsave(&ioc->lock, flags);
  2204. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2205. hlist_del_rcu(&cic->cic_list);
  2206. spin_unlock_irqrestore(&ioc->lock, flags);
  2207. cfq_cic_free(cic);
  2208. }
  2209. /*
  2210. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2211. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2212. * and ->trim() which is called with the task lock held
  2213. */
  2214. static void cfq_free_io_context(struct io_context *ioc)
  2215. {
  2216. /*
  2217. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2218. * so no more cic's are allowed to be linked into this ioc. So it
  2219. * should be ok to iterate over the known list, we will see all cic's
  2220. * since no new ones are added.
  2221. */
  2222. __call_for_each_cic(ioc, cic_free_func);
  2223. }
  2224. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2225. {
  2226. struct cfq_queue *__cfqq, *next;
  2227. /*
  2228. * If this queue was scheduled to merge with another queue, be
  2229. * sure to drop the reference taken on that queue (and others in
  2230. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2231. */
  2232. __cfqq = cfqq->new_cfqq;
  2233. while (__cfqq) {
  2234. if (__cfqq == cfqq) {
  2235. WARN(1, "cfqq->new_cfqq loop detected\n");
  2236. break;
  2237. }
  2238. next = __cfqq->new_cfqq;
  2239. cfq_put_queue(__cfqq);
  2240. __cfqq = next;
  2241. }
  2242. }
  2243. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2244. {
  2245. if (unlikely(cfqq == cfqd->active_queue)) {
  2246. __cfq_slice_expired(cfqd, cfqq, 0);
  2247. cfq_schedule_dispatch(cfqd);
  2248. }
  2249. cfq_put_cooperator(cfqq);
  2250. cfq_put_queue(cfqq);
  2251. }
  2252. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2253. struct cfq_io_context *cic)
  2254. {
  2255. struct io_context *ioc = cic->ioc;
  2256. list_del_init(&cic->queue_list);
  2257. /*
  2258. * Make sure dead mark is seen for dead queues
  2259. */
  2260. smp_wmb();
  2261. cic->key = cfqd_dead_key(cfqd);
  2262. if (ioc->ioc_data == cic)
  2263. rcu_assign_pointer(ioc->ioc_data, NULL);
  2264. if (cic->cfqq[BLK_RW_ASYNC]) {
  2265. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2266. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2267. }
  2268. if (cic->cfqq[BLK_RW_SYNC]) {
  2269. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2270. cic->cfqq[BLK_RW_SYNC] = NULL;
  2271. }
  2272. }
  2273. static void cfq_exit_single_io_context(struct io_context *ioc,
  2274. struct cfq_io_context *cic)
  2275. {
  2276. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2277. if (cfqd) {
  2278. struct request_queue *q = cfqd->queue;
  2279. unsigned long flags;
  2280. spin_lock_irqsave(q->queue_lock, flags);
  2281. /*
  2282. * Ensure we get a fresh copy of the ->key to prevent
  2283. * race between exiting task and queue
  2284. */
  2285. smp_read_barrier_depends();
  2286. if (cic->key == cfqd)
  2287. __cfq_exit_single_io_context(cfqd, cic);
  2288. spin_unlock_irqrestore(q->queue_lock, flags);
  2289. }
  2290. }
  2291. /*
  2292. * The process that ioc belongs to has exited, we need to clean up
  2293. * and put the internal structures we have that belongs to that process.
  2294. */
  2295. static void cfq_exit_io_context(struct io_context *ioc)
  2296. {
  2297. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2298. }
  2299. static struct cfq_io_context *
  2300. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2301. {
  2302. struct cfq_io_context *cic;
  2303. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2304. cfqd->queue->node);
  2305. if (cic) {
  2306. cic->last_end_request = jiffies;
  2307. INIT_LIST_HEAD(&cic->queue_list);
  2308. INIT_HLIST_NODE(&cic->cic_list);
  2309. cic->dtor = cfq_free_io_context;
  2310. cic->exit = cfq_exit_io_context;
  2311. elv_ioc_count_inc(cfq_ioc_count);
  2312. }
  2313. return cic;
  2314. }
  2315. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2316. {
  2317. struct task_struct *tsk = current;
  2318. int ioprio_class;
  2319. if (!cfq_cfqq_prio_changed(cfqq))
  2320. return;
  2321. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2322. switch (ioprio_class) {
  2323. default:
  2324. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2325. case IOPRIO_CLASS_NONE:
  2326. /*
  2327. * no prio set, inherit CPU scheduling settings
  2328. */
  2329. cfqq->ioprio = task_nice_ioprio(tsk);
  2330. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2331. break;
  2332. case IOPRIO_CLASS_RT:
  2333. cfqq->ioprio = task_ioprio(ioc);
  2334. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2335. break;
  2336. case IOPRIO_CLASS_BE:
  2337. cfqq->ioprio = task_ioprio(ioc);
  2338. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2339. break;
  2340. case IOPRIO_CLASS_IDLE:
  2341. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2342. cfqq->ioprio = 7;
  2343. cfq_clear_cfqq_idle_window(cfqq);
  2344. break;
  2345. }
  2346. /*
  2347. * keep track of original prio settings in case we have to temporarily
  2348. * elevate the priority of this queue
  2349. */
  2350. cfqq->org_ioprio = cfqq->ioprio;
  2351. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2352. cfq_clear_cfqq_prio_changed(cfqq);
  2353. }
  2354. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2355. {
  2356. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2357. struct cfq_queue *cfqq;
  2358. unsigned long flags;
  2359. if (unlikely(!cfqd))
  2360. return;
  2361. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2362. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2363. if (cfqq) {
  2364. struct cfq_queue *new_cfqq;
  2365. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2366. GFP_ATOMIC);
  2367. if (new_cfqq) {
  2368. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2369. cfq_put_queue(cfqq);
  2370. }
  2371. }
  2372. cfqq = cic->cfqq[BLK_RW_SYNC];
  2373. if (cfqq)
  2374. cfq_mark_cfqq_prio_changed(cfqq);
  2375. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2376. }
  2377. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2378. {
  2379. call_for_each_cic(ioc, changed_ioprio);
  2380. ioc->ioprio_changed = 0;
  2381. }
  2382. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2383. pid_t pid, bool is_sync)
  2384. {
  2385. RB_CLEAR_NODE(&cfqq->rb_node);
  2386. RB_CLEAR_NODE(&cfqq->p_node);
  2387. INIT_LIST_HEAD(&cfqq->fifo);
  2388. atomic_set(&cfqq->ref, 0);
  2389. cfqq->cfqd = cfqd;
  2390. cfq_mark_cfqq_prio_changed(cfqq);
  2391. if (is_sync) {
  2392. if (!cfq_class_idle(cfqq))
  2393. cfq_mark_cfqq_idle_window(cfqq);
  2394. cfq_mark_cfqq_sync(cfqq);
  2395. }
  2396. cfqq->pid = pid;
  2397. }
  2398. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2399. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2400. {
  2401. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2402. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2403. unsigned long flags;
  2404. struct request_queue *q;
  2405. if (unlikely(!cfqd))
  2406. return;
  2407. q = cfqd->queue;
  2408. spin_lock_irqsave(q->queue_lock, flags);
  2409. if (sync_cfqq) {
  2410. /*
  2411. * Drop reference to sync queue. A new sync queue will be
  2412. * assigned in new group upon arrival of a fresh request.
  2413. */
  2414. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2415. cic_set_cfqq(cic, NULL, 1);
  2416. cfq_put_queue(sync_cfqq);
  2417. }
  2418. spin_unlock_irqrestore(q->queue_lock, flags);
  2419. }
  2420. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2421. {
  2422. call_for_each_cic(ioc, changed_cgroup);
  2423. ioc->cgroup_changed = 0;
  2424. }
  2425. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2426. static struct cfq_queue *
  2427. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2428. struct io_context *ioc, gfp_t gfp_mask)
  2429. {
  2430. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2431. struct cfq_io_context *cic;
  2432. struct cfq_group *cfqg;
  2433. retry:
  2434. cfqg = cfq_get_cfqg(cfqd, 1);
  2435. cic = cfq_cic_lookup(cfqd, ioc);
  2436. /* cic always exists here */
  2437. cfqq = cic_to_cfqq(cic, is_sync);
  2438. /*
  2439. * Always try a new alloc if we fell back to the OOM cfqq
  2440. * originally, since it should just be a temporary situation.
  2441. */
  2442. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2443. cfqq = NULL;
  2444. if (new_cfqq) {
  2445. cfqq = new_cfqq;
  2446. new_cfqq = NULL;
  2447. } else if (gfp_mask & __GFP_WAIT) {
  2448. spin_unlock_irq(cfqd->queue->queue_lock);
  2449. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2450. gfp_mask | __GFP_ZERO,
  2451. cfqd->queue->node);
  2452. spin_lock_irq(cfqd->queue->queue_lock);
  2453. if (new_cfqq)
  2454. goto retry;
  2455. } else {
  2456. cfqq = kmem_cache_alloc_node(cfq_pool,
  2457. gfp_mask | __GFP_ZERO,
  2458. cfqd->queue->node);
  2459. }
  2460. if (cfqq) {
  2461. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2462. cfq_init_prio_data(cfqq, ioc);
  2463. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2464. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2465. } else
  2466. cfqq = &cfqd->oom_cfqq;
  2467. }
  2468. if (new_cfqq)
  2469. kmem_cache_free(cfq_pool, new_cfqq);
  2470. return cfqq;
  2471. }
  2472. static struct cfq_queue **
  2473. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2474. {
  2475. switch (ioprio_class) {
  2476. case IOPRIO_CLASS_RT:
  2477. return &cfqd->async_cfqq[0][ioprio];
  2478. case IOPRIO_CLASS_BE:
  2479. return &cfqd->async_cfqq[1][ioprio];
  2480. case IOPRIO_CLASS_IDLE:
  2481. return &cfqd->async_idle_cfqq;
  2482. default:
  2483. BUG();
  2484. }
  2485. }
  2486. static struct cfq_queue *
  2487. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2488. gfp_t gfp_mask)
  2489. {
  2490. const int ioprio = task_ioprio(ioc);
  2491. const int ioprio_class = task_ioprio_class(ioc);
  2492. struct cfq_queue **async_cfqq = NULL;
  2493. struct cfq_queue *cfqq = NULL;
  2494. if (!is_sync) {
  2495. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2496. cfqq = *async_cfqq;
  2497. }
  2498. if (!cfqq)
  2499. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2500. /*
  2501. * pin the queue now that it's allocated, scheduler exit will prune it
  2502. */
  2503. if (!is_sync && !(*async_cfqq)) {
  2504. atomic_inc(&cfqq->ref);
  2505. *async_cfqq = cfqq;
  2506. }
  2507. atomic_inc(&cfqq->ref);
  2508. return cfqq;
  2509. }
  2510. /*
  2511. * We drop cfq io contexts lazily, so we may find a dead one.
  2512. */
  2513. static void
  2514. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2515. struct cfq_io_context *cic)
  2516. {
  2517. unsigned long flags;
  2518. WARN_ON(!list_empty(&cic->queue_list));
  2519. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2520. spin_lock_irqsave(&ioc->lock, flags);
  2521. BUG_ON(ioc->ioc_data == cic);
  2522. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2523. hlist_del_rcu(&cic->cic_list);
  2524. spin_unlock_irqrestore(&ioc->lock, flags);
  2525. cfq_cic_free(cic);
  2526. }
  2527. static struct cfq_io_context *
  2528. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2529. {
  2530. struct cfq_io_context *cic;
  2531. unsigned long flags;
  2532. if (unlikely(!ioc))
  2533. return NULL;
  2534. rcu_read_lock();
  2535. /*
  2536. * we maintain a last-hit cache, to avoid browsing over the tree
  2537. */
  2538. cic = rcu_dereference(ioc->ioc_data);
  2539. if (cic && cic->key == cfqd) {
  2540. rcu_read_unlock();
  2541. return cic;
  2542. }
  2543. do {
  2544. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2545. rcu_read_unlock();
  2546. if (!cic)
  2547. break;
  2548. if (unlikely(cic->key != cfqd)) {
  2549. cfq_drop_dead_cic(cfqd, ioc, cic);
  2550. rcu_read_lock();
  2551. continue;
  2552. }
  2553. spin_lock_irqsave(&ioc->lock, flags);
  2554. rcu_assign_pointer(ioc->ioc_data, cic);
  2555. spin_unlock_irqrestore(&ioc->lock, flags);
  2556. break;
  2557. } while (1);
  2558. return cic;
  2559. }
  2560. /*
  2561. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2562. * the process specific cfq io context when entered from the block layer.
  2563. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2564. */
  2565. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2566. struct cfq_io_context *cic, gfp_t gfp_mask)
  2567. {
  2568. unsigned long flags;
  2569. int ret;
  2570. ret = radix_tree_preload(gfp_mask);
  2571. if (!ret) {
  2572. cic->ioc = ioc;
  2573. cic->key = cfqd;
  2574. spin_lock_irqsave(&ioc->lock, flags);
  2575. ret = radix_tree_insert(&ioc->radix_root,
  2576. cfqd->cic_index, cic);
  2577. if (!ret)
  2578. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2579. spin_unlock_irqrestore(&ioc->lock, flags);
  2580. radix_tree_preload_end();
  2581. if (!ret) {
  2582. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2583. list_add(&cic->queue_list, &cfqd->cic_list);
  2584. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2585. }
  2586. }
  2587. if (ret)
  2588. printk(KERN_ERR "cfq: cic link failed!\n");
  2589. return ret;
  2590. }
  2591. /*
  2592. * Setup general io context and cfq io context. There can be several cfq
  2593. * io contexts per general io context, if this process is doing io to more
  2594. * than one device managed by cfq.
  2595. */
  2596. static struct cfq_io_context *
  2597. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2598. {
  2599. struct io_context *ioc = NULL;
  2600. struct cfq_io_context *cic;
  2601. might_sleep_if(gfp_mask & __GFP_WAIT);
  2602. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2603. if (!ioc)
  2604. return NULL;
  2605. cic = cfq_cic_lookup(cfqd, ioc);
  2606. if (cic)
  2607. goto out;
  2608. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2609. if (cic == NULL)
  2610. goto err;
  2611. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2612. goto err_free;
  2613. out:
  2614. smp_read_barrier_depends();
  2615. if (unlikely(ioc->ioprio_changed))
  2616. cfq_ioc_set_ioprio(ioc);
  2617. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2618. if (unlikely(ioc->cgroup_changed))
  2619. cfq_ioc_set_cgroup(ioc);
  2620. #endif
  2621. return cic;
  2622. err_free:
  2623. cfq_cic_free(cic);
  2624. err:
  2625. put_io_context(ioc);
  2626. return NULL;
  2627. }
  2628. static void
  2629. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2630. {
  2631. unsigned long elapsed = jiffies - cic->last_end_request;
  2632. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2633. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2634. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2635. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2636. }
  2637. static void
  2638. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2639. struct request *rq)
  2640. {
  2641. sector_t sdist = 0;
  2642. sector_t n_sec = blk_rq_sectors(rq);
  2643. if (cfqq->last_request_pos) {
  2644. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2645. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2646. else
  2647. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2648. }
  2649. cfqq->seek_history <<= 1;
  2650. if (blk_queue_nonrot(cfqd->queue))
  2651. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2652. else
  2653. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2654. }
  2655. /*
  2656. * Disable idle window if the process thinks too long or seeks so much that
  2657. * it doesn't matter
  2658. */
  2659. static void
  2660. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2661. struct cfq_io_context *cic)
  2662. {
  2663. int old_idle, enable_idle;
  2664. /*
  2665. * Don't idle for async or idle io prio class
  2666. */
  2667. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2668. return;
  2669. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2670. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2671. cfq_mark_cfqq_deep(cfqq);
  2672. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2673. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2674. enable_idle = 0;
  2675. else if (sample_valid(cic->ttime_samples)) {
  2676. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2677. enable_idle = 0;
  2678. else
  2679. enable_idle = 1;
  2680. }
  2681. if (old_idle != enable_idle) {
  2682. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2683. if (enable_idle)
  2684. cfq_mark_cfqq_idle_window(cfqq);
  2685. else
  2686. cfq_clear_cfqq_idle_window(cfqq);
  2687. }
  2688. }
  2689. /*
  2690. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2691. * no or if we aren't sure, a 1 will cause a preempt.
  2692. */
  2693. static bool
  2694. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2695. struct request *rq)
  2696. {
  2697. struct cfq_queue *cfqq;
  2698. cfqq = cfqd->active_queue;
  2699. if (!cfqq)
  2700. return false;
  2701. if (cfq_class_idle(new_cfqq))
  2702. return false;
  2703. if (cfq_class_idle(cfqq))
  2704. return true;
  2705. /*
  2706. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2707. */
  2708. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2709. return false;
  2710. /*
  2711. * if the new request is sync, but the currently running queue is
  2712. * not, let the sync request have priority.
  2713. */
  2714. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2715. return true;
  2716. if (new_cfqq->cfqg != cfqq->cfqg)
  2717. return false;
  2718. if (cfq_slice_used(cfqq))
  2719. return true;
  2720. /* Allow preemption only if we are idling on sync-noidle tree */
  2721. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2722. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2723. new_cfqq->service_tree->count == 2 &&
  2724. RB_EMPTY_ROOT(&cfqq->sort_list))
  2725. return true;
  2726. /*
  2727. * So both queues are sync. Let the new request get disk time if
  2728. * it's a metadata request and the current queue is doing regular IO.
  2729. */
  2730. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2731. return true;
  2732. /*
  2733. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2734. */
  2735. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2736. return true;
  2737. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2738. return false;
  2739. /*
  2740. * if this request is as-good as one we would expect from the
  2741. * current cfqq, let it preempt
  2742. */
  2743. if (cfq_rq_close(cfqd, cfqq, rq))
  2744. return true;
  2745. return false;
  2746. }
  2747. /*
  2748. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2749. * let it have half of its nominal slice.
  2750. */
  2751. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2752. {
  2753. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2754. cfq_slice_expired(cfqd, 1);
  2755. /*
  2756. * Put the new queue at the front of the of the current list,
  2757. * so we know that it will be selected next.
  2758. */
  2759. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2760. cfq_service_tree_add(cfqd, cfqq, 1);
  2761. cfqq->slice_end = 0;
  2762. cfq_mark_cfqq_slice_new(cfqq);
  2763. }
  2764. /*
  2765. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2766. * something we should do about it
  2767. */
  2768. static void
  2769. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2770. struct request *rq)
  2771. {
  2772. struct cfq_io_context *cic = RQ_CIC(rq);
  2773. cfqd->rq_queued++;
  2774. if (rq->cmd_flags & REQ_META)
  2775. cfqq->meta_pending++;
  2776. cfq_update_io_thinktime(cfqd, cic);
  2777. cfq_update_io_seektime(cfqd, cfqq, rq);
  2778. cfq_update_idle_window(cfqd, cfqq, cic);
  2779. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2780. if (cfqq == cfqd->active_queue) {
  2781. /*
  2782. * Remember that we saw a request from this process, but
  2783. * don't start queuing just yet. Otherwise we risk seeing lots
  2784. * of tiny requests, because we disrupt the normal plugging
  2785. * and merging. If the request is already larger than a single
  2786. * page, let it rip immediately. For that case we assume that
  2787. * merging is already done. Ditto for a busy system that
  2788. * has other work pending, don't risk delaying until the
  2789. * idle timer unplug to continue working.
  2790. */
  2791. if (cfq_cfqq_wait_request(cfqq)) {
  2792. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2793. cfqd->busy_queues > 1) {
  2794. cfq_del_timer(cfqd, cfqq);
  2795. cfq_clear_cfqq_wait_request(cfqq);
  2796. __blk_run_queue(cfqd->queue);
  2797. } else {
  2798. cfq_blkiocg_update_idle_time_stats(
  2799. &cfqq->cfqg->blkg);
  2800. cfq_mark_cfqq_must_dispatch(cfqq);
  2801. }
  2802. }
  2803. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2804. /*
  2805. * not the active queue - expire current slice if it is
  2806. * idle and has expired it's mean thinktime or this new queue
  2807. * has some old slice time left and is of higher priority or
  2808. * this new queue is RT and the current one is BE
  2809. */
  2810. cfq_preempt_queue(cfqd, cfqq);
  2811. __blk_run_queue(cfqd->queue);
  2812. }
  2813. }
  2814. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2815. {
  2816. struct cfq_data *cfqd = q->elevator->elevator_data;
  2817. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2818. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2819. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2820. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2821. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2822. cfq_add_rq_rb(rq);
  2823. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2824. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2825. rq_is_sync(rq));
  2826. cfq_rq_enqueued(cfqd, cfqq, rq);
  2827. }
  2828. /*
  2829. * Update hw_tag based on peak queue depth over 50 samples under
  2830. * sufficient load.
  2831. */
  2832. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2833. {
  2834. struct cfq_queue *cfqq = cfqd->active_queue;
  2835. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2836. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2837. if (cfqd->hw_tag == 1)
  2838. return;
  2839. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2840. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2841. return;
  2842. /*
  2843. * If active queue hasn't enough requests and can idle, cfq might not
  2844. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2845. * case
  2846. */
  2847. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2848. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2849. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2850. return;
  2851. if (cfqd->hw_tag_samples++ < 50)
  2852. return;
  2853. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2854. cfqd->hw_tag = 1;
  2855. else
  2856. cfqd->hw_tag = 0;
  2857. }
  2858. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2859. {
  2860. struct cfq_io_context *cic = cfqd->active_cic;
  2861. /* If there are other queues in the group, don't wait */
  2862. if (cfqq->cfqg->nr_cfqq > 1)
  2863. return false;
  2864. if (cfq_slice_used(cfqq))
  2865. return true;
  2866. /* if slice left is less than think time, wait busy */
  2867. if (cic && sample_valid(cic->ttime_samples)
  2868. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2869. return true;
  2870. /*
  2871. * If think times is less than a jiffy than ttime_mean=0 and above
  2872. * will not be true. It might happen that slice has not expired yet
  2873. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2874. * case where think time is less than a jiffy, mark the queue wait
  2875. * busy if only 1 jiffy is left in the slice.
  2876. */
  2877. if (cfqq->slice_end - jiffies == 1)
  2878. return true;
  2879. return false;
  2880. }
  2881. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2882. {
  2883. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2884. struct cfq_data *cfqd = cfqq->cfqd;
  2885. const int sync = rq_is_sync(rq);
  2886. unsigned long now;
  2887. now = jiffies;
  2888. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2889. !!(rq->cmd_flags & REQ_NOIDLE));
  2890. cfq_update_hw_tag(cfqd);
  2891. WARN_ON(!cfqd->rq_in_driver);
  2892. WARN_ON(!cfqq->dispatched);
  2893. cfqd->rq_in_driver--;
  2894. cfqq->dispatched--;
  2895. (RQ_CFQG(rq))->dispatched--;
  2896. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2897. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2898. rq_data_dir(rq), rq_is_sync(rq));
  2899. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2900. if (sync) {
  2901. RQ_CIC(rq)->last_end_request = now;
  2902. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2903. cfqd->last_delayed_sync = now;
  2904. }
  2905. /*
  2906. * If this is the active queue, check if it needs to be expired,
  2907. * or if we want to idle in case it has no pending requests.
  2908. */
  2909. if (cfqd->active_queue == cfqq) {
  2910. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2911. if (cfq_cfqq_slice_new(cfqq)) {
  2912. cfq_set_prio_slice(cfqd, cfqq);
  2913. cfq_clear_cfqq_slice_new(cfqq);
  2914. }
  2915. /*
  2916. * Should we wait for next request to come in before we expire
  2917. * the queue.
  2918. */
  2919. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2920. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2921. if (!cfqd->cfq_slice_idle)
  2922. extend_sl = cfqd->cfq_group_idle;
  2923. cfqq->slice_end = jiffies + extend_sl;
  2924. cfq_mark_cfqq_wait_busy(cfqq);
  2925. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2926. }
  2927. /*
  2928. * Idling is not enabled on:
  2929. * - expired queues
  2930. * - idle-priority queues
  2931. * - async queues
  2932. * - queues with still some requests queued
  2933. * - when there is a close cooperator
  2934. */
  2935. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2936. cfq_slice_expired(cfqd, 1);
  2937. else if (sync && cfqq_empty &&
  2938. !cfq_close_cooperator(cfqd, cfqq)) {
  2939. cfqd->noidle_tree_requires_idle |=
  2940. !(rq->cmd_flags & REQ_NOIDLE);
  2941. /*
  2942. * Idling is enabled for SYNC_WORKLOAD.
  2943. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2944. * only if we processed at least one !REQ_NOIDLE request
  2945. */
  2946. if (cfqd->serving_type == SYNC_WORKLOAD
  2947. || cfqd->noidle_tree_requires_idle
  2948. || cfqq->cfqg->nr_cfqq == 1)
  2949. cfq_arm_slice_timer(cfqd);
  2950. }
  2951. }
  2952. if (!cfqd->rq_in_driver)
  2953. cfq_schedule_dispatch(cfqd);
  2954. }
  2955. /*
  2956. * we temporarily boost lower priority queues if they are holding fs exclusive
  2957. * resources. they are boosted to normal prio (CLASS_BE/4)
  2958. */
  2959. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2960. {
  2961. if (has_fs_excl()) {
  2962. /*
  2963. * boost idle prio on transactions that would lock out other
  2964. * users of the filesystem
  2965. */
  2966. if (cfq_class_idle(cfqq))
  2967. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2968. if (cfqq->ioprio > IOPRIO_NORM)
  2969. cfqq->ioprio = IOPRIO_NORM;
  2970. } else {
  2971. /*
  2972. * unboost the queue (if needed)
  2973. */
  2974. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2975. cfqq->ioprio = cfqq->org_ioprio;
  2976. }
  2977. }
  2978. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2979. {
  2980. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2981. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2982. return ELV_MQUEUE_MUST;
  2983. }
  2984. return ELV_MQUEUE_MAY;
  2985. }
  2986. static int cfq_may_queue(struct request_queue *q, int rw)
  2987. {
  2988. struct cfq_data *cfqd = q->elevator->elevator_data;
  2989. struct task_struct *tsk = current;
  2990. struct cfq_io_context *cic;
  2991. struct cfq_queue *cfqq;
  2992. /*
  2993. * don't force setup of a queue from here, as a call to may_queue
  2994. * does not necessarily imply that a request actually will be queued.
  2995. * so just lookup a possibly existing queue, or return 'may queue'
  2996. * if that fails
  2997. */
  2998. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2999. if (!cic)
  3000. return ELV_MQUEUE_MAY;
  3001. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3002. if (cfqq) {
  3003. cfq_init_prio_data(cfqq, cic->ioc);
  3004. cfq_prio_boost(cfqq);
  3005. return __cfq_may_queue(cfqq);
  3006. }
  3007. return ELV_MQUEUE_MAY;
  3008. }
  3009. /*
  3010. * queue lock held here
  3011. */
  3012. static void cfq_put_request(struct request *rq)
  3013. {
  3014. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3015. if (cfqq) {
  3016. const int rw = rq_data_dir(rq);
  3017. BUG_ON(!cfqq->allocated[rw]);
  3018. cfqq->allocated[rw]--;
  3019. put_io_context(RQ_CIC(rq)->ioc);
  3020. rq->elevator_private = NULL;
  3021. rq->elevator_private2 = NULL;
  3022. /* Put down rq reference on cfqg */
  3023. cfq_put_cfqg(RQ_CFQG(rq));
  3024. rq->elevator_private3 = NULL;
  3025. cfq_put_queue(cfqq);
  3026. }
  3027. }
  3028. static struct cfq_queue *
  3029. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3030. struct cfq_queue *cfqq)
  3031. {
  3032. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3033. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3034. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3035. cfq_put_queue(cfqq);
  3036. return cic_to_cfqq(cic, 1);
  3037. }
  3038. /*
  3039. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3040. * was the last process referring to said cfqq.
  3041. */
  3042. static struct cfq_queue *
  3043. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3044. {
  3045. if (cfqq_process_refs(cfqq) == 1) {
  3046. cfqq->pid = current->pid;
  3047. cfq_clear_cfqq_coop(cfqq);
  3048. cfq_clear_cfqq_split_coop(cfqq);
  3049. return cfqq;
  3050. }
  3051. cic_set_cfqq(cic, NULL, 1);
  3052. cfq_put_cooperator(cfqq);
  3053. cfq_put_queue(cfqq);
  3054. return NULL;
  3055. }
  3056. /*
  3057. * Allocate cfq data structures associated with this request.
  3058. */
  3059. static int
  3060. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3061. {
  3062. struct cfq_data *cfqd = q->elevator->elevator_data;
  3063. struct cfq_io_context *cic;
  3064. const int rw = rq_data_dir(rq);
  3065. const bool is_sync = rq_is_sync(rq);
  3066. struct cfq_queue *cfqq;
  3067. unsigned long flags;
  3068. might_sleep_if(gfp_mask & __GFP_WAIT);
  3069. cic = cfq_get_io_context(cfqd, gfp_mask);
  3070. spin_lock_irqsave(q->queue_lock, flags);
  3071. if (!cic)
  3072. goto queue_fail;
  3073. new_queue:
  3074. cfqq = cic_to_cfqq(cic, is_sync);
  3075. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3076. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3077. cic_set_cfqq(cic, cfqq, is_sync);
  3078. } else {
  3079. /*
  3080. * If the queue was seeky for too long, break it apart.
  3081. */
  3082. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3083. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3084. cfqq = split_cfqq(cic, cfqq);
  3085. if (!cfqq)
  3086. goto new_queue;
  3087. }
  3088. /*
  3089. * Check to see if this queue is scheduled to merge with
  3090. * another, closely cooperating queue. The merging of
  3091. * queues happens here as it must be done in process context.
  3092. * The reference on new_cfqq was taken in merge_cfqqs.
  3093. */
  3094. if (cfqq->new_cfqq)
  3095. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3096. }
  3097. cfqq->allocated[rw]++;
  3098. atomic_inc(&cfqq->ref);
  3099. spin_unlock_irqrestore(q->queue_lock, flags);
  3100. rq->elevator_private = cic;
  3101. rq->elevator_private2 = cfqq;
  3102. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3103. return 0;
  3104. queue_fail:
  3105. if (cic)
  3106. put_io_context(cic->ioc);
  3107. cfq_schedule_dispatch(cfqd);
  3108. spin_unlock_irqrestore(q->queue_lock, flags);
  3109. cfq_log(cfqd, "set_request fail");
  3110. return 1;
  3111. }
  3112. static void cfq_kick_queue(struct work_struct *work)
  3113. {
  3114. struct cfq_data *cfqd =
  3115. container_of(work, struct cfq_data, unplug_work);
  3116. struct request_queue *q = cfqd->queue;
  3117. spin_lock_irq(q->queue_lock);
  3118. __blk_run_queue(cfqd->queue);
  3119. spin_unlock_irq(q->queue_lock);
  3120. }
  3121. /*
  3122. * Timer running if the active_queue is currently idling inside its time slice
  3123. */
  3124. static void cfq_idle_slice_timer(unsigned long data)
  3125. {
  3126. struct cfq_data *cfqd = (struct cfq_data *) data;
  3127. struct cfq_queue *cfqq;
  3128. unsigned long flags;
  3129. int timed_out = 1;
  3130. cfq_log(cfqd, "idle timer fired");
  3131. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3132. cfqq = cfqd->active_queue;
  3133. if (cfqq) {
  3134. timed_out = 0;
  3135. /*
  3136. * We saw a request before the queue expired, let it through
  3137. */
  3138. if (cfq_cfqq_must_dispatch(cfqq))
  3139. goto out_kick;
  3140. /*
  3141. * expired
  3142. */
  3143. if (cfq_slice_used(cfqq))
  3144. goto expire;
  3145. /*
  3146. * only expire and reinvoke request handler, if there are
  3147. * other queues with pending requests
  3148. */
  3149. if (!cfqd->busy_queues)
  3150. goto out_cont;
  3151. /*
  3152. * not expired and it has a request pending, let it dispatch
  3153. */
  3154. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3155. goto out_kick;
  3156. /*
  3157. * Queue depth flag is reset only when the idle didn't succeed
  3158. */
  3159. cfq_clear_cfqq_deep(cfqq);
  3160. }
  3161. expire:
  3162. cfq_slice_expired(cfqd, timed_out);
  3163. out_kick:
  3164. cfq_schedule_dispatch(cfqd);
  3165. out_cont:
  3166. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3167. }
  3168. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3169. {
  3170. del_timer_sync(&cfqd->idle_slice_timer);
  3171. cancel_work_sync(&cfqd->unplug_work);
  3172. }
  3173. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3174. {
  3175. int i;
  3176. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3177. if (cfqd->async_cfqq[0][i])
  3178. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3179. if (cfqd->async_cfqq[1][i])
  3180. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3181. }
  3182. if (cfqd->async_idle_cfqq)
  3183. cfq_put_queue(cfqd->async_idle_cfqq);
  3184. }
  3185. static void cfq_cfqd_free(struct rcu_head *head)
  3186. {
  3187. kfree(container_of(head, struct cfq_data, rcu));
  3188. }
  3189. static void cfq_exit_queue(struct elevator_queue *e)
  3190. {
  3191. struct cfq_data *cfqd = e->elevator_data;
  3192. struct request_queue *q = cfqd->queue;
  3193. cfq_shutdown_timer_wq(cfqd);
  3194. spin_lock_irq(q->queue_lock);
  3195. if (cfqd->active_queue)
  3196. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3197. while (!list_empty(&cfqd->cic_list)) {
  3198. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3199. struct cfq_io_context,
  3200. queue_list);
  3201. __cfq_exit_single_io_context(cfqd, cic);
  3202. }
  3203. cfq_put_async_queues(cfqd);
  3204. cfq_release_cfq_groups(cfqd);
  3205. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3206. spin_unlock_irq(q->queue_lock);
  3207. cfq_shutdown_timer_wq(cfqd);
  3208. spin_lock(&cic_index_lock);
  3209. ida_remove(&cic_index_ida, cfqd->cic_index);
  3210. spin_unlock(&cic_index_lock);
  3211. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3212. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3213. }
  3214. static int cfq_alloc_cic_index(void)
  3215. {
  3216. int index, error;
  3217. do {
  3218. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3219. return -ENOMEM;
  3220. spin_lock(&cic_index_lock);
  3221. error = ida_get_new(&cic_index_ida, &index);
  3222. spin_unlock(&cic_index_lock);
  3223. if (error && error != -EAGAIN)
  3224. return error;
  3225. } while (error);
  3226. return index;
  3227. }
  3228. static void *cfq_init_queue(struct request_queue *q)
  3229. {
  3230. struct cfq_data *cfqd;
  3231. int i, j;
  3232. struct cfq_group *cfqg;
  3233. struct cfq_rb_root *st;
  3234. i = cfq_alloc_cic_index();
  3235. if (i < 0)
  3236. return NULL;
  3237. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3238. if (!cfqd)
  3239. return NULL;
  3240. cfqd->cic_index = i;
  3241. /* Init root service tree */
  3242. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3243. /* Init root group */
  3244. cfqg = &cfqd->root_group;
  3245. for_each_cfqg_st(cfqg, i, j, st)
  3246. *st = CFQ_RB_ROOT;
  3247. RB_CLEAR_NODE(&cfqg->rb_node);
  3248. /* Give preference to root group over other groups */
  3249. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3250. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3251. /*
  3252. * Take a reference to root group which we never drop. This is just
  3253. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3254. */
  3255. atomic_set(&cfqg->ref, 1);
  3256. rcu_read_lock();
  3257. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3258. (void *)cfqd, 0);
  3259. rcu_read_unlock();
  3260. #endif
  3261. /*
  3262. * Not strictly needed (since RB_ROOT just clears the node and we
  3263. * zeroed cfqd on alloc), but better be safe in case someone decides
  3264. * to add magic to the rb code
  3265. */
  3266. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3267. cfqd->prio_trees[i] = RB_ROOT;
  3268. /*
  3269. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3270. * Grab a permanent reference to it, so that the normal code flow
  3271. * will not attempt to free it.
  3272. */
  3273. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3274. atomic_inc(&cfqd->oom_cfqq.ref);
  3275. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3276. INIT_LIST_HEAD(&cfqd->cic_list);
  3277. cfqd->queue = q;
  3278. init_timer(&cfqd->idle_slice_timer);
  3279. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3280. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3281. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3282. cfqd->cfq_quantum = cfq_quantum;
  3283. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3284. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3285. cfqd->cfq_back_max = cfq_back_max;
  3286. cfqd->cfq_back_penalty = cfq_back_penalty;
  3287. cfqd->cfq_slice[0] = cfq_slice_async;
  3288. cfqd->cfq_slice[1] = cfq_slice_sync;
  3289. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3290. cfqd->cfq_slice_idle = cfq_slice_idle;
  3291. cfqd->cfq_group_idle = cfq_group_idle;
  3292. cfqd->cfq_latency = 1;
  3293. cfqd->cfq_group_isolation = 0;
  3294. cfqd->hw_tag = -1;
  3295. /*
  3296. * we optimistically start assuming sync ops weren't delayed in last
  3297. * second, in order to have larger depth for async operations.
  3298. */
  3299. cfqd->last_delayed_sync = jiffies - HZ;
  3300. return cfqd;
  3301. }
  3302. static void cfq_slab_kill(void)
  3303. {
  3304. /*
  3305. * Caller already ensured that pending RCU callbacks are completed,
  3306. * so we should have no busy allocations at this point.
  3307. */
  3308. if (cfq_pool)
  3309. kmem_cache_destroy(cfq_pool);
  3310. if (cfq_ioc_pool)
  3311. kmem_cache_destroy(cfq_ioc_pool);
  3312. }
  3313. static int __init cfq_slab_setup(void)
  3314. {
  3315. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3316. if (!cfq_pool)
  3317. goto fail;
  3318. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3319. if (!cfq_ioc_pool)
  3320. goto fail;
  3321. return 0;
  3322. fail:
  3323. cfq_slab_kill();
  3324. return -ENOMEM;
  3325. }
  3326. /*
  3327. * sysfs parts below -->
  3328. */
  3329. static ssize_t
  3330. cfq_var_show(unsigned int var, char *page)
  3331. {
  3332. return sprintf(page, "%d\n", var);
  3333. }
  3334. static ssize_t
  3335. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3336. {
  3337. char *p = (char *) page;
  3338. *var = simple_strtoul(p, &p, 10);
  3339. return count;
  3340. }
  3341. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3342. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3343. { \
  3344. struct cfq_data *cfqd = e->elevator_data; \
  3345. unsigned int __data = __VAR; \
  3346. if (__CONV) \
  3347. __data = jiffies_to_msecs(__data); \
  3348. return cfq_var_show(__data, (page)); \
  3349. }
  3350. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3351. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3352. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3353. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3354. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3355. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3356. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3357. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3358. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3359. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3360. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3361. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3362. #undef SHOW_FUNCTION
  3363. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3364. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3365. { \
  3366. struct cfq_data *cfqd = e->elevator_data; \
  3367. unsigned int __data; \
  3368. int ret = cfq_var_store(&__data, (page), count); \
  3369. if (__data < (MIN)) \
  3370. __data = (MIN); \
  3371. else if (__data > (MAX)) \
  3372. __data = (MAX); \
  3373. if (__CONV) \
  3374. *(__PTR) = msecs_to_jiffies(__data); \
  3375. else \
  3376. *(__PTR) = __data; \
  3377. return ret; \
  3378. }
  3379. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3380. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3381. UINT_MAX, 1);
  3382. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3383. UINT_MAX, 1);
  3384. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3385. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3386. UINT_MAX, 0);
  3387. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3388. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3389. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3390. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3391. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3392. UINT_MAX, 0);
  3393. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3394. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3395. #undef STORE_FUNCTION
  3396. #define CFQ_ATTR(name) \
  3397. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3398. static struct elv_fs_entry cfq_attrs[] = {
  3399. CFQ_ATTR(quantum),
  3400. CFQ_ATTR(fifo_expire_sync),
  3401. CFQ_ATTR(fifo_expire_async),
  3402. CFQ_ATTR(back_seek_max),
  3403. CFQ_ATTR(back_seek_penalty),
  3404. CFQ_ATTR(slice_sync),
  3405. CFQ_ATTR(slice_async),
  3406. CFQ_ATTR(slice_async_rq),
  3407. CFQ_ATTR(slice_idle),
  3408. CFQ_ATTR(group_idle),
  3409. CFQ_ATTR(low_latency),
  3410. CFQ_ATTR(group_isolation),
  3411. __ATTR_NULL
  3412. };
  3413. static struct elevator_type iosched_cfq = {
  3414. .ops = {
  3415. .elevator_merge_fn = cfq_merge,
  3416. .elevator_merged_fn = cfq_merged_request,
  3417. .elevator_merge_req_fn = cfq_merged_requests,
  3418. .elevator_allow_merge_fn = cfq_allow_merge,
  3419. .elevator_bio_merged_fn = cfq_bio_merged,
  3420. .elevator_dispatch_fn = cfq_dispatch_requests,
  3421. .elevator_add_req_fn = cfq_insert_request,
  3422. .elevator_activate_req_fn = cfq_activate_request,
  3423. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3424. .elevator_queue_empty_fn = cfq_queue_empty,
  3425. .elevator_completed_req_fn = cfq_completed_request,
  3426. .elevator_former_req_fn = elv_rb_former_request,
  3427. .elevator_latter_req_fn = elv_rb_latter_request,
  3428. .elevator_set_req_fn = cfq_set_request,
  3429. .elevator_put_req_fn = cfq_put_request,
  3430. .elevator_may_queue_fn = cfq_may_queue,
  3431. .elevator_init_fn = cfq_init_queue,
  3432. .elevator_exit_fn = cfq_exit_queue,
  3433. .trim = cfq_free_io_context,
  3434. },
  3435. .elevator_attrs = cfq_attrs,
  3436. .elevator_name = "cfq",
  3437. .elevator_owner = THIS_MODULE,
  3438. };
  3439. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3440. static struct blkio_policy_type blkio_policy_cfq = {
  3441. .ops = {
  3442. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3443. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3444. },
  3445. };
  3446. #else
  3447. static struct blkio_policy_type blkio_policy_cfq;
  3448. #endif
  3449. static int __init cfq_init(void)
  3450. {
  3451. /*
  3452. * could be 0 on HZ < 1000 setups
  3453. */
  3454. if (!cfq_slice_async)
  3455. cfq_slice_async = 1;
  3456. if (!cfq_slice_idle)
  3457. cfq_slice_idle = 1;
  3458. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3459. if (!cfq_group_idle)
  3460. cfq_group_idle = 1;
  3461. #else
  3462. cfq_group_idle = 0;
  3463. #endif
  3464. if (cfq_slab_setup())
  3465. return -ENOMEM;
  3466. elv_register(&iosched_cfq);
  3467. blkio_policy_register(&blkio_policy_cfq);
  3468. return 0;
  3469. }
  3470. static void __exit cfq_exit(void)
  3471. {
  3472. DECLARE_COMPLETION_ONSTACK(all_gone);
  3473. blkio_policy_unregister(&blkio_policy_cfq);
  3474. elv_unregister(&iosched_cfq);
  3475. ioc_gone = &all_gone;
  3476. /* ioc_gone's update must be visible before reading ioc_count */
  3477. smp_wmb();
  3478. /*
  3479. * this also protects us from entering cfq_slab_kill() with
  3480. * pending RCU callbacks
  3481. */
  3482. if (elv_ioc_count_read(cfq_ioc_count))
  3483. wait_for_completion(&all_gone);
  3484. ida_destroy(&cic_index_ida);
  3485. cfq_slab_kill();
  3486. }
  3487. module_init(cfq_init);
  3488. module_exit(cfq_exit);
  3489. MODULE_AUTHOR("Jens Axboe");
  3490. MODULE_LICENSE("GPL");
  3491. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");