pgtable.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. #include <linux/mm.h>
  2. #include <linux/gfp.h>
  3. #include <asm/pgalloc.h>
  4. #include <asm/pgtable.h>
  5. #include <asm/tlb.h>
  6. #include <asm/fixmap.h>
  7. #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  8. #ifdef CONFIG_HIGHPTE
  9. #define PGALLOC_USER_GFP __GFP_HIGHMEM
  10. #else
  11. #define PGALLOC_USER_GFP 0
  12. #endif
  13. gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
  14. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  15. {
  16. return (pte_t *)__get_free_page(PGALLOC_GFP);
  17. }
  18. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  19. {
  20. struct page *pte;
  21. pte = alloc_pages(__userpte_alloc_gfp, 0);
  22. if (pte)
  23. pgtable_page_ctor(pte);
  24. return pte;
  25. }
  26. static int __init setup_userpte(char *arg)
  27. {
  28. if (!arg)
  29. return -EINVAL;
  30. /*
  31. * "userpte=nohigh" disables allocation of user pagetables in
  32. * high memory.
  33. */
  34. if (strcmp(arg, "nohigh") == 0)
  35. __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
  36. else
  37. return -EINVAL;
  38. return 0;
  39. }
  40. early_param("userpte", setup_userpte);
  41. void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  42. {
  43. pgtable_page_dtor(pte);
  44. paravirt_release_pte(page_to_pfn(pte));
  45. tlb_remove_page(tlb, pte);
  46. }
  47. #if PAGETABLE_LEVELS > 2
  48. void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  49. {
  50. paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
  51. tlb_remove_page(tlb, virt_to_page(pmd));
  52. }
  53. #if PAGETABLE_LEVELS > 3
  54. void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  55. {
  56. paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
  57. tlb_remove_page(tlb, virt_to_page(pud));
  58. }
  59. #endif /* PAGETABLE_LEVELS > 3 */
  60. #endif /* PAGETABLE_LEVELS > 2 */
  61. static inline void pgd_list_add(pgd_t *pgd)
  62. {
  63. struct page *page = virt_to_page(pgd);
  64. list_add(&page->lru, &pgd_list);
  65. }
  66. static inline void pgd_list_del(pgd_t *pgd)
  67. {
  68. struct page *page = virt_to_page(pgd);
  69. list_del(&page->lru);
  70. }
  71. #define UNSHARED_PTRS_PER_PGD \
  72. (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
  73. static void pgd_ctor(pgd_t *pgd)
  74. {
  75. /* If the pgd points to a shared pagetable level (either the
  76. ptes in non-PAE, or shared PMD in PAE), then just copy the
  77. references from swapper_pg_dir. */
  78. if (PAGETABLE_LEVELS == 2 ||
  79. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
  80. PAGETABLE_LEVELS == 4) {
  81. clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
  82. swapper_pg_dir + KERNEL_PGD_BOUNDARY,
  83. KERNEL_PGD_PTRS);
  84. paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
  85. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  86. KERNEL_PGD_BOUNDARY,
  87. KERNEL_PGD_PTRS);
  88. }
  89. /* list required to sync kernel mapping updates */
  90. if (!SHARED_KERNEL_PMD)
  91. pgd_list_add(pgd);
  92. }
  93. static void pgd_dtor(pgd_t *pgd)
  94. {
  95. unsigned long flags; /* can be called from interrupt context */
  96. if (SHARED_KERNEL_PMD)
  97. return;
  98. spin_lock_irqsave(&pgd_lock, flags);
  99. pgd_list_del(pgd);
  100. spin_unlock_irqrestore(&pgd_lock, flags);
  101. }
  102. /*
  103. * List of all pgd's needed for non-PAE so it can invalidate entries
  104. * in both cached and uncached pgd's; not needed for PAE since the
  105. * kernel pmd is shared. If PAE were not to share the pmd a similar
  106. * tactic would be needed. This is essentially codepath-based locking
  107. * against pageattr.c; it is the unique case in which a valid change
  108. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  109. * vmalloc faults work because attached pagetables are never freed.
  110. * -- wli
  111. */
  112. #ifdef CONFIG_X86_PAE
  113. /*
  114. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  115. * updating the top-level pagetable entries to guarantee the
  116. * processor notices the update. Since this is expensive, and
  117. * all 4 top-level entries are used almost immediately in a
  118. * new process's life, we just pre-populate them here.
  119. *
  120. * Also, if we're in a paravirt environment where the kernel pmd is
  121. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  122. * and initialize the kernel pmds here.
  123. */
  124. #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
  125. void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
  126. {
  127. paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
  128. /* Note: almost everything apart from _PAGE_PRESENT is
  129. reserved at the pmd (PDPT) level. */
  130. set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
  131. /*
  132. * According to Intel App note "TLBs, Paging-Structure Caches,
  133. * and Their Invalidation", April 2007, document 317080-001,
  134. * section 8.1: in PAE mode we explicitly have to flush the
  135. * TLB via cr3 if the top-level pgd is changed...
  136. */
  137. if (mm == current->active_mm)
  138. write_cr3(read_cr3());
  139. }
  140. #else /* !CONFIG_X86_PAE */
  141. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  142. #define PREALLOCATED_PMDS 0
  143. #endif /* CONFIG_X86_PAE */
  144. static void free_pmds(pmd_t *pmds[])
  145. {
  146. int i;
  147. for(i = 0; i < PREALLOCATED_PMDS; i++)
  148. if (pmds[i])
  149. free_page((unsigned long)pmds[i]);
  150. }
  151. static int preallocate_pmds(pmd_t *pmds[])
  152. {
  153. int i;
  154. bool failed = false;
  155. for(i = 0; i < PREALLOCATED_PMDS; i++) {
  156. pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
  157. if (pmd == NULL)
  158. failed = true;
  159. pmds[i] = pmd;
  160. }
  161. if (failed) {
  162. free_pmds(pmds);
  163. return -ENOMEM;
  164. }
  165. return 0;
  166. }
  167. /*
  168. * Mop up any pmd pages which may still be attached to the pgd.
  169. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  170. * preallocate which never got a corresponding vma will need to be
  171. * freed manually.
  172. */
  173. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  174. {
  175. int i;
  176. for(i = 0; i < PREALLOCATED_PMDS; i++) {
  177. pgd_t pgd = pgdp[i];
  178. if (pgd_val(pgd) != 0) {
  179. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  180. pgdp[i] = native_make_pgd(0);
  181. paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
  182. pmd_free(mm, pmd);
  183. }
  184. }
  185. }
  186. static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
  187. {
  188. pud_t *pud;
  189. unsigned long addr;
  190. int i;
  191. if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
  192. return;
  193. pud = pud_offset(pgd, 0);
  194. for (addr = i = 0; i < PREALLOCATED_PMDS;
  195. i++, pud++, addr += PUD_SIZE) {
  196. pmd_t *pmd = pmds[i];
  197. if (i >= KERNEL_PGD_BOUNDARY)
  198. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  199. sizeof(pmd_t) * PTRS_PER_PMD);
  200. pud_populate(mm, pud, pmd);
  201. }
  202. }
  203. pgd_t *pgd_alloc(struct mm_struct *mm)
  204. {
  205. pgd_t *pgd;
  206. pmd_t *pmds[PREALLOCATED_PMDS];
  207. unsigned long flags;
  208. pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
  209. if (pgd == NULL)
  210. goto out;
  211. mm->pgd = pgd;
  212. if (preallocate_pmds(pmds) != 0)
  213. goto out_free_pgd;
  214. if (paravirt_pgd_alloc(mm) != 0)
  215. goto out_free_pmds;
  216. /*
  217. * Make sure that pre-populating the pmds is atomic with
  218. * respect to anything walking the pgd_list, so that they
  219. * never see a partially populated pgd.
  220. */
  221. spin_lock_irqsave(&pgd_lock, flags);
  222. pgd_ctor(pgd);
  223. pgd_prepopulate_pmd(mm, pgd, pmds);
  224. spin_unlock_irqrestore(&pgd_lock, flags);
  225. return pgd;
  226. out_free_pmds:
  227. free_pmds(pmds);
  228. out_free_pgd:
  229. free_page((unsigned long)pgd);
  230. out:
  231. return NULL;
  232. }
  233. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  234. {
  235. pgd_mop_up_pmds(mm, pgd);
  236. pgd_dtor(pgd);
  237. paravirt_pgd_free(mm, pgd);
  238. free_page((unsigned long)pgd);
  239. }
  240. int ptep_set_access_flags(struct vm_area_struct *vma,
  241. unsigned long address, pte_t *ptep,
  242. pte_t entry, int dirty)
  243. {
  244. int changed = !pte_same(*ptep, entry);
  245. if (changed && dirty) {
  246. *ptep = entry;
  247. pte_update_defer(vma->vm_mm, address, ptep);
  248. flush_tlb_page(vma, address);
  249. }
  250. return changed;
  251. }
  252. int ptep_test_and_clear_young(struct vm_area_struct *vma,
  253. unsigned long addr, pte_t *ptep)
  254. {
  255. int ret = 0;
  256. if (pte_young(*ptep))
  257. ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
  258. (unsigned long *) &ptep->pte);
  259. if (ret)
  260. pte_update(vma->vm_mm, addr, ptep);
  261. return ret;
  262. }
  263. int ptep_clear_flush_young(struct vm_area_struct *vma,
  264. unsigned long address, pte_t *ptep)
  265. {
  266. int young;
  267. young = ptep_test_and_clear_young(vma, address, ptep);
  268. if (young)
  269. flush_tlb_page(vma, address);
  270. return young;
  271. }
  272. /**
  273. * reserve_top_address - reserves a hole in the top of kernel address space
  274. * @reserve - size of hole to reserve
  275. *
  276. * Can be used to relocate the fixmap area and poke a hole in the top
  277. * of kernel address space to make room for a hypervisor.
  278. */
  279. void __init reserve_top_address(unsigned long reserve)
  280. {
  281. #ifdef CONFIG_X86_32
  282. BUG_ON(fixmaps_set > 0);
  283. printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
  284. (int)-reserve);
  285. __FIXADDR_TOP = -reserve - PAGE_SIZE;
  286. #endif
  287. }
  288. int fixmaps_set;
  289. void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
  290. {
  291. unsigned long address = __fix_to_virt(idx);
  292. if (idx >= __end_of_fixed_addresses) {
  293. BUG();
  294. return;
  295. }
  296. set_pte_vaddr(address, pte);
  297. fixmaps_set++;
  298. }
  299. void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
  300. pgprot_t flags)
  301. {
  302. __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
  303. }