init_64.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <linux/gfp.h>
  32. #include <asm/processor.h>
  33. #include <asm/bios_ebda.h>
  34. #include <asm/system.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/dma.h>
  39. #include <asm/fixmap.h>
  40. #include <asm/e820.h>
  41. #include <asm/apic.h>
  42. #include <asm/tlb.h>
  43. #include <asm/mmu_context.h>
  44. #include <asm/proto.h>
  45. #include <asm/smp.h>
  46. #include <asm/sections.h>
  47. #include <asm/kdebug.h>
  48. #include <asm/numa.h>
  49. #include <asm/cacheflush.h>
  50. #include <asm/init.h>
  51. #include <linux/bootmem.h>
  52. static unsigned long dma_reserve __initdata;
  53. static int __init parse_direct_gbpages_off(char *arg)
  54. {
  55. direct_gbpages = 0;
  56. return 0;
  57. }
  58. early_param("nogbpages", parse_direct_gbpages_off);
  59. static int __init parse_direct_gbpages_on(char *arg)
  60. {
  61. direct_gbpages = 1;
  62. return 0;
  63. }
  64. early_param("gbpages", parse_direct_gbpages_on);
  65. /*
  66. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  67. * physical space so we can cache the place of the first one and move
  68. * around without checking the pgd every time.
  69. */
  70. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  71. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  72. int force_personality32;
  73. /*
  74. * noexec32=on|off
  75. * Control non executable heap for 32bit processes.
  76. * To control the stack too use noexec=off
  77. *
  78. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  79. * off PROT_READ implies PROT_EXEC
  80. */
  81. static int __init nonx32_setup(char *str)
  82. {
  83. if (!strcmp(str, "on"))
  84. force_personality32 &= ~READ_IMPLIES_EXEC;
  85. else if (!strcmp(str, "off"))
  86. force_personality32 |= READ_IMPLIES_EXEC;
  87. return 1;
  88. }
  89. __setup("noexec32=", nonx32_setup);
  90. /*
  91. * NOTE: This function is marked __ref because it calls __init function
  92. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  93. */
  94. static __ref void *spp_getpage(void)
  95. {
  96. void *ptr;
  97. if (after_bootmem)
  98. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  99. else
  100. ptr = alloc_bootmem_pages(PAGE_SIZE);
  101. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  102. panic("set_pte_phys: cannot allocate page data %s\n",
  103. after_bootmem ? "after bootmem" : "");
  104. }
  105. pr_debug("spp_getpage %p\n", ptr);
  106. return ptr;
  107. }
  108. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  109. {
  110. if (pgd_none(*pgd)) {
  111. pud_t *pud = (pud_t *)spp_getpage();
  112. pgd_populate(&init_mm, pgd, pud);
  113. if (pud != pud_offset(pgd, 0))
  114. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  115. pud, pud_offset(pgd, 0));
  116. }
  117. return pud_offset(pgd, vaddr);
  118. }
  119. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  120. {
  121. if (pud_none(*pud)) {
  122. pmd_t *pmd = (pmd_t *) spp_getpage();
  123. pud_populate(&init_mm, pud, pmd);
  124. if (pmd != pmd_offset(pud, 0))
  125. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  126. pmd, pmd_offset(pud, 0));
  127. }
  128. return pmd_offset(pud, vaddr);
  129. }
  130. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  131. {
  132. if (pmd_none(*pmd)) {
  133. pte_t *pte = (pte_t *) spp_getpage();
  134. pmd_populate_kernel(&init_mm, pmd, pte);
  135. if (pte != pte_offset_kernel(pmd, 0))
  136. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  137. }
  138. return pte_offset_kernel(pmd, vaddr);
  139. }
  140. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  141. {
  142. pud_t *pud;
  143. pmd_t *pmd;
  144. pte_t *pte;
  145. pud = pud_page + pud_index(vaddr);
  146. pmd = fill_pmd(pud, vaddr);
  147. pte = fill_pte(pmd, vaddr);
  148. set_pte(pte, new_pte);
  149. /*
  150. * It's enough to flush this one mapping.
  151. * (PGE mappings get flushed as well)
  152. */
  153. __flush_tlb_one(vaddr);
  154. }
  155. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  156. {
  157. pgd_t *pgd;
  158. pud_t *pud_page;
  159. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  160. pgd = pgd_offset_k(vaddr);
  161. if (pgd_none(*pgd)) {
  162. printk(KERN_ERR
  163. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  164. return;
  165. }
  166. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  167. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  168. }
  169. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  170. {
  171. pgd_t *pgd;
  172. pud_t *pud;
  173. pgd = pgd_offset_k(vaddr);
  174. pud = fill_pud(pgd, vaddr);
  175. return fill_pmd(pud, vaddr);
  176. }
  177. pte_t * __init populate_extra_pte(unsigned long vaddr)
  178. {
  179. pmd_t *pmd;
  180. pmd = populate_extra_pmd(vaddr);
  181. return fill_pte(pmd, vaddr);
  182. }
  183. /*
  184. * Create large page table mappings for a range of physical addresses.
  185. */
  186. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  187. pgprot_t prot)
  188. {
  189. pgd_t *pgd;
  190. pud_t *pud;
  191. pmd_t *pmd;
  192. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  193. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  194. pgd = pgd_offset_k((unsigned long)__va(phys));
  195. if (pgd_none(*pgd)) {
  196. pud = (pud_t *) spp_getpage();
  197. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  198. _PAGE_USER));
  199. }
  200. pud = pud_offset(pgd, (unsigned long)__va(phys));
  201. if (pud_none(*pud)) {
  202. pmd = (pmd_t *) spp_getpage();
  203. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  204. _PAGE_USER));
  205. }
  206. pmd = pmd_offset(pud, phys);
  207. BUG_ON(!pmd_none(*pmd));
  208. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  209. }
  210. }
  211. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  212. {
  213. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  214. }
  215. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  216. {
  217. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  218. }
  219. /*
  220. * The head.S code sets up the kernel high mapping:
  221. *
  222. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  223. *
  224. * phys_addr holds the negative offset to the kernel, which is added
  225. * to the compile time generated pmds. This results in invalid pmds up
  226. * to the point where we hit the physaddr 0 mapping.
  227. *
  228. * We limit the mappings to the region from _text to _end. _end is
  229. * rounded up to the 2MB boundary. This catches the invalid pmds as
  230. * well, as they are located before _text:
  231. */
  232. void __init cleanup_highmap(void)
  233. {
  234. unsigned long vaddr = __START_KERNEL_map;
  235. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  236. pmd_t *pmd = level2_kernel_pgt;
  237. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  238. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  239. if (pmd_none(*pmd))
  240. continue;
  241. if (vaddr < (unsigned long) _text || vaddr > end)
  242. set_pmd(pmd, __pmd(0));
  243. }
  244. }
  245. static __ref void *alloc_low_page(unsigned long *phys)
  246. {
  247. unsigned long pfn = e820_table_end++;
  248. void *adr;
  249. if (after_bootmem) {
  250. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  251. *phys = __pa(adr);
  252. return adr;
  253. }
  254. if (pfn >= e820_table_top)
  255. panic("alloc_low_page: ran out of memory");
  256. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  257. memset(adr, 0, PAGE_SIZE);
  258. *phys = pfn * PAGE_SIZE;
  259. return adr;
  260. }
  261. static __ref void unmap_low_page(void *adr)
  262. {
  263. if (after_bootmem)
  264. return;
  265. early_iounmap(adr, PAGE_SIZE);
  266. }
  267. static unsigned long __meminit
  268. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  269. pgprot_t prot)
  270. {
  271. unsigned pages = 0;
  272. unsigned long last_map_addr = end;
  273. int i;
  274. pte_t *pte = pte_page + pte_index(addr);
  275. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  276. if (addr >= end) {
  277. if (!after_bootmem) {
  278. for(; i < PTRS_PER_PTE; i++, pte++)
  279. set_pte(pte, __pte(0));
  280. }
  281. break;
  282. }
  283. /*
  284. * We will re-use the existing mapping.
  285. * Xen for example has some special requirements, like mapping
  286. * pagetable pages as RO. So assume someone who pre-setup
  287. * these mappings are more intelligent.
  288. */
  289. if (pte_val(*pte)) {
  290. pages++;
  291. continue;
  292. }
  293. if (0)
  294. printk(" pte=%p addr=%lx pte=%016lx\n",
  295. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  296. pages++;
  297. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  298. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  299. }
  300. update_page_count(PG_LEVEL_4K, pages);
  301. return last_map_addr;
  302. }
  303. static unsigned long __meminit
  304. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  305. pgprot_t prot)
  306. {
  307. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  308. return phys_pte_init(pte, address, end, prot);
  309. }
  310. static unsigned long __meminit
  311. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  312. unsigned long page_size_mask, pgprot_t prot)
  313. {
  314. unsigned long pages = 0;
  315. unsigned long last_map_addr = end;
  316. int i = pmd_index(address);
  317. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  318. unsigned long pte_phys;
  319. pmd_t *pmd = pmd_page + pmd_index(address);
  320. pte_t *pte;
  321. pgprot_t new_prot = prot;
  322. if (address >= end) {
  323. if (!after_bootmem) {
  324. for (; i < PTRS_PER_PMD; i++, pmd++)
  325. set_pmd(pmd, __pmd(0));
  326. }
  327. break;
  328. }
  329. if (pmd_val(*pmd)) {
  330. if (!pmd_large(*pmd)) {
  331. spin_lock(&init_mm.page_table_lock);
  332. last_map_addr = phys_pte_update(pmd, address,
  333. end, prot);
  334. spin_unlock(&init_mm.page_table_lock);
  335. continue;
  336. }
  337. /*
  338. * If we are ok with PG_LEVEL_2M mapping, then we will
  339. * use the existing mapping,
  340. *
  341. * Otherwise, we will split the large page mapping but
  342. * use the same existing protection bits except for
  343. * large page, so that we don't violate Intel's TLB
  344. * Application note (317080) which says, while changing
  345. * the page sizes, new and old translations should
  346. * not differ with respect to page frame and
  347. * attributes.
  348. */
  349. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  350. pages++;
  351. continue;
  352. }
  353. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  354. }
  355. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  356. pages++;
  357. spin_lock(&init_mm.page_table_lock);
  358. set_pte((pte_t *)pmd,
  359. pfn_pte(address >> PAGE_SHIFT,
  360. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  361. spin_unlock(&init_mm.page_table_lock);
  362. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  363. continue;
  364. }
  365. pte = alloc_low_page(&pte_phys);
  366. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  367. unmap_low_page(pte);
  368. spin_lock(&init_mm.page_table_lock);
  369. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  370. spin_unlock(&init_mm.page_table_lock);
  371. }
  372. update_page_count(PG_LEVEL_2M, pages);
  373. return last_map_addr;
  374. }
  375. static unsigned long __meminit
  376. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  377. unsigned long page_size_mask, pgprot_t prot)
  378. {
  379. pmd_t *pmd = pmd_offset(pud, 0);
  380. unsigned long last_map_addr;
  381. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  382. __flush_tlb_all();
  383. return last_map_addr;
  384. }
  385. static unsigned long __meminit
  386. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  387. unsigned long page_size_mask)
  388. {
  389. unsigned long pages = 0;
  390. unsigned long last_map_addr = end;
  391. int i = pud_index(addr);
  392. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  393. unsigned long pmd_phys;
  394. pud_t *pud = pud_page + pud_index(addr);
  395. pmd_t *pmd;
  396. pgprot_t prot = PAGE_KERNEL;
  397. if (addr >= end)
  398. break;
  399. if (!after_bootmem &&
  400. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  401. set_pud(pud, __pud(0));
  402. continue;
  403. }
  404. if (pud_val(*pud)) {
  405. if (!pud_large(*pud)) {
  406. last_map_addr = phys_pmd_update(pud, addr, end,
  407. page_size_mask, prot);
  408. continue;
  409. }
  410. /*
  411. * If we are ok with PG_LEVEL_1G mapping, then we will
  412. * use the existing mapping.
  413. *
  414. * Otherwise, we will split the gbpage mapping but use
  415. * the same existing protection bits except for large
  416. * page, so that we don't violate Intel's TLB
  417. * Application note (317080) which says, while changing
  418. * the page sizes, new and old translations should
  419. * not differ with respect to page frame and
  420. * attributes.
  421. */
  422. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  423. pages++;
  424. continue;
  425. }
  426. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  427. }
  428. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  429. pages++;
  430. spin_lock(&init_mm.page_table_lock);
  431. set_pte((pte_t *)pud,
  432. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  433. spin_unlock(&init_mm.page_table_lock);
  434. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  435. continue;
  436. }
  437. pmd = alloc_low_page(&pmd_phys);
  438. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  439. prot);
  440. unmap_low_page(pmd);
  441. spin_lock(&init_mm.page_table_lock);
  442. pud_populate(&init_mm, pud, __va(pmd_phys));
  443. spin_unlock(&init_mm.page_table_lock);
  444. }
  445. __flush_tlb_all();
  446. update_page_count(PG_LEVEL_1G, pages);
  447. return last_map_addr;
  448. }
  449. static unsigned long __meminit
  450. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  451. unsigned long page_size_mask)
  452. {
  453. pud_t *pud;
  454. pud = (pud_t *)pgd_page_vaddr(*pgd);
  455. return phys_pud_init(pud, addr, end, page_size_mask);
  456. }
  457. unsigned long __meminit
  458. kernel_physical_mapping_init(unsigned long start,
  459. unsigned long end,
  460. unsigned long page_size_mask)
  461. {
  462. unsigned long next, last_map_addr = end;
  463. start = (unsigned long)__va(start);
  464. end = (unsigned long)__va(end);
  465. for (; start < end; start = next) {
  466. pgd_t *pgd = pgd_offset_k(start);
  467. unsigned long pud_phys;
  468. pud_t *pud;
  469. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  470. if (next > end)
  471. next = end;
  472. if (pgd_val(*pgd)) {
  473. last_map_addr = phys_pud_update(pgd, __pa(start),
  474. __pa(end), page_size_mask);
  475. continue;
  476. }
  477. pud = alloc_low_page(&pud_phys);
  478. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  479. page_size_mask);
  480. unmap_low_page(pud);
  481. spin_lock(&init_mm.page_table_lock);
  482. pgd_populate(&init_mm, pgd, __va(pud_phys));
  483. spin_unlock(&init_mm.page_table_lock);
  484. }
  485. __flush_tlb_all();
  486. return last_map_addr;
  487. }
  488. #ifndef CONFIG_NUMA
  489. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
  490. int acpi, int k8)
  491. {
  492. #ifndef CONFIG_NO_BOOTMEM
  493. unsigned long bootmap_size, bootmap;
  494. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  495. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  496. PAGE_SIZE);
  497. if (bootmap == -1L)
  498. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  499. reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
  500. /* don't touch min_low_pfn */
  501. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  502. 0, end_pfn);
  503. e820_register_active_regions(0, start_pfn, end_pfn);
  504. free_bootmem_with_active_regions(0, end_pfn);
  505. #else
  506. e820_register_active_regions(0, start_pfn, end_pfn);
  507. #endif
  508. }
  509. #endif
  510. void __init paging_init(void)
  511. {
  512. unsigned long max_zone_pfns[MAX_NR_ZONES];
  513. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  514. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  515. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  516. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  517. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  518. sparse_init();
  519. /*
  520. * clear the default setting with node 0
  521. * note: don't use nodes_clear here, that is really clearing when
  522. * numa support is not compiled in, and later node_set_state
  523. * will not set it back.
  524. */
  525. node_clear_state(0, N_NORMAL_MEMORY);
  526. free_area_init_nodes(max_zone_pfns);
  527. }
  528. /*
  529. * Memory hotplug specific functions
  530. */
  531. #ifdef CONFIG_MEMORY_HOTPLUG
  532. /*
  533. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  534. * updating.
  535. */
  536. static void update_end_of_memory_vars(u64 start, u64 size)
  537. {
  538. unsigned long end_pfn = PFN_UP(start + size);
  539. if (end_pfn > max_pfn) {
  540. max_pfn = end_pfn;
  541. max_low_pfn = end_pfn;
  542. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  543. }
  544. }
  545. /*
  546. * Memory is added always to NORMAL zone. This means you will never get
  547. * additional DMA/DMA32 memory.
  548. */
  549. int arch_add_memory(int nid, u64 start, u64 size)
  550. {
  551. struct pglist_data *pgdat = NODE_DATA(nid);
  552. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  553. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  554. unsigned long nr_pages = size >> PAGE_SHIFT;
  555. int ret;
  556. last_mapped_pfn = init_memory_mapping(start, start + size);
  557. if (last_mapped_pfn > max_pfn_mapped)
  558. max_pfn_mapped = last_mapped_pfn;
  559. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  560. WARN_ON_ONCE(ret);
  561. /* update max_pfn, max_low_pfn and high_memory */
  562. update_end_of_memory_vars(start, size);
  563. return ret;
  564. }
  565. EXPORT_SYMBOL_GPL(arch_add_memory);
  566. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  567. int memory_add_physaddr_to_nid(u64 start)
  568. {
  569. return 0;
  570. }
  571. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  572. #endif
  573. #endif /* CONFIG_MEMORY_HOTPLUG */
  574. static struct kcore_list kcore_vsyscall;
  575. void __init mem_init(void)
  576. {
  577. long codesize, reservedpages, datasize, initsize;
  578. unsigned long absent_pages;
  579. pci_iommu_alloc();
  580. /* clear_bss() already clear the empty_zero_page */
  581. reservedpages = 0;
  582. /* this will put all low memory onto the freelists */
  583. #ifdef CONFIG_NUMA
  584. totalram_pages = numa_free_all_bootmem();
  585. #else
  586. totalram_pages = free_all_bootmem();
  587. #endif
  588. absent_pages = absent_pages_in_range(0, max_pfn);
  589. reservedpages = max_pfn - totalram_pages - absent_pages;
  590. after_bootmem = 1;
  591. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  592. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  593. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  594. /* Register memory areas for /proc/kcore */
  595. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  596. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  597. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  598. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  599. nr_free_pages() << (PAGE_SHIFT-10),
  600. max_pfn << (PAGE_SHIFT-10),
  601. codesize >> 10,
  602. absent_pages << (PAGE_SHIFT-10),
  603. reservedpages << (PAGE_SHIFT-10),
  604. datasize >> 10,
  605. initsize >> 10);
  606. }
  607. #ifdef CONFIG_DEBUG_RODATA
  608. const int rodata_test_data = 0xC3;
  609. EXPORT_SYMBOL_GPL(rodata_test_data);
  610. int kernel_set_to_readonly;
  611. void set_kernel_text_rw(void)
  612. {
  613. unsigned long start = PFN_ALIGN(_text);
  614. unsigned long end = PFN_ALIGN(__stop___ex_table);
  615. if (!kernel_set_to_readonly)
  616. return;
  617. pr_debug("Set kernel text: %lx - %lx for read write\n",
  618. start, end);
  619. /*
  620. * Make the kernel identity mapping for text RW. Kernel text
  621. * mapping will always be RO. Refer to the comment in
  622. * static_protections() in pageattr.c
  623. */
  624. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  625. }
  626. void set_kernel_text_ro(void)
  627. {
  628. unsigned long start = PFN_ALIGN(_text);
  629. unsigned long end = PFN_ALIGN(__stop___ex_table);
  630. if (!kernel_set_to_readonly)
  631. return;
  632. pr_debug("Set kernel text: %lx - %lx for read only\n",
  633. start, end);
  634. /*
  635. * Set the kernel identity mapping for text RO.
  636. */
  637. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  638. }
  639. void mark_rodata_ro(void)
  640. {
  641. unsigned long start = PFN_ALIGN(_text);
  642. unsigned long rodata_start =
  643. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  644. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  645. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  646. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  647. unsigned long data_start = (unsigned long) &_sdata;
  648. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  649. (end - start) >> 10);
  650. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  651. kernel_set_to_readonly = 1;
  652. /*
  653. * The rodata section (but not the kernel text!) should also be
  654. * not-executable.
  655. */
  656. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  657. rodata_test();
  658. #ifdef CONFIG_CPA_DEBUG
  659. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  660. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  661. printk(KERN_INFO "Testing CPA: again\n");
  662. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  663. #endif
  664. free_init_pages("unused kernel memory",
  665. (unsigned long) page_address(virt_to_page(text_end)),
  666. (unsigned long)
  667. page_address(virt_to_page(rodata_start)));
  668. free_init_pages("unused kernel memory",
  669. (unsigned long) page_address(virt_to_page(rodata_end)),
  670. (unsigned long) page_address(virt_to_page(data_start)));
  671. }
  672. #endif
  673. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  674. int flags)
  675. {
  676. #ifdef CONFIG_NUMA
  677. int nid, next_nid;
  678. int ret;
  679. #endif
  680. unsigned long pfn = phys >> PAGE_SHIFT;
  681. if (pfn >= max_pfn) {
  682. /*
  683. * This can happen with kdump kernels when accessing
  684. * firmware tables:
  685. */
  686. if (pfn < max_pfn_mapped)
  687. return -EFAULT;
  688. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  689. phys, len);
  690. return -EFAULT;
  691. }
  692. /* Should check here against the e820 map to avoid double free */
  693. #ifdef CONFIG_NUMA
  694. nid = phys_to_nid(phys);
  695. next_nid = phys_to_nid(phys + len - 1);
  696. if (nid == next_nid)
  697. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  698. else
  699. ret = reserve_bootmem(phys, len, flags);
  700. if (ret != 0)
  701. return ret;
  702. #else
  703. reserve_bootmem(phys, len, flags);
  704. #endif
  705. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  706. dma_reserve += len / PAGE_SIZE;
  707. set_dma_reserve(dma_reserve);
  708. }
  709. return 0;
  710. }
  711. int kern_addr_valid(unsigned long addr)
  712. {
  713. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  714. pgd_t *pgd;
  715. pud_t *pud;
  716. pmd_t *pmd;
  717. pte_t *pte;
  718. if (above != 0 && above != -1UL)
  719. return 0;
  720. pgd = pgd_offset_k(addr);
  721. if (pgd_none(*pgd))
  722. return 0;
  723. pud = pud_offset(pgd, addr);
  724. if (pud_none(*pud))
  725. return 0;
  726. pmd = pmd_offset(pud, addr);
  727. if (pmd_none(*pmd))
  728. return 0;
  729. if (pmd_large(*pmd))
  730. return pfn_valid(pmd_pfn(*pmd));
  731. pte = pte_offset_kernel(pmd, addr);
  732. if (pte_none(*pte))
  733. return 0;
  734. return pfn_valid(pte_pfn(*pte));
  735. }
  736. /*
  737. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  738. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  739. * not need special handling anymore:
  740. */
  741. static struct vm_area_struct gate_vma = {
  742. .vm_start = VSYSCALL_START,
  743. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  744. .vm_page_prot = PAGE_READONLY_EXEC,
  745. .vm_flags = VM_READ | VM_EXEC
  746. };
  747. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  748. {
  749. #ifdef CONFIG_IA32_EMULATION
  750. if (test_tsk_thread_flag(tsk, TIF_IA32))
  751. return NULL;
  752. #endif
  753. return &gate_vma;
  754. }
  755. int in_gate_area(struct task_struct *task, unsigned long addr)
  756. {
  757. struct vm_area_struct *vma = get_gate_vma(task);
  758. if (!vma)
  759. return 0;
  760. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  761. }
  762. /*
  763. * Use this when you have no reliable task/vma, typically from interrupt
  764. * context. It is less reliable than using the task's vma and may give
  765. * false positives:
  766. */
  767. int in_gate_area_no_task(unsigned long addr)
  768. {
  769. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  770. }
  771. const char *arch_vma_name(struct vm_area_struct *vma)
  772. {
  773. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  774. return "[vdso]";
  775. if (vma == &gate_vma)
  776. return "[vsyscall]";
  777. return NULL;
  778. }
  779. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  780. /*
  781. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  782. */
  783. static long __meminitdata addr_start, addr_end;
  784. static void __meminitdata *p_start, *p_end;
  785. static int __meminitdata node_start;
  786. int __meminit
  787. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  788. {
  789. unsigned long addr = (unsigned long)start_page;
  790. unsigned long end = (unsigned long)(start_page + size);
  791. unsigned long next;
  792. pgd_t *pgd;
  793. pud_t *pud;
  794. pmd_t *pmd;
  795. for (; addr < end; addr = next) {
  796. void *p = NULL;
  797. pgd = vmemmap_pgd_populate(addr, node);
  798. if (!pgd)
  799. return -ENOMEM;
  800. pud = vmemmap_pud_populate(pgd, addr, node);
  801. if (!pud)
  802. return -ENOMEM;
  803. if (!cpu_has_pse) {
  804. next = (addr + PAGE_SIZE) & PAGE_MASK;
  805. pmd = vmemmap_pmd_populate(pud, addr, node);
  806. if (!pmd)
  807. return -ENOMEM;
  808. p = vmemmap_pte_populate(pmd, addr, node);
  809. if (!p)
  810. return -ENOMEM;
  811. addr_end = addr + PAGE_SIZE;
  812. p_end = p + PAGE_SIZE;
  813. } else {
  814. next = pmd_addr_end(addr, end);
  815. pmd = pmd_offset(pud, addr);
  816. if (pmd_none(*pmd)) {
  817. pte_t entry;
  818. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  819. if (!p)
  820. return -ENOMEM;
  821. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  822. PAGE_KERNEL_LARGE);
  823. set_pmd(pmd, __pmd(pte_val(entry)));
  824. /* check to see if we have contiguous blocks */
  825. if (p_end != p || node_start != node) {
  826. if (p_start)
  827. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  828. addr_start, addr_end-1, p_start, p_end-1, node_start);
  829. addr_start = addr;
  830. node_start = node;
  831. p_start = p;
  832. }
  833. addr_end = addr + PMD_SIZE;
  834. p_end = p + PMD_SIZE;
  835. } else
  836. vmemmap_verify((pte_t *)pmd, node, addr, next);
  837. }
  838. }
  839. return 0;
  840. }
  841. void __meminit vmemmap_populate_print_last(void)
  842. {
  843. if (p_start) {
  844. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  845. addr_start, addr_end-1, p_start, p_end-1, node_start);
  846. p_start = NULL;
  847. p_end = NULL;
  848. node_start = 0;
  849. }
  850. }
  851. #endif