process.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <linux/user-return-notifier.h>
  13. #include <linux/dmi.h>
  14. #include <linux/utsname.h>
  15. #include <trace/events/power.h>
  16. #include <linux/hw_breakpoint.h>
  17. #include <asm/system.h>
  18. #include <asm/apic.h>
  19. #include <asm/syscalls.h>
  20. #include <asm/idle.h>
  21. #include <asm/uaccess.h>
  22. #include <asm/i387.h>
  23. #include <asm/debugreg.h>
  24. unsigned long idle_halt;
  25. EXPORT_SYMBOL(idle_halt);
  26. unsigned long idle_nomwait;
  27. EXPORT_SYMBOL(idle_nomwait);
  28. struct kmem_cache *task_xstate_cachep;
  29. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  30. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  31. {
  32. int ret;
  33. *dst = *src;
  34. if (fpu_allocated(&src->thread.fpu)) {
  35. memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
  36. ret = fpu_alloc(&dst->thread.fpu);
  37. if (ret)
  38. return ret;
  39. fpu_copy(&dst->thread.fpu, &src->thread.fpu);
  40. }
  41. return 0;
  42. }
  43. void free_thread_xstate(struct task_struct *tsk)
  44. {
  45. fpu_free(&tsk->thread.fpu);
  46. }
  47. void free_thread_info(struct thread_info *ti)
  48. {
  49. free_thread_xstate(ti->task);
  50. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  51. }
  52. void arch_task_cache_init(void)
  53. {
  54. task_xstate_cachep =
  55. kmem_cache_create("task_xstate", xstate_size,
  56. __alignof__(union thread_xstate),
  57. SLAB_PANIC | SLAB_NOTRACK, NULL);
  58. }
  59. /*
  60. * Free current thread data structures etc..
  61. */
  62. void exit_thread(void)
  63. {
  64. struct task_struct *me = current;
  65. struct thread_struct *t = &me->thread;
  66. unsigned long *bp = t->io_bitmap_ptr;
  67. if (bp) {
  68. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  69. t->io_bitmap_ptr = NULL;
  70. clear_thread_flag(TIF_IO_BITMAP);
  71. /*
  72. * Careful, clear this in the TSS too:
  73. */
  74. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  75. t->io_bitmap_max = 0;
  76. put_cpu();
  77. kfree(bp);
  78. }
  79. }
  80. void show_regs(struct pt_regs *regs)
  81. {
  82. show_registers(regs);
  83. show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
  84. regs->bp);
  85. }
  86. void show_regs_common(void)
  87. {
  88. const char *board, *product;
  89. board = dmi_get_system_info(DMI_BOARD_NAME);
  90. if (!board)
  91. board = "";
  92. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  93. if (!product)
  94. product = "";
  95. printk(KERN_CONT "\n");
  96. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
  97. current->pid, current->comm, print_tainted(),
  98. init_utsname()->release,
  99. (int)strcspn(init_utsname()->version, " "),
  100. init_utsname()->version, board, product);
  101. }
  102. void flush_thread(void)
  103. {
  104. struct task_struct *tsk = current;
  105. flush_ptrace_hw_breakpoint(tsk);
  106. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  107. /*
  108. * Forget coprocessor state..
  109. */
  110. tsk->fpu_counter = 0;
  111. clear_fpu(tsk);
  112. clear_used_math();
  113. }
  114. static void hard_disable_TSC(void)
  115. {
  116. write_cr4(read_cr4() | X86_CR4_TSD);
  117. }
  118. void disable_TSC(void)
  119. {
  120. preempt_disable();
  121. if (!test_and_set_thread_flag(TIF_NOTSC))
  122. /*
  123. * Must flip the CPU state synchronously with
  124. * TIF_NOTSC in the current running context.
  125. */
  126. hard_disable_TSC();
  127. preempt_enable();
  128. }
  129. static void hard_enable_TSC(void)
  130. {
  131. write_cr4(read_cr4() & ~X86_CR4_TSD);
  132. }
  133. static void enable_TSC(void)
  134. {
  135. preempt_disable();
  136. if (test_and_clear_thread_flag(TIF_NOTSC))
  137. /*
  138. * Must flip the CPU state synchronously with
  139. * TIF_NOTSC in the current running context.
  140. */
  141. hard_enable_TSC();
  142. preempt_enable();
  143. }
  144. int get_tsc_mode(unsigned long adr)
  145. {
  146. unsigned int val;
  147. if (test_thread_flag(TIF_NOTSC))
  148. val = PR_TSC_SIGSEGV;
  149. else
  150. val = PR_TSC_ENABLE;
  151. return put_user(val, (unsigned int __user *)adr);
  152. }
  153. int set_tsc_mode(unsigned int val)
  154. {
  155. if (val == PR_TSC_SIGSEGV)
  156. disable_TSC();
  157. else if (val == PR_TSC_ENABLE)
  158. enable_TSC();
  159. else
  160. return -EINVAL;
  161. return 0;
  162. }
  163. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  164. struct tss_struct *tss)
  165. {
  166. struct thread_struct *prev, *next;
  167. prev = &prev_p->thread;
  168. next = &next_p->thread;
  169. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  170. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  171. unsigned long debugctl = get_debugctlmsr();
  172. debugctl &= ~DEBUGCTLMSR_BTF;
  173. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  174. debugctl |= DEBUGCTLMSR_BTF;
  175. update_debugctlmsr(debugctl);
  176. }
  177. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  178. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  179. /* prev and next are different */
  180. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  181. hard_disable_TSC();
  182. else
  183. hard_enable_TSC();
  184. }
  185. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  186. /*
  187. * Copy the relevant range of the IO bitmap.
  188. * Normally this is 128 bytes or less:
  189. */
  190. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  191. max(prev->io_bitmap_max, next->io_bitmap_max));
  192. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  193. /*
  194. * Clear any possible leftover bits:
  195. */
  196. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  197. }
  198. propagate_user_return_notify(prev_p, next_p);
  199. }
  200. int sys_fork(struct pt_regs *regs)
  201. {
  202. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  203. }
  204. /*
  205. * This is trivial, and on the face of it looks like it
  206. * could equally well be done in user mode.
  207. *
  208. * Not so, for quite unobvious reasons - register pressure.
  209. * In user mode vfork() cannot have a stack frame, and if
  210. * done by calling the "clone()" system call directly, you
  211. * do not have enough call-clobbered registers to hold all
  212. * the information you need.
  213. */
  214. int sys_vfork(struct pt_regs *regs)
  215. {
  216. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  217. NULL, NULL);
  218. }
  219. long
  220. sys_clone(unsigned long clone_flags, unsigned long newsp,
  221. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  222. {
  223. if (!newsp)
  224. newsp = regs->sp;
  225. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  226. }
  227. /*
  228. * This gets run with %si containing the
  229. * function to call, and %di containing
  230. * the "args".
  231. */
  232. extern void kernel_thread_helper(void);
  233. /*
  234. * Create a kernel thread
  235. */
  236. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  237. {
  238. struct pt_regs regs;
  239. memset(&regs, 0, sizeof(regs));
  240. regs.si = (unsigned long) fn;
  241. regs.di = (unsigned long) arg;
  242. #ifdef CONFIG_X86_32
  243. regs.ds = __USER_DS;
  244. regs.es = __USER_DS;
  245. regs.fs = __KERNEL_PERCPU;
  246. regs.gs = __KERNEL_STACK_CANARY;
  247. #else
  248. regs.ss = __KERNEL_DS;
  249. #endif
  250. regs.orig_ax = -1;
  251. regs.ip = (unsigned long) kernel_thread_helper;
  252. regs.cs = __KERNEL_CS | get_kernel_rpl();
  253. regs.flags = X86_EFLAGS_IF | 0x2;
  254. /* Ok, create the new process.. */
  255. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  256. }
  257. EXPORT_SYMBOL(kernel_thread);
  258. /*
  259. * sys_execve() executes a new program.
  260. */
  261. long sys_execve(const char __user *name,
  262. const char __user *const __user *argv,
  263. const char __user *const __user *envp, struct pt_regs *regs)
  264. {
  265. long error;
  266. char *filename;
  267. filename = getname(name);
  268. error = PTR_ERR(filename);
  269. if (IS_ERR(filename))
  270. return error;
  271. error = do_execve(filename, argv, envp, regs);
  272. #ifdef CONFIG_X86_32
  273. if (error == 0) {
  274. /* Make sure we don't return using sysenter.. */
  275. set_thread_flag(TIF_IRET);
  276. }
  277. #endif
  278. putname(filename);
  279. return error;
  280. }
  281. /*
  282. * Idle related variables and functions
  283. */
  284. unsigned long boot_option_idle_override = 0;
  285. EXPORT_SYMBOL(boot_option_idle_override);
  286. /*
  287. * Powermanagement idle function, if any..
  288. */
  289. void (*pm_idle)(void);
  290. EXPORT_SYMBOL(pm_idle);
  291. #ifdef CONFIG_X86_32
  292. /*
  293. * This halt magic was a workaround for ancient floppy DMA
  294. * wreckage. It should be safe to remove.
  295. */
  296. static int hlt_counter;
  297. void disable_hlt(void)
  298. {
  299. hlt_counter++;
  300. }
  301. EXPORT_SYMBOL(disable_hlt);
  302. void enable_hlt(void)
  303. {
  304. hlt_counter--;
  305. }
  306. EXPORT_SYMBOL(enable_hlt);
  307. static inline int hlt_use_halt(void)
  308. {
  309. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  310. }
  311. #else
  312. static inline int hlt_use_halt(void)
  313. {
  314. return 1;
  315. }
  316. #endif
  317. /*
  318. * We use this if we don't have any better
  319. * idle routine..
  320. */
  321. void default_idle(void)
  322. {
  323. if (hlt_use_halt()) {
  324. trace_power_start(POWER_CSTATE, 1, smp_processor_id());
  325. current_thread_info()->status &= ~TS_POLLING;
  326. /*
  327. * TS_POLLING-cleared state must be visible before we
  328. * test NEED_RESCHED:
  329. */
  330. smp_mb();
  331. if (!need_resched())
  332. safe_halt(); /* enables interrupts racelessly */
  333. else
  334. local_irq_enable();
  335. current_thread_info()->status |= TS_POLLING;
  336. } else {
  337. local_irq_enable();
  338. /* loop is done by the caller */
  339. cpu_relax();
  340. }
  341. }
  342. #ifdef CONFIG_APM_MODULE
  343. EXPORT_SYMBOL(default_idle);
  344. #endif
  345. void stop_this_cpu(void *dummy)
  346. {
  347. local_irq_disable();
  348. /*
  349. * Remove this CPU:
  350. */
  351. set_cpu_online(smp_processor_id(), false);
  352. disable_local_APIC();
  353. for (;;) {
  354. if (hlt_works(smp_processor_id()))
  355. halt();
  356. }
  357. }
  358. static void do_nothing(void *unused)
  359. {
  360. }
  361. /*
  362. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  363. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  364. * handler on SMP systems.
  365. *
  366. * Caller must have changed pm_idle to the new value before the call. Old
  367. * pm_idle value will not be used by any CPU after the return of this function.
  368. */
  369. void cpu_idle_wait(void)
  370. {
  371. smp_mb();
  372. /* kick all the CPUs so that they exit out of pm_idle */
  373. smp_call_function(do_nothing, NULL, 1);
  374. }
  375. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  376. /*
  377. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  378. * which can obviate IPI to trigger checking of need_resched.
  379. * We execute MONITOR against need_resched and enter optimized wait state
  380. * through MWAIT. Whenever someone changes need_resched, we would be woken
  381. * up from MWAIT (without an IPI).
  382. *
  383. * New with Core Duo processors, MWAIT can take some hints based on CPU
  384. * capability.
  385. */
  386. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  387. {
  388. trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id());
  389. if (!need_resched()) {
  390. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  391. clflush((void *)&current_thread_info()->flags);
  392. __monitor((void *)&current_thread_info()->flags, 0, 0);
  393. smp_mb();
  394. if (!need_resched())
  395. __mwait(ax, cx);
  396. }
  397. }
  398. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  399. static void mwait_idle(void)
  400. {
  401. if (!need_resched()) {
  402. trace_power_start(POWER_CSTATE, 1, smp_processor_id());
  403. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  404. clflush((void *)&current_thread_info()->flags);
  405. __monitor((void *)&current_thread_info()->flags, 0, 0);
  406. smp_mb();
  407. if (!need_resched())
  408. __sti_mwait(0, 0);
  409. else
  410. local_irq_enable();
  411. } else
  412. local_irq_enable();
  413. }
  414. /*
  415. * On SMP it's slightly faster (but much more power-consuming!)
  416. * to poll the ->work.need_resched flag instead of waiting for the
  417. * cross-CPU IPI to arrive. Use this option with caution.
  418. */
  419. static void poll_idle(void)
  420. {
  421. trace_power_start(POWER_CSTATE, 0, smp_processor_id());
  422. local_irq_enable();
  423. while (!need_resched())
  424. cpu_relax();
  425. trace_power_end(0);
  426. }
  427. /*
  428. * mwait selection logic:
  429. *
  430. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  431. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  432. * then depend on a clock divisor and current Pstate of the core. If
  433. * all cores of a processor are in halt state (C1) the processor can
  434. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  435. * happen.
  436. *
  437. * idle=mwait overrides this decision and forces the usage of mwait.
  438. */
  439. static int __cpuinitdata force_mwait;
  440. #define MWAIT_INFO 0x05
  441. #define MWAIT_ECX_EXTENDED_INFO 0x01
  442. #define MWAIT_EDX_C1 0xf0
  443. static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
  444. {
  445. u32 eax, ebx, ecx, edx;
  446. if (force_mwait)
  447. return 1;
  448. if (c->cpuid_level < MWAIT_INFO)
  449. return 0;
  450. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  451. /* Check, whether EDX has extended info about MWAIT */
  452. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  453. return 1;
  454. /*
  455. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  456. * C1 supports MWAIT
  457. */
  458. return (edx & MWAIT_EDX_C1);
  459. }
  460. bool c1e_detected;
  461. EXPORT_SYMBOL(c1e_detected);
  462. static cpumask_var_t c1e_mask;
  463. void c1e_remove_cpu(int cpu)
  464. {
  465. if (c1e_mask != NULL)
  466. cpumask_clear_cpu(cpu, c1e_mask);
  467. }
  468. /*
  469. * C1E aware idle routine. We check for C1E active in the interrupt
  470. * pending message MSR. If we detect C1E, then we handle it the same
  471. * way as C3 power states (local apic timer and TSC stop)
  472. */
  473. static void c1e_idle(void)
  474. {
  475. if (need_resched())
  476. return;
  477. if (!c1e_detected) {
  478. u32 lo, hi;
  479. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  480. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  481. c1e_detected = true;
  482. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  483. mark_tsc_unstable("TSC halt in AMD C1E");
  484. printk(KERN_INFO "System has AMD C1E enabled\n");
  485. }
  486. }
  487. if (c1e_detected) {
  488. int cpu = smp_processor_id();
  489. if (!cpumask_test_cpu(cpu, c1e_mask)) {
  490. cpumask_set_cpu(cpu, c1e_mask);
  491. /*
  492. * Force broadcast so ACPI can not interfere.
  493. */
  494. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  495. &cpu);
  496. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  497. cpu);
  498. }
  499. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  500. default_idle();
  501. /*
  502. * The switch back from broadcast mode needs to be
  503. * called with interrupts disabled.
  504. */
  505. local_irq_disable();
  506. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  507. local_irq_enable();
  508. } else
  509. default_idle();
  510. }
  511. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  512. {
  513. #ifdef CONFIG_SMP
  514. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  515. printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
  516. " performance may degrade.\n");
  517. }
  518. #endif
  519. if (pm_idle)
  520. return;
  521. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  522. /*
  523. * One CPU supports mwait => All CPUs supports mwait
  524. */
  525. printk(KERN_INFO "using mwait in idle threads.\n");
  526. pm_idle = mwait_idle;
  527. } else if (cpu_has_amd_erratum(amd_erratum_400)) {
  528. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  529. printk(KERN_INFO "using C1E aware idle routine\n");
  530. pm_idle = c1e_idle;
  531. } else
  532. pm_idle = default_idle;
  533. }
  534. void __init init_c1e_mask(void)
  535. {
  536. /* If we're using c1e_idle, we need to allocate c1e_mask. */
  537. if (pm_idle == c1e_idle)
  538. zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
  539. }
  540. static int __init idle_setup(char *str)
  541. {
  542. if (!str)
  543. return -EINVAL;
  544. if (!strcmp(str, "poll")) {
  545. printk("using polling idle threads.\n");
  546. pm_idle = poll_idle;
  547. } else if (!strcmp(str, "mwait"))
  548. force_mwait = 1;
  549. else if (!strcmp(str, "halt")) {
  550. /*
  551. * When the boot option of idle=halt is added, halt is
  552. * forced to be used for CPU idle. In such case CPU C2/C3
  553. * won't be used again.
  554. * To continue to load the CPU idle driver, don't touch
  555. * the boot_option_idle_override.
  556. */
  557. pm_idle = default_idle;
  558. idle_halt = 1;
  559. return 0;
  560. } else if (!strcmp(str, "nomwait")) {
  561. /*
  562. * If the boot option of "idle=nomwait" is added,
  563. * it means that mwait will be disabled for CPU C2/C3
  564. * states. In such case it won't touch the variable
  565. * of boot_option_idle_override.
  566. */
  567. idle_nomwait = 1;
  568. return 0;
  569. } else
  570. return -1;
  571. boot_option_idle_override = 1;
  572. return 0;
  573. }
  574. early_param("idle", idle_setup);
  575. unsigned long arch_align_stack(unsigned long sp)
  576. {
  577. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  578. sp -= get_random_int() % 8192;
  579. return sp & ~0xf;
  580. }
  581. unsigned long arch_randomize_brk(struct mm_struct *mm)
  582. {
  583. unsigned long range_end = mm->brk + 0x02000000;
  584. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  585. }