acpi-cpufreq.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775
  1. /*
  2. * acpi-cpufreq.c - ACPI Processor P-States Driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
  8. *
  9. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or (at
  14. * your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  24. *
  25. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/smp.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpufreq.h>
  33. #include <linux/compiler.h>
  34. #include <linux/dmi.h>
  35. #include <linux/slab.h>
  36. #include <linux/acpi.h>
  37. #include <linux/io.h>
  38. #include <linux/delay.h>
  39. #include <linux/uaccess.h>
  40. #include <acpi/processor.h>
  41. #include <asm/msr.h>
  42. #include <asm/processor.h>
  43. #include <asm/cpufeature.h>
  44. #include "mperf.h"
  45. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
  46. "acpi-cpufreq", msg)
  47. MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  48. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  49. MODULE_LICENSE("GPL");
  50. enum {
  51. UNDEFINED_CAPABLE = 0,
  52. SYSTEM_INTEL_MSR_CAPABLE,
  53. SYSTEM_IO_CAPABLE,
  54. };
  55. #define INTEL_MSR_RANGE (0xffff)
  56. struct acpi_cpufreq_data {
  57. struct acpi_processor_performance *acpi_data;
  58. struct cpufreq_frequency_table *freq_table;
  59. unsigned int resume;
  60. unsigned int cpu_feature;
  61. };
  62. static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
  63. /* acpi_perf_data is a pointer to percpu data. */
  64. static struct acpi_processor_performance __percpu *acpi_perf_data;
  65. static struct cpufreq_driver acpi_cpufreq_driver;
  66. static unsigned int acpi_pstate_strict;
  67. static int check_est_cpu(unsigned int cpuid)
  68. {
  69. struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
  70. return cpu_has(cpu, X86_FEATURE_EST);
  71. }
  72. static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
  73. {
  74. struct acpi_processor_performance *perf;
  75. int i;
  76. perf = data->acpi_data;
  77. for (i = 0; i < perf->state_count; i++) {
  78. if (value == perf->states[i].status)
  79. return data->freq_table[i].frequency;
  80. }
  81. return 0;
  82. }
  83. static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
  84. {
  85. int i;
  86. struct acpi_processor_performance *perf;
  87. msr &= INTEL_MSR_RANGE;
  88. perf = data->acpi_data;
  89. for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
  90. if (msr == perf->states[data->freq_table[i].index].status)
  91. return data->freq_table[i].frequency;
  92. }
  93. return data->freq_table[0].frequency;
  94. }
  95. static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
  96. {
  97. switch (data->cpu_feature) {
  98. case SYSTEM_INTEL_MSR_CAPABLE:
  99. return extract_msr(val, data);
  100. case SYSTEM_IO_CAPABLE:
  101. return extract_io(val, data);
  102. default:
  103. return 0;
  104. }
  105. }
  106. struct msr_addr {
  107. u32 reg;
  108. };
  109. struct io_addr {
  110. u16 port;
  111. u8 bit_width;
  112. };
  113. struct drv_cmd {
  114. unsigned int type;
  115. const struct cpumask *mask;
  116. union {
  117. struct msr_addr msr;
  118. struct io_addr io;
  119. } addr;
  120. u32 val;
  121. };
  122. /* Called via smp_call_function_single(), on the target CPU */
  123. static void do_drv_read(void *_cmd)
  124. {
  125. struct drv_cmd *cmd = _cmd;
  126. u32 h;
  127. switch (cmd->type) {
  128. case SYSTEM_INTEL_MSR_CAPABLE:
  129. rdmsr(cmd->addr.msr.reg, cmd->val, h);
  130. break;
  131. case SYSTEM_IO_CAPABLE:
  132. acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
  133. &cmd->val,
  134. (u32)cmd->addr.io.bit_width);
  135. break;
  136. default:
  137. break;
  138. }
  139. }
  140. /* Called via smp_call_function_many(), on the target CPUs */
  141. static void do_drv_write(void *_cmd)
  142. {
  143. struct drv_cmd *cmd = _cmd;
  144. u32 lo, hi;
  145. switch (cmd->type) {
  146. case SYSTEM_INTEL_MSR_CAPABLE:
  147. rdmsr(cmd->addr.msr.reg, lo, hi);
  148. lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
  149. wrmsr(cmd->addr.msr.reg, lo, hi);
  150. break;
  151. case SYSTEM_IO_CAPABLE:
  152. acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
  153. cmd->val,
  154. (u32)cmd->addr.io.bit_width);
  155. break;
  156. default:
  157. break;
  158. }
  159. }
  160. static void drv_read(struct drv_cmd *cmd)
  161. {
  162. int err;
  163. cmd->val = 0;
  164. err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
  165. WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
  166. }
  167. static void drv_write(struct drv_cmd *cmd)
  168. {
  169. int this_cpu;
  170. this_cpu = get_cpu();
  171. if (cpumask_test_cpu(this_cpu, cmd->mask))
  172. do_drv_write(cmd);
  173. smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
  174. put_cpu();
  175. }
  176. static u32 get_cur_val(const struct cpumask *mask)
  177. {
  178. struct acpi_processor_performance *perf;
  179. struct drv_cmd cmd;
  180. if (unlikely(cpumask_empty(mask)))
  181. return 0;
  182. switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
  183. case SYSTEM_INTEL_MSR_CAPABLE:
  184. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  185. cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
  186. break;
  187. case SYSTEM_IO_CAPABLE:
  188. cmd.type = SYSTEM_IO_CAPABLE;
  189. perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
  190. cmd.addr.io.port = perf->control_register.address;
  191. cmd.addr.io.bit_width = perf->control_register.bit_width;
  192. break;
  193. default:
  194. return 0;
  195. }
  196. cmd.mask = mask;
  197. drv_read(&cmd);
  198. dprintk("get_cur_val = %u\n", cmd.val);
  199. return cmd.val;
  200. }
  201. static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
  202. {
  203. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
  204. unsigned int freq;
  205. unsigned int cached_freq;
  206. dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
  207. if (unlikely(data == NULL ||
  208. data->acpi_data == NULL || data->freq_table == NULL)) {
  209. return 0;
  210. }
  211. cached_freq = data->freq_table[data->acpi_data->state].frequency;
  212. freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
  213. if (freq != cached_freq) {
  214. /*
  215. * The dreaded BIOS frequency change behind our back.
  216. * Force set the frequency on next target call.
  217. */
  218. data->resume = 1;
  219. }
  220. dprintk("cur freq = %u\n", freq);
  221. return freq;
  222. }
  223. static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
  224. struct acpi_cpufreq_data *data)
  225. {
  226. unsigned int cur_freq;
  227. unsigned int i;
  228. for (i = 0; i < 100; i++) {
  229. cur_freq = extract_freq(get_cur_val(mask), data);
  230. if (cur_freq == freq)
  231. return 1;
  232. udelay(10);
  233. }
  234. return 0;
  235. }
  236. static int acpi_cpufreq_target(struct cpufreq_policy *policy,
  237. unsigned int target_freq, unsigned int relation)
  238. {
  239. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
  240. struct acpi_processor_performance *perf;
  241. struct cpufreq_freqs freqs;
  242. struct drv_cmd cmd;
  243. unsigned int next_state = 0; /* Index into freq_table */
  244. unsigned int next_perf_state = 0; /* Index into perf table */
  245. unsigned int i;
  246. int result = 0;
  247. dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
  248. if (unlikely(data == NULL ||
  249. data->acpi_data == NULL || data->freq_table == NULL)) {
  250. return -ENODEV;
  251. }
  252. perf = data->acpi_data;
  253. result = cpufreq_frequency_table_target(policy,
  254. data->freq_table,
  255. target_freq,
  256. relation, &next_state);
  257. if (unlikely(result)) {
  258. result = -ENODEV;
  259. goto out;
  260. }
  261. next_perf_state = data->freq_table[next_state].index;
  262. if (perf->state == next_perf_state) {
  263. if (unlikely(data->resume)) {
  264. dprintk("Called after resume, resetting to P%d\n",
  265. next_perf_state);
  266. data->resume = 0;
  267. } else {
  268. dprintk("Already at target state (P%d)\n",
  269. next_perf_state);
  270. goto out;
  271. }
  272. }
  273. switch (data->cpu_feature) {
  274. case SYSTEM_INTEL_MSR_CAPABLE:
  275. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  276. cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
  277. cmd.val = (u32) perf->states[next_perf_state].control;
  278. break;
  279. case SYSTEM_IO_CAPABLE:
  280. cmd.type = SYSTEM_IO_CAPABLE;
  281. cmd.addr.io.port = perf->control_register.address;
  282. cmd.addr.io.bit_width = perf->control_register.bit_width;
  283. cmd.val = (u32) perf->states[next_perf_state].control;
  284. break;
  285. default:
  286. result = -ENODEV;
  287. goto out;
  288. }
  289. /* cpufreq holds the hotplug lock, so we are safe from here on */
  290. if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
  291. cmd.mask = policy->cpus;
  292. else
  293. cmd.mask = cpumask_of(policy->cpu);
  294. freqs.old = perf->states[perf->state].core_frequency * 1000;
  295. freqs.new = data->freq_table[next_state].frequency;
  296. for_each_cpu(i, policy->cpus) {
  297. freqs.cpu = i;
  298. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  299. }
  300. drv_write(&cmd);
  301. if (acpi_pstate_strict) {
  302. if (!check_freqs(cmd.mask, freqs.new, data)) {
  303. dprintk("acpi_cpufreq_target failed (%d)\n",
  304. policy->cpu);
  305. result = -EAGAIN;
  306. goto out;
  307. }
  308. }
  309. for_each_cpu(i, policy->cpus) {
  310. freqs.cpu = i;
  311. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  312. }
  313. perf->state = next_perf_state;
  314. out:
  315. return result;
  316. }
  317. static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
  318. {
  319. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
  320. dprintk("acpi_cpufreq_verify\n");
  321. return cpufreq_frequency_table_verify(policy, data->freq_table);
  322. }
  323. static unsigned long
  324. acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
  325. {
  326. struct acpi_processor_performance *perf = data->acpi_data;
  327. if (cpu_khz) {
  328. /* search the closest match to cpu_khz */
  329. unsigned int i;
  330. unsigned long freq;
  331. unsigned long freqn = perf->states[0].core_frequency * 1000;
  332. for (i = 0; i < (perf->state_count-1); i++) {
  333. freq = freqn;
  334. freqn = perf->states[i+1].core_frequency * 1000;
  335. if ((2 * cpu_khz) > (freqn + freq)) {
  336. perf->state = i;
  337. return freq;
  338. }
  339. }
  340. perf->state = perf->state_count-1;
  341. return freqn;
  342. } else {
  343. /* assume CPU is at P0... */
  344. perf->state = 0;
  345. return perf->states[0].core_frequency * 1000;
  346. }
  347. }
  348. static void free_acpi_perf_data(void)
  349. {
  350. unsigned int i;
  351. /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
  352. for_each_possible_cpu(i)
  353. free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
  354. ->shared_cpu_map);
  355. free_percpu(acpi_perf_data);
  356. }
  357. /*
  358. * acpi_cpufreq_early_init - initialize ACPI P-States library
  359. *
  360. * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
  361. * in order to determine correct frequency and voltage pairings. We can
  362. * do _PDC and _PSD and find out the processor dependency for the
  363. * actual init that will happen later...
  364. */
  365. static int __init acpi_cpufreq_early_init(void)
  366. {
  367. unsigned int i;
  368. dprintk("acpi_cpufreq_early_init\n");
  369. acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
  370. if (!acpi_perf_data) {
  371. dprintk("Memory allocation error for acpi_perf_data.\n");
  372. return -ENOMEM;
  373. }
  374. for_each_possible_cpu(i) {
  375. if (!zalloc_cpumask_var_node(
  376. &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
  377. GFP_KERNEL, cpu_to_node(i))) {
  378. /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
  379. free_acpi_perf_data();
  380. return -ENOMEM;
  381. }
  382. }
  383. /* Do initialization in ACPI core */
  384. acpi_processor_preregister_performance(acpi_perf_data);
  385. return 0;
  386. }
  387. #ifdef CONFIG_SMP
  388. /*
  389. * Some BIOSes do SW_ANY coordination internally, either set it up in hw
  390. * or do it in BIOS firmware and won't inform about it to OS. If not
  391. * detected, this has a side effect of making CPU run at a different speed
  392. * than OS intended it to run at. Detect it and handle it cleanly.
  393. */
  394. static int bios_with_sw_any_bug;
  395. static int sw_any_bug_found(const struct dmi_system_id *d)
  396. {
  397. bios_with_sw_any_bug = 1;
  398. return 0;
  399. }
  400. static const struct dmi_system_id sw_any_bug_dmi_table[] = {
  401. {
  402. .callback = sw_any_bug_found,
  403. .ident = "Supermicro Server X6DLP",
  404. .matches = {
  405. DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
  406. DMI_MATCH(DMI_BIOS_VERSION, "080010"),
  407. DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
  408. },
  409. },
  410. { }
  411. };
  412. static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
  413. {
  414. /* Intel Xeon Processor 7100 Series Specification Update
  415. * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
  416. * AL30: A Machine Check Exception (MCE) Occurring during an
  417. * Enhanced Intel SpeedStep Technology Ratio Change May Cause
  418. * Both Processor Cores to Lock Up. */
  419. if (c->x86_vendor == X86_VENDOR_INTEL) {
  420. if ((c->x86 == 15) &&
  421. (c->x86_model == 6) &&
  422. (c->x86_mask == 8)) {
  423. printk(KERN_INFO "acpi-cpufreq: Intel(R) "
  424. "Xeon(R) 7100 Errata AL30, processors may "
  425. "lock up on frequency changes: disabling "
  426. "acpi-cpufreq.\n");
  427. return -ENODEV;
  428. }
  429. }
  430. return 0;
  431. }
  432. #endif
  433. static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
  434. {
  435. unsigned int i;
  436. unsigned int valid_states = 0;
  437. unsigned int cpu = policy->cpu;
  438. struct acpi_cpufreq_data *data;
  439. unsigned int result = 0;
  440. struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
  441. struct acpi_processor_performance *perf;
  442. #ifdef CONFIG_SMP
  443. static int blacklisted;
  444. #endif
  445. dprintk("acpi_cpufreq_cpu_init\n");
  446. #ifdef CONFIG_SMP
  447. if (blacklisted)
  448. return blacklisted;
  449. blacklisted = acpi_cpufreq_blacklist(c);
  450. if (blacklisted)
  451. return blacklisted;
  452. #endif
  453. data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
  454. if (!data)
  455. return -ENOMEM;
  456. data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
  457. per_cpu(acfreq_data, cpu) = data;
  458. if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
  459. acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
  460. result = acpi_processor_register_performance(data->acpi_data, cpu);
  461. if (result)
  462. goto err_free;
  463. perf = data->acpi_data;
  464. policy->shared_type = perf->shared_type;
  465. /*
  466. * Will let policy->cpus know about dependency only when software
  467. * coordination is required.
  468. */
  469. if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
  470. policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
  471. cpumask_copy(policy->cpus, perf->shared_cpu_map);
  472. }
  473. cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
  474. #ifdef CONFIG_SMP
  475. dmi_check_system(sw_any_bug_dmi_table);
  476. if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
  477. policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
  478. cpumask_copy(policy->cpus, cpu_core_mask(cpu));
  479. }
  480. #endif
  481. /* capability check */
  482. if (perf->state_count <= 1) {
  483. dprintk("No P-States\n");
  484. result = -ENODEV;
  485. goto err_unreg;
  486. }
  487. if (perf->control_register.space_id != perf->status_register.space_id) {
  488. result = -ENODEV;
  489. goto err_unreg;
  490. }
  491. switch (perf->control_register.space_id) {
  492. case ACPI_ADR_SPACE_SYSTEM_IO:
  493. dprintk("SYSTEM IO addr space\n");
  494. data->cpu_feature = SYSTEM_IO_CAPABLE;
  495. break;
  496. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  497. dprintk("HARDWARE addr space\n");
  498. if (!check_est_cpu(cpu)) {
  499. result = -ENODEV;
  500. goto err_unreg;
  501. }
  502. data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
  503. break;
  504. default:
  505. dprintk("Unknown addr space %d\n",
  506. (u32) (perf->control_register.space_id));
  507. result = -ENODEV;
  508. goto err_unreg;
  509. }
  510. data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
  511. (perf->state_count+1), GFP_KERNEL);
  512. if (!data->freq_table) {
  513. result = -ENOMEM;
  514. goto err_unreg;
  515. }
  516. /* detect transition latency */
  517. policy->cpuinfo.transition_latency = 0;
  518. for (i = 0; i < perf->state_count; i++) {
  519. if ((perf->states[i].transition_latency * 1000) >
  520. policy->cpuinfo.transition_latency)
  521. policy->cpuinfo.transition_latency =
  522. perf->states[i].transition_latency * 1000;
  523. }
  524. /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
  525. if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
  526. policy->cpuinfo.transition_latency > 20 * 1000) {
  527. policy->cpuinfo.transition_latency = 20 * 1000;
  528. printk_once(KERN_INFO
  529. "P-state transition latency capped at 20 uS\n");
  530. }
  531. /* table init */
  532. for (i = 0; i < perf->state_count; i++) {
  533. if (i > 0 && perf->states[i].core_frequency >=
  534. data->freq_table[valid_states-1].frequency / 1000)
  535. continue;
  536. data->freq_table[valid_states].index = i;
  537. data->freq_table[valid_states].frequency =
  538. perf->states[i].core_frequency * 1000;
  539. valid_states++;
  540. }
  541. data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
  542. perf->state = 0;
  543. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  544. if (result)
  545. goto err_freqfree;
  546. if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
  547. printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
  548. switch (perf->control_register.space_id) {
  549. case ACPI_ADR_SPACE_SYSTEM_IO:
  550. /* Current speed is unknown and not detectable by IO port */
  551. policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
  552. break;
  553. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  554. acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
  555. policy->cur = get_cur_freq_on_cpu(cpu);
  556. break;
  557. default:
  558. break;
  559. }
  560. /* notify BIOS that we exist */
  561. acpi_processor_notify_smm(THIS_MODULE);
  562. /* Check for APERF/MPERF support in hardware */
  563. if (cpu_has(c, X86_FEATURE_APERFMPERF))
  564. acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
  565. dprintk("CPU%u - ACPI performance management activated.\n", cpu);
  566. for (i = 0; i < perf->state_count; i++)
  567. dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
  568. (i == perf->state ? '*' : ' '), i,
  569. (u32) perf->states[i].core_frequency,
  570. (u32) perf->states[i].power,
  571. (u32) perf->states[i].transition_latency);
  572. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  573. /*
  574. * the first call to ->target() should result in us actually
  575. * writing something to the appropriate registers.
  576. */
  577. data->resume = 1;
  578. return result;
  579. err_freqfree:
  580. kfree(data->freq_table);
  581. err_unreg:
  582. acpi_processor_unregister_performance(perf, cpu);
  583. err_free:
  584. kfree(data);
  585. per_cpu(acfreq_data, cpu) = NULL;
  586. return result;
  587. }
  588. static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
  589. {
  590. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
  591. dprintk("acpi_cpufreq_cpu_exit\n");
  592. if (data) {
  593. cpufreq_frequency_table_put_attr(policy->cpu);
  594. per_cpu(acfreq_data, policy->cpu) = NULL;
  595. acpi_processor_unregister_performance(data->acpi_data,
  596. policy->cpu);
  597. kfree(data);
  598. }
  599. return 0;
  600. }
  601. static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
  602. {
  603. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
  604. dprintk("acpi_cpufreq_resume\n");
  605. data->resume = 1;
  606. return 0;
  607. }
  608. static struct freq_attr *acpi_cpufreq_attr[] = {
  609. &cpufreq_freq_attr_scaling_available_freqs,
  610. NULL,
  611. };
  612. static struct cpufreq_driver acpi_cpufreq_driver = {
  613. .verify = acpi_cpufreq_verify,
  614. .target = acpi_cpufreq_target,
  615. .bios_limit = acpi_processor_get_bios_limit,
  616. .init = acpi_cpufreq_cpu_init,
  617. .exit = acpi_cpufreq_cpu_exit,
  618. .resume = acpi_cpufreq_resume,
  619. .name = "acpi-cpufreq",
  620. .owner = THIS_MODULE,
  621. .attr = acpi_cpufreq_attr,
  622. };
  623. static int __init acpi_cpufreq_init(void)
  624. {
  625. int ret;
  626. if (acpi_disabled)
  627. return 0;
  628. dprintk("acpi_cpufreq_init\n");
  629. ret = acpi_cpufreq_early_init();
  630. if (ret)
  631. return ret;
  632. ret = cpufreq_register_driver(&acpi_cpufreq_driver);
  633. if (ret)
  634. free_acpi_perf_data();
  635. return ret;
  636. }
  637. static void __exit acpi_cpufreq_exit(void)
  638. {
  639. dprintk("acpi_cpufreq_exit\n");
  640. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  641. free_percpu(acpi_perf_data);
  642. }
  643. module_param(acpi_pstate_strict, uint, 0644);
  644. MODULE_PARM_DESC(acpi_pstate_strict,
  645. "value 0 or non-zero. non-zero -> strict ACPI checks are "
  646. "performed during frequency changes.");
  647. late_initcall(acpi_cpufreq_init);
  648. module_exit(acpi_cpufreq_exit);
  649. MODULE_ALIAS("acpi");