apb_timer.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764
  1. /*
  2. * apb_timer.c: Driver for Langwell APB timers
  3. *
  4. * (C) Copyright 2009 Intel Corporation
  5. * Author: Jacob Pan (jacob.jun.pan@intel.com)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; version 2
  10. * of the License.
  11. *
  12. * Note:
  13. * Langwell is the south complex of Intel Moorestown MID platform. There are
  14. * eight external timers in total that can be used by the operating system.
  15. * The timer information, such as frequency and addresses, is provided to the
  16. * OS via SFI tables.
  17. * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
  18. * individual redirection table entries (RTE).
  19. * Unlike HPET, there is no master counter, therefore one of the timers are
  20. * used as clocksource. The overall allocation looks like:
  21. * - timer 0 - NR_CPUs for per cpu timer
  22. * - one timer for clocksource
  23. * - one timer for watchdog driver.
  24. * It is also worth notice that APB timer does not support true one-shot mode,
  25. * free-running mode will be used here to emulate one-shot mode.
  26. * APB timer can also be used as broadcast timer along with per cpu local APIC
  27. * timer, but by default APB timer has higher rating than local APIC timers.
  28. */
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <linux/delay.h>
  32. #include <linux/errno.h>
  33. #include <linux/init.h>
  34. #include <linux/sysdev.h>
  35. #include <linux/slab.h>
  36. #include <linux/pm.h>
  37. #include <linux/pci.h>
  38. #include <linux/sfi.h>
  39. #include <linux/interrupt.h>
  40. #include <linux/cpu.h>
  41. #include <linux/irq.h>
  42. #include <asm/fixmap.h>
  43. #include <asm/apb_timer.h>
  44. #include <asm/mrst.h>
  45. #define APBT_MASK CLOCKSOURCE_MASK(32)
  46. #define APBT_SHIFT 22
  47. #define APBT_CLOCKEVENT_RATING 110
  48. #define APBT_CLOCKSOURCE_RATING 250
  49. #define APBT_MIN_DELTA_USEC 200
  50. #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
  51. #define APBT_CLOCKEVENT0_NUM (0)
  52. #define APBT_CLOCKEVENT1_NUM (1)
  53. #define APBT_CLOCKSOURCE_NUM (2)
  54. static unsigned long apbt_address;
  55. static int apb_timer_block_enabled;
  56. static void __iomem *apbt_virt_address;
  57. static int phy_cs_timer_id;
  58. /*
  59. * Common DW APB timer info
  60. */
  61. static uint64_t apbt_freq;
  62. static void apbt_set_mode(enum clock_event_mode mode,
  63. struct clock_event_device *evt);
  64. static int apbt_next_event(unsigned long delta,
  65. struct clock_event_device *evt);
  66. static cycle_t apbt_read_clocksource(struct clocksource *cs);
  67. static void apbt_restart_clocksource(struct clocksource *cs);
  68. struct apbt_dev {
  69. struct clock_event_device evt;
  70. unsigned int num;
  71. int cpu;
  72. unsigned int irq;
  73. unsigned int tick;
  74. unsigned int count;
  75. unsigned int flags;
  76. char name[10];
  77. };
  78. static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
  79. #ifdef CONFIG_SMP
  80. static unsigned int apbt_num_timers_used;
  81. static struct apbt_dev *apbt_devs;
  82. #endif
  83. static inline unsigned long apbt_readl_reg(unsigned long a)
  84. {
  85. return readl(apbt_virt_address + a);
  86. }
  87. static inline void apbt_writel_reg(unsigned long d, unsigned long a)
  88. {
  89. writel(d, apbt_virt_address + a);
  90. }
  91. static inline unsigned long apbt_readl(int n, unsigned long a)
  92. {
  93. return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
  94. }
  95. static inline void apbt_writel(int n, unsigned long d, unsigned long a)
  96. {
  97. writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
  98. }
  99. static inline void apbt_set_mapping(void)
  100. {
  101. struct sfi_timer_table_entry *mtmr;
  102. if (apbt_virt_address) {
  103. pr_debug("APBT base already mapped\n");
  104. return;
  105. }
  106. mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
  107. if (mtmr == NULL) {
  108. printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
  109. APBT_CLOCKEVENT0_NUM);
  110. return;
  111. }
  112. apbt_address = (unsigned long)mtmr->phys_addr;
  113. if (!apbt_address) {
  114. printk(KERN_WARNING "No timer base from SFI, use default\n");
  115. apbt_address = APBT_DEFAULT_BASE;
  116. }
  117. apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
  118. if (apbt_virt_address) {
  119. pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
  120. (void *)apbt_address, (void *)apbt_virt_address);
  121. } else {
  122. pr_debug("Failed mapping APBT phy address at %p\n",\
  123. (void *)apbt_address);
  124. goto panic_noapbt;
  125. }
  126. apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
  127. sfi_free_mtmr(mtmr);
  128. /* Now figure out the physical timer id for clocksource device */
  129. mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
  130. if (mtmr == NULL)
  131. goto panic_noapbt;
  132. /* Now figure out the physical timer id */
  133. phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
  134. / APBTMRS_REG_SIZE;
  135. pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
  136. return;
  137. panic_noapbt:
  138. panic("Failed to setup APB system timer\n");
  139. }
  140. static inline void apbt_clear_mapping(void)
  141. {
  142. iounmap(apbt_virt_address);
  143. apbt_virt_address = NULL;
  144. }
  145. /*
  146. * APBT timer interrupt enable / disable
  147. */
  148. static inline int is_apbt_capable(void)
  149. {
  150. return apbt_virt_address ? 1 : 0;
  151. }
  152. static struct clocksource clocksource_apbt = {
  153. .name = "apbt",
  154. .rating = APBT_CLOCKSOURCE_RATING,
  155. .read = apbt_read_clocksource,
  156. .mask = APBT_MASK,
  157. .shift = APBT_SHIFT,
  158. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  159. .resume = apbt_restart_clocksource,
  160. };
  161. /* boot APB clock event device */
  162. static struct clock_event_device apbt_clockevent = {
  163. .name = "apbt0",
  164. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  165. .set_mode = apbt_set_mode,
  166. .set_next_event = apbt_next_event,
  167. .shift = APBT_SHIFT,
  168. .irq = 0,
  169. .rating = APBT_CLOCKEVENT_RATING,
  170. };
  171. /*
  172. * start count down from 0xffff_ffff. this is done by toggling the enable bit
  173. * then load initial load count to ~0.
  174. */
  175. static void apbt_start_counter(int n)
  176. {
  177. unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
  178. ctrl &= ~APBTMR_CONTROL_ENABLE;
  179. apbt_writel(n, ctrl, APBTMR_N_CONTROL);
  180. apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
  181. /* enable, mask interrupt */
  182. ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
  183. ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
  184. apbt_writel(n, ctrl, APBTMR_N_CONTROL);
  185. /* read it once to get cached counter value initialized */
  186. apbt_read_clocksource(&clocksource_apbt);
  187. }
  188. static irqreturn_t apbt_interrupt_handler(int irq, void *data)
  189. {
  190. struct apbt_dev *dev = (struct apbt_dev *)data;
  191. struct clock_event_device *aevt = &dev->evt;
  192. if (!aevt->event_handler) {
  193. printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
  194. dev->num);
  195. return IRQ_NONE;
  196. }
  197. aevt->event_handler(aevt);
  198. return IRQ_HANDLED;
  199. }
  200. static void apbt_restart_clocksource(struct clocksource *cs)
  201. {
  202. apbt_start_counter(phy_cs_timer_id);
  203. }
  204. /* Setup IRQ routing via IOAPIC */
  205. #ifdef CONFIG_SMP
  206. static void apbt_setup_irq(struct apbt_dev *adev)
  207. {
  208. struct irq_chip *chip;
  209. struct irq_desc *desc;
  210. /* timer0 irq has been setup early */
  211. if (adev->irq == 0)
  212. return;
  213. desc = irq_to_desc(adev->irq);
  214. chip = get_irq_chip(adev->irq);
  215. disable_irq(adev->irq);
  216. desc->status |= IRQ_MOVE_PCNTXT;
  217. irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
  218. /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */
  219. set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge");
  220. enable_irq(adev->irq);
  221. if (system_state == SYSTEM_BOOTING)
  222. if (request_irq(adev->irq, apbt_interrupt_handler,
  223. IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
  224. adev->name, adev)) {
  225. printk(KERN_ERR "Failed request IRQ for APBT%d\n",
  226. adev->num);
  227. }
  228. }
  229. #endif
  230. static void apbt_enable_int(int n)
  231. {
  232. unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
  233. /* clear pending intr */
  234. apbt_readl(n, APBTMR_N_EOI);
  235. ctrl &= ~APBTMR_CONTROL_INT;
  236. apbt_writel(n, ctrl, APBTMR_N_CONTROL);
  237. }
  238. static void apbt_disable_int(int n)
  239. {
  240. unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
  241. ctrl |= APBTMR_CONTROL_INT;
  242. apbt_writel(n, ctrl, APBTMR_N_CONTROL);
  243. }
  244. static int __init apbt_clockevent_register(void)
  245. {
  246. struct sfi_timer_table_entry *mtmr;
  247. struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
  248. mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
  249. if (mtmr == NULL) {
  250. printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
  251. APBT_CLOCKEVENT0_NUM);
  252. return -ENODEV;
  253. }
  254. /*
  255. * We need to calculate the scaled math multiplication factor for
  256. * nanosecond to apbt tick conversion.
  257. * mult = (nsec/cycle)*2^APBT_SHIFT
  258. */
  259. apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
  260. , NSEC_PER_SEC, APBT_SHIFT);
  261. /* Calculate the min / max delta */
  262. apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
  263. &apbt_clockevent);
  264. apbt_clockevent.min_delta_ns = clockevent_delta2ns(
  265. APBT_MIN_DELTA_USEC*apbt_freq,
  266. &apbt_clockevent);
  267. /*
  268. * Start apbt with the boot cpu mask and make it
  269. * global if not used for per cpu timer.
  270. */
  271. apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
  272. adev->num = smp_processor_id();
  273. memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
  274. if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
  275. apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
  276. global_clock_event = &adev->evt;
  277. printk(KERN_DEBUG "%s clockevent registered as global\n",
  278. global_clock_event->name);
  279. }
  280. if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
  281. IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
  282. apbt_clockevent.name, adev)) {
  283. printk(KERN_ERR "Failed request IRQ for APBT%d\n",
  284. apbt_clockevent.irq);
  285. }
  286. clockevents_register_device(&adev->evt);
  287. /* Start APBT 0 interrupts */
  288. apbt_enable_int(APBT_CLOCKEVENT0_NUM);
  289. sfi_free_mtmr(mtmr);
  290. return 0;
  291. }
  292. #ifdef CONFIG_SMP
  293. /* Should be called with per cpu */
  294. void apbt_setup_secondary_clock(void)
  295. {
  296. struct apbt_dev *adev;
  297. struct clock_event_device *aevt;
  298. int cpu;
  299. /* Don't register boot CPU clockevent */
  300. cpu = smp_processor_id();
  301. if (cpu == boot_cpu_id)
  302. return;
  303. /*
  304. * We need to calculate the scaled math multiplication factor for
  305. * nanosecond to apbt tick conversion.
  306. * mult = (nsec/cycle)*2^APBT_SHIFT
  307. */
  308. printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
  309. adev = &per_cpu(cpu_apbt_dev, cpu);
  310. aevt = &adev->evt;
  311. memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
  312. aevt->cpumask = cpumask_of(cpu);
  313. aevt->name = adev->name;
  314. aevt->mode = CLOCK_EVT_MODE_UNUSED;
  315. printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
  316. cpu, aevt->name, *(u32 *)aevt->cpumask);
  317. apbt_setup_irq(adev);
  318. clockevents_register_device(aevt);
  319. apbt_enable_int(cpu);
  320. return;
  321. }
  322. /*
  323. * this notify handler process CPU hotplug events. in case of S0i3, nonboot
  324. * cpus are disabled/enabled frequently, for performance reasons, we keep the
  325. * per cpu timer irq registered so that we do need to do free_irq/request_irq.
  326. *
  327. * TODO: it might be more reliable to directly disable percpu clockevent device
  328. * without the notifier chain. currently, cpu 0 may get interrupts from other
  329. * cpu timers during the offline process due to the ordering of notification.
  330. * the extra interrupt is harmless.
  331. */
  332. static int apbt_cpuhp_notify(struct notifier_block *n,
  333. unsigned long action, void *hcpu)
  334. {
  335. unsigned long cpu = (unsigned long)hcpu;
  336. struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
  337. switch (action & 0xf) {
  338. case CPU_DEAD:
  339. apbt_disable_int(cpu);
  340. if (system_state == SYSTEM_RUNNING)
  341. pr_debug("skipping APBT CPU %lu offline\n", cpu);
  342. else if (adev) {
  343. pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
  344. free_irq(adev->irq, adev);
  345. }
  346. break;
  347. default:
  348. pr_debug(KERN_INFO "APBT notified %lu, no action\n", action);
  349. }
  350. return NOTIFY_OK;
  351. }
  352. static __init int apbt_late_init(void)
  353. {
  354. if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
  355. !apb_timer_block_enabled)
  356. return 0;
  357. /* This notifier should be called after workqueue is ready */
  358. hotcpu_notifier(apbt_cpuhp_notify, -20);
  359. return 0;
  360. }
  361. fs_initcall(apbt_late_init);
  362. #else
  363. void apbt_setup_secondary_clock(void) {}
  364. #endif /* CONFIG_SMP */
  365. static void apbt_set_mode(enum clock_event_mode mode,
  366. struct clock_event_device *evt)
  367. {
  368. unsigned long ctrl;
  369. uint64_t delta;
  370. int timer_num;
  371. struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
  372. BUG_ON(!apbt_virt_address);
  373. timer_num = adev->num;
  374. pr_debug("%s CPU %d timer %d mode=%d\n",
  375. __func__, first_cpu(*evt->cpumask), timer_num, mode);
  376. switch (mode) {
  377. case CLOCK_EVT_MODE_PERIODIC:
  378. delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
  379. delta >>= apbt_clockevent.shift;
  380. ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
  381. ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
  382. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  383. /*
  384. * DW APB p. 46, have to disable timer before load counter,
  385. * may cause sync problem.
  386. */
  387. ctrl &= ~APBTMR_CONTROL_ENABLE;
  388. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  389. udelay(1);
  390. pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
  391. apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
  392. ctrl |= APBTMR_CONTROL_ENABLE;
  393. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  394. break;
  395. /* APB timer does not have one-shot mode, use free running mode */
  396. case CLOCK_EVT_MODE_ONESHOT:
  397. ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
  398. /*
  399. * set free running mode, this mode will let timer reload max
  400. * timeout which will give time (3min on 25MHz clock) to rearm
  401. * the next event, therefore emulate the one-shot mode.
  402. */
  403. ctrl &= ~APBTMR_CONTROL_ENABLE;
  404. ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
  405. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  406. /* write again to set free running mode */
  407. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  408. /*
  409. * DW APB p. 46, load counter with all 1s before starting free
  410. * running mode.
  411. */
  412. apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
  413. ctrl &= ~APBTMR_CONTROL_INT;
  414. ctrl |= APBTMR_CONTROL_ENABLE;
  415. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  416. break;
  417. case CLOCK_EVT_MODE_UNUSED:
  418. case CLOCK_EVT_MODE_SHUTDOWN:
  419. apbt_disable_int(timer_num);
  420. ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
  421. ctrl &= ~APBTMR_CONTROL_ENABLE;
  422. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  423. break;
  424. case CLOCK_EVT_MODE_RESUME:
  425. apbt_enable_int(timer_num);
  426. break;
  427. }
  428. }
  429. static int apbt_next_event(unsigned long delta,
  430. struct clock_event_device *evt)
  431. {
  432. unsigned long ctrl;
  433. int timer_num;
  434. struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
  435. timer_num = adev->num;
  436. /* Disable timer */
  437. ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
  438. ctrl &= ~APBTMR_CONTROL_ENABLE;
  439. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  440. /* write new count */
  441. apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
  442. ctrl |= APBTMR_CONTROL_ENABLE;
  443. apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
  444. return 0;
  445. }
  446. /*
  447. * APB timer clock is not in sync with pclk on Langwell, which translates to
  448. * unreliable read value caused by sampling error. the error does not add up
  449. * overtime and only happens when sampling a 0 as a 1 by mistake. so the time
  450. * would go backwards. the following code is trying to prevent time traveling
  451. * backwards. little bit paranoid.
  452. */
  453. static cycle_t apbt_read_clocksource(struct clocksource *cs)
  454. {
  455. unsigned long t0, t1, t2;
  456. static unsigned long last_read;
  457. bad_count:
  458. t1 = apbt_readl(phy_cs_timer_id,
  459. APBTMR_N_CURRENT_VALUE);
  460. t2 = apbt_readl(phy_cs_timer_id,
  461. APBTMR_N_CURRENT_VALUE);
  462. if (unlikely(t1 < t2)) {
  463. pr_debug("APBT: read current count error %lx:%lx:%lx\n",
  464. t1, t2, t2 - t1);
  465. goto bad_count;
  466. }
  467. /*
  468. * check against cached last read, makes sure time does not go back.
  469. * it could be a normal rollover but we will do tripple check anyway
  470. */
  471. if (unlikely(t2 > last_read)) {
  472. /* check if we have a normal rollover */
  473. unsigned long raw_intr_status =
  474. apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
  475. /*
  476. * cs timer interrupt is masked but raw intr bit is set if
  477. * rollover occurs. then we read EOI reg to clear it.
  478. */
  479. if (raw_intr_status & (1 << phy_cs_timer_id)) {
  480. apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
  481. goto out;
  482. }
  483. pr_debug("APB CS going back %lx:%lx:%lx ",
  484. t2, last_read, t2 - last_read);
  485. bad_count_x3:
  486. pr_debug(KERN_INFO "tripple check enforced\n");
  487. t0 = apbt_readl(phy_cs_timer_id,
  488. APBTMR_N_CURRENT_VALUE);
  489. udelay(1);
  490. t1 = apbt_readl(phy_cs_timer_id,
  491. APBTMR_N_CURRENT_VALUE);
  492. udelay(1);
  493. t2 = apbt_readl(phy_cs_timer_id,
  494. APBTMR_N_CURRENT_VALUE);
  495. if ((t2 > t1) || (t1 > t0)) {
  496. printk(KERN_ERR "Error: APB CS tripple check failed\n");
  497. goto bad_count_x3;
  498. }
  499. }
  500. out:
  501. last_read = t2;
  502. return (cycle_t)~t2;
  503. }
  504. static int apbt_clocksource_register(void)
  505. {
  506. u64 start, now;
  507. cycle_t t1;
  508. /* Start the counter, use timer 2 as source, timer 0/1 for event */
  509. apbt_start_counter(phy_cs_timer_id);
  510. /* Verify whether apbt counter works */
  511. t1 = apbt_read_clocksource(&clocksource_apbt);
  512. rdtscll(start);
  513. /*
  514. * We don't know the TSC frequency yet, but waiting for
  515. * 200000 TSC cycles is safe:
  516. * 4 GHz == 50us
  517. * 1 GHz == 200us
  518. */
  519. do {
  520. rep_nop();
  521. rdtscll(now);
  522. } while ((now - start) < 200000UL);
  523. /* APBT is the only always on clocksource, it has to work! */
  524. if (t1 == apbt_read_clocksource(&clocksource_apbt))
  525. panic("APBT counter not counting. APBT disabled\n");
  526. /*
  527. * initialize and register APBT clocksource
  528. * convert that to ns/clock cycle
  529. * mult = (ns/c) * 2^APBT_SHIFT
  530. */
  531. clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
  532. (unsigned long) apbt_freq, APBT_SHIFT);
  533. clocksource_register(&clocksource_apbt);
  534. return 0;
  535. }
  536. /*
  537. * Early setup the APBT timer, only use timer 0 for booting then switch to
  538. * per CPU timer if possible.
  539. * returns 1 if per cpu apbt is setup
  540. * returns 0 if no per cpu apbt is chosen
  541. * panic if set up failed, this is the only platform timer on Moorestown.
  542. */
  543. void __init apbt_time_init(void)
  544. {
  545. #ifdef CONFIG_SMP
  546. int i;
  547. struct sfi_timer_table_entry *p_mtmr;
  548. unsigned int percpu_timer;
  549. struct apbt_dev *adev;
  550. #endif
  551. if (apb_timer_block_enabled)
  552. return;
  553. apbt_set_mapping();
  554. if (apbt_virt_address) {
  555. pr_debug("Found APBT version 0x%lx\n",\
  556. apbt_readl_reg(APBTMRS_COMP_VERSION));
  557. } else
  558. goto out_noapbt;
  559. /*
  560. * Read the frequency and check for a sane value, for ESL model
  561. * we extend the possible clock range to allow time scaling.
  562. */
  563. if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
  564. pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
  565. goto out_noapbt;
  566. }
  567. if (apbt_clocksource_register()) {
  568. pr_debug("APBT has failed to register clocksource\n");
  569. goto out_noapbt;
  570. }
  571. if (!apbt_clockevent_register())
  572. apb_timer_block_enabled = 1;
  573. else {
  574. pr_debug("APBT has failed to register clockevent\n");
  575. goto out_noapbt;
  576. }
  577. #ifdef CONFIG_SMP
  578. /* kernel cmdline disable apb timer, so we will use lapic timers */
  579. if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
  580. printk(KERN_INFO "apbt: disabled per cpu timer\n");
  581. return;
  582. }
  583. pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
  584. if (num_possible_cpus() <= sfi_mtimer_num) {
  585. percpu_timer = 1;
  586. apbt_num_timers_used = num_possible_cpus();
  587. } else {
  588. percpu_timer = 0;
  589. apbt_num_timers_used = 1;
  590. adev = &per_cpu(cpu_apbt_dev, 0);
  591. adev->flags &= ~APBT_DEV_USED;
  592. }
  593. pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
  594. /* here we set up per CPU timer data structure */
  595. apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
  596. GFP_KERNEL);
  597. if (!apbt_devs) {
  598. printk(KERN_ERR "Failed to allocate APB timer devices\n");
  599. return;
  600. }
  601. for (i = 0; i < apbt_num_timers_used; i++) {
  602. adev = &per_cpu(cpu_apbt_dev, i);
  603. adev->num = i;
  604. adev->cpu = i;
  605. p_mtmr = sfi_get_mtmr(i);
  606. if (p_mtmr) {
  607. adev->tick = p_mtmr->freq_hz;
  608. adev->irq = p_mtmr->irq;
  609. } else
  610. printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
  611. adev->count = 0;
  612. sprintf(adev->name, "apbt%d", i);
  613. }
  614. #endif
  615. return;
  616. out_noapbt:
  617. apbt_clear_mapping();
  618. apb_timer_block_enabled = 0;
  619. panic("failed to enable APB timer\n");
  620. }
  621. static inline void apbt_disable(int n)
  622. {
  623. if (is_apbt_capable()) {
  624. unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
  625. ctrl &= ~APBTMR_CONTROL_ENABLE;
  626. apbt_writel(n, ctrl, APBTMR_N_CONTROL);
  627. }
  628. }
  629. /* called before apb_timer_enable, use early map */
  630. unsigned long apbt_quick_calibrate()
  631. {
  632. int i, scale;
  633. u64 old, new;
  634. cycle_t t1, t2;
  635. unsigned long khz = 0;
  636. u32 loop, shift;
  637. apbt_set_mapping();
  638. apbt_start_counter(phy_cs_timer_id);
  639. /* check if the timer can count down, otherwise return */
  640. old = apbt_read_clocksource(&clocksource_apbt);
  641. i = 10000;
  642. while (--i) {
  643. if (old != apbt_read_clocksource(&clocksource_apbt))
  644. break;
  645. }
  646. if (!i)
  647. goto failed;
  648. /* count 16 ms */
  649. loop = (apbt_freq * 1000) << 4;
  650. /* restart the timer to ensure it won't get to 0 in the calibration */
  651. apbt_start_counter(phy_cs_timer_id);
  652. old = apbt_read_clocksource(&clocksource_apbt);
  653. old += loop;
  654. t1 = __native_read_tsc();
  655. do {
  656. new = apbt_read_clocksource(&clocksource_apbt);
  657. } while (new < old);
  658. t2 = __native_read_tsc();
  659. shift = 5;
  660. if (unlikely(loop >> shift == 0)) {
  661. printk(KERN_INFO
  662. "APBT TSC calibration failed, not enough resolution\n");
  663. return 0;
  664. }
  665. scale = (int)div_u64((t2 - t1), loop >> shift);
  666. khz = (scale * apbt_freq * 1000) >> shift;
  667. printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
  668. return khz;
  669. failed:
  670. return 0;
  671. }