tsb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. /* arch/sparc64/mm/tsb.c
  2. *
  3. * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/preempt.h>
  7. #include <linux/slab.h>
  8. #include <asm/system.h>
  9. #include <asm/page.h>
  10. #include <asm/tlbflush.h>
  11. #include <asm/tlb.h>
  12. #include <asm/mmu_context.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/tsb.h>
  15. #include <asm/oplib.h>
  16. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  17. static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  18. {
  19. vaddr >>= hash_shift;
  20. return vaddr & (nentries - 1);
  21. }
  22. static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  23. {
  24. return (tag == (vaddr >> 22));
  25. }
  26. /* TSB flushes need only occur on the processor initiating the address
  27. * space modification, not on each cpu the address space has run on.
  28. * Only the TLB flush needs that treatment.
  29. */
  30. void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  31. {
  32. unsigned long v;
  33. for (v = start; v < end; v += PAGE_SIZE) {
  34. unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  35. KERNEL_TSB_NENTRIES);
  36. struct tsb *ent = &swapper_tsb[hash];
  37. if (tag_compare(ent->tag, v))
  38. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  39. }
  40. }
  41. static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
  42. {
  43. unsigned long i;
  44. for (i = 0; i < mp->tlb_nr; i++) {
  45. unsigned long v = mp->vaddrs[i];
  46. unsigned long tag, ent, hash;
  47. v &= ~0x1UL;
  48. hash = tsb_hash(v, hash_shift, nentries);
  49. ent = tsb + (hash * sizeof(struct tsb));
  50. tag = (v >> 22UL);
  51. tsb_flush(ent, tag);
  52. }
  53. }
  54. void flush_tsb_user(struct mmu_gather *mp)
  55. {
  56. struct mm_struct *mm = mp->mm;
  57. unsigned long nentries, base, flags;
  58. spin_lock_irqsave(&mm->context.lock, flags);
  59. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  60. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  61. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  62. base = __pa(base);
  63. __flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
  64. #ifdef CONFIG_HUGETLB_PAGE
  65. if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  66. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  67. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  68. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  69. base = __pa(base);
  70. __flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
  71. }
  72. #endif
  73. spin_unlock_irqrestore(&mm->context.lock, flags);
  74. }
  75. #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
  76. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
  77. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
  78. #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
  79. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
  80. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
  81. #else
  82. #error Broken base page size setting...
  83. #endif
  84. #ifdef CONFIG_HUGETLB_PAGE
  85. #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
  86. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
  87. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
  88. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
  89. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
  90. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
  91. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
  92. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
  93. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
  94. #else
  95. #error Broken huge page size setting...
  96. #endif
  97. #endif
  98. static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
  99. {
  100. unsigned long tsb_reg, base, tsb_paddr;
  101. unsigned long page_sz, tte;
  102. mm->context.tsb_block[tsb_idx].tsb_nentries =
  103. tsb_bytes / sizeof(struct tsb);
  104. base = TSBMAP_BASE;
  105. tte = pgprot_val(PAGE_KERNEL_LOCKED);
  106. tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
  107. BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
  108. /* Use the smallest page size that can map the whole TSB
  109. * in one TLB entry.
  110. */
  111. switch (tsb_bytes) {
  112. case 8192 << 0:
  113. tsb_reg = 0x0UL;
  114. #ifdef DCACHE_ALIASING_POSSIBLE
  115. base += (tsb_paddr & 8192);
  116. #endif
  117. page_sz = 8192;
  118. break;
  119. case 8192 << 1:
  120. tsb_reg = 0x1UL;
  121. page_sz = 64 * 1024;
  122. break;
  123. case 8192 << 2:
  124. tsb_reg = 0x2UL;
  125. page_sz = 64 * 1024;
  126. break;
  127. case 8192 << 3:
  128. tsb_reg = 0x3UL;
  129. page_sz = 64 * 1024;
  130. break;
  131. case 8192 << 4:
  132. tsb_reg = 0x4UL;
  133. page_sz = 512 * 1024;
  134. break;
  135. case 8192 << 5:
  136. tsb_reg = 0x5UL;
  137. page_sz = 512 * 1024;
  138. break;
  139. case 8192 << 6:
  140. tsb_reg = 0x6UL;
  141. page_sz = 512 * 1024;
  142. break;
  143. case 8192 << 7:
  144. tsb_reg = 0x7UL;
  145. page_sz = 4 * 1024 * 1024;
  146. break;
  147. default:
  148. printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
  149. current->comm, current->pid, tsb_bytes);
  150. do_exit(SIGSEGV);
  151. };
  152. tte |= pte_sz_bits(page_sz);
  153. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  154. /* Physical mapping, no locked TLB entry for TSB. */
  155. tsb_reg |= tsb_paddr;
  156. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  157. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
  158. mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
  159. } else {
  160. tsb_reg |= base;
  161. tsb_reg |= (tsb_paddr & (page_sz - 1UL));
  162. tte |= (tsb_paddr & ~(page_sz - 1UL));
  163. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  164. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
  165. mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
  166. }
  167. /* Setup the Hypervisor TSB descriptor. */
  168. if (tlb_type == hypervisor) {
  169. struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
  170. switch (tsb_idx) {
  171. case MM_TSB_BASE:
  172. hp->pgsz_idx = HV_PGSZ_IDX_BASE;
  173. break;
  174. #ifdef CONFIG_HUGETLB_PAGE
  175. case MM_TSB_HUGE:
  176. hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
  177. break;
  178. #endif
  179. default:
  180. BUG();
  181. };
  182. hp->assoc = 1;
  183. hp->num_ttes = tsb_bytes / 16;
  184. hp->ctx_idx = 0;
  185. switch (tsb_idx) {
  186. case MM_TSB_BASE:
  187. hp->pgsz_mask = HV_PGSZ_MASK_BASE;
  188. break;
  189. #ifdef CONFIG_HUGETLB_PAGE
  190. case MM_TSB_HUGE:
  191. hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
  192. break;
  193. #endif
  194. default:
  195. BUG();
  196. };
  197. hp->tsb_base = tsb_paddr;
  198. hp->resv = 0;
  199. }
  200. }
  201. static struct kmem_cache *tsb_caches[8] __read_mostly;
  202. static const char *tsb_cache_names[8] = {
  203. "tsb_8KB",
  204. "tsb_16KB",
  205. "tsb_32KB",
  206. "tsb_64KB",
  207. "tsb_128KB",
  208. "tsb_256KB",
  209. "tsb_512KB",
  210. "tsb_1MB",
  211. };
  212. void __init pgtable_cache_init(void)
  213. {
  214. unsigned long i;
  215. for (i = 0; i < 8; i++) {
  216. unsigned long size = 8192 << i;
  217. const char *name = tsb_cache_names[i];
  218. tsb_caches[i] = kmem_cache_create(name,
  219. size, size,
  220. 0, NULL);
  221. if (!tsb_caches[i]) {
  222. prom_printf("Could not create %s cache\n", name);
  223. prom_halt();
  224. }
  225. }
  226. }
  227. int sysctl_tsb_ratio = -2;
  228. static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
  229. {
  230. unsigned long num_ents = (new_size / sizeof(struct tsb));
  231. if (sysctl_tsb_ratio < 0)
  232. return num_ents - (num_ents >> -sysctl_tsb_ratio);
  233. else
  234. return num_ents + (num_ents >> sysctl_tsb_ratio);
  235. }
  236. /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
  237. * do_sparc64_fault() invokes this routine to try and grow it.
  238. *
  239. * When we reach the maximum TSB size supported, we stick ~0UL into
  240. * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
  241. * will not trigger any longer.
  242. *
  243. * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
  244. * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
  245. * must be 512K aligned. It also must be physically contiguous, so we
  246. * cannot use vmalloc().
  247. *
  248. * The idea here is to grow the TSB when the RSS of the process approaches
  249. * the number of entries that the current TSB can hold at once. Currently,
  250. * we trigger when the RSS hits 3/4 of the TSB capacity.
  251. */
  252. void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
  253. {
  254. unsigned long max_tsb_size = 1 * 1024 * 1024;
  255. unsigned long new_size, old_size, flags;
  256. struct tsb *old_tsb, *new_tsb;
  257. unsigned long new_cache_index, old_cache_index;
  258. unsigned long new_rss_limit;
  259. gfp_t gfp_flags;
  260. if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
  261. max_tsb_size = (PAGE_SIZE << MAX_ORDER);
  262. new_cache_index = 0;
  263. for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
  264. new_rss_limit = tsb_size_to_rss_limit(new_size);
  265. if (new_rss_limit > rss)
  266. break;
  267. new_cache_index++;
  268. }
  269. if (new_size == max_tsb_size)
  270. new_rss_limit = ~0UL;
  271. retry_tsb_alloc:
  272. gfp_flags = GFP_KERNEL;
  273. if (new_size > (PAGE_SIZE * 2))
  274. gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
  275. new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
  276. gfp_flags, numa_node_id());
  277. if (unlikely(!new_tsb)) {
  278. /* Not being able to fork due to a high-order TSB
  279. * allocation failure is very bad behavior. Just back
  280. * down to a 0-order allocation and force no TSB
  281. * growing for this address space.
  282. */
  283. if (mm->context.tsb_block[tsb_index].tsb == NULL &&
  284. new_cache_index > 0) {
  285. new_cache_index = 0;
  286. new_size = 8192;
  287. new_rss_limit = ~0UL;
  288. goto retry_tsb_alloc;
  289. }
  290. /* If we failed on a TSB grow, we are under serious
  291. * memory pressure so don't try to grow any more.
  292. */
  293. if (mm->context.tsb_block[tsb_index].tsb != NULL)
  294. mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
  295. return;
  296. }
  297. /* Mark all tags as invalid. */
  298. tsb_init(new_tsb, new_size);
  299. /* Ok, we are about to commit the changes. If we are
  300. * growing an existing TSB the locking is very tricky,
  301. * so WATCH OUT!
  302. *
  303. * We have to hold mm->context.lock while committing to the
  304. * new TSB, this synchronizes us with processors in
  305. * flush_tsb_user() and switch_mm() for this address space.
  306. *
  307. * But even with that lock held, processors run asynchronously
  308. * accessing the old TSB via TLB miss handling. This is OK
  309. * because those actions are just propagating state from the
  310. * Linux page tables into the TSB, page table mappings are not
  311. * being changed. If a real fault occurs, the processor will
  312. * synchronize with us when it hits flush_tsb_user(), this is
  313. * also true for the case where vmscan is modifying the page
  314. * tables. The only thing we need to be careful with is to
  315. * skip any locked TSB entries during copy_tsb().
  316. *
  317. * When we finish committing to the new TSB, we have to drop
  318. * the lock and ask all other cpus running this address space
  319. * to run tsb_context_switch() to see the new TSB table.
  320. */
  321. spin_lock_irqsave(&mm->context.lock, flags);
  322. old_tsb = mm->context.tsb_block[tsb_index].tsb;
  323. old_cache_index =
  324. (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
  325. old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
  326. sizeof(struct tsb));
  327. /* Handle multiple threads trying to grow the TSB at the same time.
  328. * One will get in here first, and bump the size and the RSS limit.
  329. * The others will get in here next and hit this check.
  330. */
  331. if (unlikely(old_tsb &&
  332. (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
  333. spin_unlock_irqrestore(&mm->context.lock, flags);
  334. kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
  335. return;
  336. }
  337. mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
  338. if (old_tsb) {
  339. extern void copy_tsb(unsigned long old_tsb_base,
  340. unsigned long old_tsb_size,
  341. unsigned long new_tsb_base,
  342. unsigned long new_tsb_size);
  343. unsigned long old_tsb_base = (unsigned long) old_tsb;
  344. unsigned long new_tsb_base = (unsigned long) new_tsb;
  345. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  346. old_tsb_base = __pa(old_tsb_base);
  347. new_tsb_base = __pa(new_tsb_base);
  348. }
  349. copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
  350. }
  351. mm->context.tsb_block[tsb_index].tsb = new_tsb;
  352. setup_tsb_params(mm, tsb_index, new_size);
  353. spin_unlock_irqrestore(&mm->context.lock, flags);
  354. /* If old_tsb is NULL, we're being invoked for the first time
  355. * from init_new_context().
  356. */
  357. if (old_tsb) {
  358. /* Reload it on the local cpu. */
  359. tsb_context_switch(mm);
  360. /* Now force other processors to do the same. */
  361. preempt_disable();
  362. smp_tsb_sync(mm);
  363. preempt_enable();
  364. /* Now it is safe to free the old tsb. */
  365. kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
  366. }
  367. }
  368. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  369. {
  370. #ifdef CONFIG_HUGETLB_PAGE
  371. unsigned long huge_pte_count;
  372. #endif
  373. unsigned int i;
  374. spin_lock_init(&mm->context.lock);
  375. mm->context.sparc64_ctx_val = 0UL;
  376. #ifdef CONFIG_HUGETLB_PAGE
  377. /* We reset it to zero because the fork() page copying
  378. * will re-increment the counters as the parent PTEs are
  379. * copied into the child address space.
  380. */
  381. huge_pte_count = mm->context.huge_pte_count;
  382. mm->context.huge_pte_count = 0;
  383. #endif
  384. /* copy_mm() copies over the parent's mm_struct before calling
  385. * us, so we need to zero out the TSB pointer or else tsb_grow()
  386. * will be confused and think there is an older TSB to free up.
  387. */
  388. for (i = 0; i < MM_NUM_TSBS; i++)
  389. mm->context.tsb_block[i].tsb = NULL;
  390. /* If this is fork, inherit the parent's TSB size. We would
  391. * grow it to that size on the first page fault anyways.
  392. */
  393. tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
  394. #ifdef CONFIG_HUGETLB_PAGE
  395. if (unlikely(huge_pte_count))
  396. tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
  397. #endif
  398. if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
  399. return -ENOMEM;
  400. return 0;
  401. }
  402. static void tsb_destroy_one(struct tsb_config *tp)
  403. {
  404. unsigned long cache_index;
  405. if (!tp->tsb)
  406. return;
  407. cache_index = tp->tsb_reg_val & 0x7UL;
  408. kmem_cache_free(tsb_caches[cache_index], tp->tsb);
  409. tp->tsb = NULL;
  410. tp->tsb_reg_val = 0UL;
  411. }
  412. void destroy_context(struct mm_struct *mm)
  413. {
  414. unsigned long flags, i;
  415. for (i = 0; i < MM_NUM_TSBS; i++)
  416. tsb_destroy_one(&mm->context.tsb_block[i]);
  417. spin_lock_irqsave(&ctx_alloc_lock, flags);
  418. if (CTX_VALID(mm->context)) {
  419. unsigned long nr = CTX_NRBITS(mm->context);
  420. mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
  421. }
  422. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  423. }