smp_32.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /* smp.c: Sparc SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5. * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6. */
  7. #include <asm/head.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/init.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/mm.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/delay.h>
  21. #include <asm/ptrace.h>
  22. #include <asm/atomic.h>
  23. #include <asm/irq.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/oplib.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/cpudata.h>
  31. #include <asm/leon.h>
  32. #include "irq.h"
  33. volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
  34. unsigned char boot_cpu_id = 0;
  35. unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
  36. cpumask_t smp_commenced_mask = CPU_MASK_NONE;
  37. /* The only guaranteed locking primitive available on all Sparc
  38. * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
  39. * places the current byte at the effective address into dest_reg and
  40. * places 0xff there afterwards. Pretty lame locking primitive
  41. * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
  42. * instruction which is much better...
  43. */
  44. void __cpuinit smp_store_cpu_info(int id)
  45. {
  46. int cpu_node;
  47. cpu_data(id).udelay_val = loops_per_jiffy;
  48. cpu_find_by_mid(id, &cpu_node);
  49. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  50. "clock-frequency", 0);
  51. cpu_data(id).prom_node = cpu_node;
  52. cpu_data(id).mid = cpu_get_hwmid(cpu_node);
  53. if (cpu_data(id).mid < 0)
  54. panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
  55. }
  56. void __init smp_cpus_done(unsigned int max_cpus)
  57. {
  58. extern void smp4m_smp_done(void);
  59. extern void smp4d_smp_done(void);
  60. unsigned long bogosum = 0;
  61. int cpu, num = 0;
  62. for_each_online_cpu(cpu) {
  63. num++;
  64. bogosum += cpu_data(cpu).udelay_val;
  65. }
  66. printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  67. num, bogosum/(500000/HZ),
  68. (bogosum/(5000/HZ))%100);
  69. switch(sparc_cpu_model) {
  70. case sun4:
  71. printk("SUN4\n");
  72. BUG();
  73. break;
  74. case sun4c:
  75. printk("SUN4C\n");
  76. BUG();
  77. break;
  78. case sun4m:
  79. smp4m_smp_done();
  80. break;
  81. case sun4d:
  82. smp4d_smp_done();
  83. break;
  84. case sparc_leon:
  85. leon_smp_done();
  86. break;
  87. case sun4e:
  88. printk("SUN4E\n");
  89. BUG();
  90. break;
  91. case sun4u:
  92. printk("SUN4U\n");
  93. BUG();
  94. break;
  95. default:
  96. printk("UNKNOWN!\n");
  97. BUG();
  98. break;
  99. };
  100. }
  101. void cpu_panic(void)
  102. {
  103. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  104. panic("SMP bolixed\n");
  105. }
  106. struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
  107. void smp_send_reschedule(int cpu)
  108. {
  109. /* See sparc64 */
  110. }
  111. void smp_send_stop(void)
  112. {
  113. }
  114. void smp_flush_cache_all(void)
  115. {
  116. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
  117. local_flush_cache_all();
  118. }
  119. void smp_flush_tlb_all(void)
  120. {
  121. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
  122. local_flush_tlb_all();
  123. }
  124. void smp_flush_cache_mm(struct mm_struct *mm)
  125. {
  126. if(mm->context != NO_CONTEXT) {
  127. cpumask_t cpu_mask = *mm_cpumask(mm);
  128. cpu_clear(smp_processor_id(), cpu_mask);
  129. if (!cpus_empty(cpu_mask))
  130. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
  131. local_flush_cache_mm(mm);
  132. }
  133. }
  134. void smp_flush_tlb_mm(struct mm_struct *mm)
  135. {
  136. if(mm->context != NO_CONTEXT) {
  137. cpumask_t cpu_mask = *mm_cpumask(mm);
  138. cpu_clear(smp_processor_id(), cpu_mask);
  139. if (!cpus_empty(cpu_mask)) {
  140. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
  141. if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
  142. cpumask_copy(mm_cpumask(mm),
  143. cpumask_of(smp_processor_id()));
  144. }
  145. local_flush_tlb_mm(mm);
  146. }
  147. }
  148. void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
  149. unsigned long end)
  150. {
  151. struct mm_struct *mm = vma->vm_mm;
  152. if (mm->context != NO_CONTEXT) {
  153. cpumask_t cpu_mask = *mm_cpumask(mm);
  154. cpu_clear(smp_processor_id(), cpu_mask);
  155. if (!cpus_empty(cpu_mask))
  156. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
  157. local_flush_cache_range(vma, start, end);
  158. }
  159. }
  160. void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  161. unsigned long end)
  162. {
  163. struct mm_struct *mm = vma->vm_mm;
  164. if (mm->context != NO_CONTEXT) {
  165. cpumask_t cpu_mask = *mm_cpumask(mm);
  166. cpu_clear(smp_processor_id(), cpu_mask);
  167. if (!cpus_empty(cpu_mask))
  168. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
  169. local_flush_tlb_range(vma, start, end);
  170. }
  171. }
  172. void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
  173. {
  174. struct mm_struct *mm = vma->vm_mm;
  175. if(mm->context != NO_CONTEXT) {
  176. cpumask_t cpu_mask = *mm_cpumask(mm);
  177. cpu_clear(smp_processor_id(), cpu_mask);
  178. if (!cpus_empty(cpu_mask))
  179. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
  180. local_flush_cache_page(vma, page);
  181. }
  182. }
  183. void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  184. {
  185. struct mm_struct *mm = vma->vm_mm;
  186. if(mm->context != NO_CONTEXT) {
  187. cpumask_t cpu_mask = *mm_cpumask(mm);
  188. cpu_clear(smp_processor_id(), cpu_mask);
  189. if (!cpus_empty(cpu_mask))
  190. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
  191. local_flush_tlb_page(vma, page);
  192. }
  193. }
  194. void smp_reschedule_irq(void)
  195. {
  196. set_need_resched();
  197. }
  198. void smp_flush_page_to_ram(unsigned long page)
  199. {
  200. /* Current theory is that those who call this are the one's
  201. * who have just dirtied their cache with the pages contents
  202. * in kernel space, therefore we only run this on local cpu.
  203. *
  204. * XXX This experiment failed, research further... -DaveM
  205. */
  206. #if 1
  207. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
  208. #endif
  209. local_flush_page_to_ram(page);
  210. }
  211. void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
  212. {
  213. cpumask_t cpu_mask = *mm_cpumask(mm);
  214. cpu_clear(smp_processor_id(), cpu_mask);
  215. if (!cpus_empty(cpu_mask))
  216. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
  217. local_flush_sig_insns(mm, insn_addr);
  218. }
  219. extern unsigned int lvl14_resolution;
  220. /* /proc/profile writes can call this, don't __init it please. */
  221. static DEFINE_SPINLOCK(prof_setup_lock);
  222. int setup_profiling_timer(unsigned int multiplier)
  223. {
  224. int i;
  225. unsigned long flags;
  226. /* Prevent level14 ticker IRQ flooding. */
  227. if((!multiplier) || (lvl14_resolution / multiplier) < 500)
  228. return -EINVAL;
  229. spin_lock_irqsave(&prof_setup_lock, flags);
  230. for_each_possible_cpu(i) {
  231. load_profile_irq(i, lvl14_resolution / multiplier);
  232. prof_multiplier(i) = multiplier;
  233. }
  234. spin_unlock_irqrestore(&prof_setup_lock, flags);
  235. return 0;
  236. }
  237. void __init smp_prepare_cpus(unsigned int max_cpus)
  238. {
  239. extern void __init smp4m_boot_cpus(void);
  240. extern void __init smp4d_boot_cpus(void);
  241. int i, cpuid, extra;
  242. printk("Entering SMP Mode...\n");
  243. extra = 0;
  244. for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
  245. if (cpuid >= NR_CPUS)
  246. extra++;
  247. }
  248. /* i = number of cpus */
  249. if (extra && max_cpus > i - extra)
  250. printk("Warning: NR_CPUS is too low to start all cpus\n");
  251. smp_store_cpu_info(boot_cpu_id);
  252. switch(sparc_cpu_model) {
  253. case sun4:
  254. printk("SUN4\n");
  255. BUG();
  256. break;
  257. case sun4c:
  258. printk("SUN4C\n");
  259. BUG();
  260. break;
  261. case sun4m:
  262. smp4m_boot_cpus();
  263. break;
  264. case sun4d:
  265. smp4d_boot_cpus();
  266. break;
  267. case sparc_leon:
  268. leon_boot_cpus();
  269. break;
  270. case sun4e:
  271. printk("SUN4E\n");
  272. BUG();
  273. break;
  274. case sun4u:
  275. printk("SUN4U\n");
  276. BUG();
  277. break;
  278. default:
  279. printk("UNKNOWN!\n");
  280. BUG();
  281. break;
  282. };
  283. }
  284. /* Set this up early so that things like the scheduler can init
  285. * properly. We use the same cpu mask for both the present and
  286. * possible cpu map.
  287. */
  288. void __init smp_setup_cpu_possible_map(void)
  289. {
  290. int instance, mid;
  291. instance = 0;
  292. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  293. if (mid < NR_CPUS) {
  294. set_cpu_possible(mid, true);
  295. set_cpu_present(mid, true);
  296. }
  297. instance++;
  298. }
  299. }
  300. void __init smp_prepare_boot_cpu(void)
  301. {
  302. int cpuid = hard_smp_processor_id();
  303. if (cpuid >= NR_CPUS) {
  304. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  305. prom_halt();
  306. }
  307. if (cpuid != 0)
  308. printk("boot cpu id != 0, this could work but is untested\n");
  309. current_thread_info()->cpu = cpuid;
  310. set_cpu_online(cpuid, true);
  311. set_cpu_possible(cpuid, true);
  312. }
  313. int __cpuinit __cpu_up(unsigned int cpu)
  314. {
  315. extern int __cpuinit smp4m_boot_one_cpu(int);
  316. extern int __cpuinit smp4d_boot_one_cpu(int);
  317. int ret=0;
  318. switch(sparc_cpu_model) {
  319. case sun4:
  320. printk("SUN4\n");
  321. BUG();
  322. break;
  323. case sun4c:
  324. printk("SUN4C\n");
  325. BUG();
  326. break;
  327. case sun4m:
  328. ret = smp4m_boot_one_cpu(cpu);
  329. break;
  330. case sun4d:
  331. ret = smp4d_boot_one_cpu(cpu);
  332. break;
  333. case sparc_leon:
  334. ret = leon_boot_one_cpu(cpu);
  335. break;
  336. case sun4e:
  337. printk("SUN4E\n");
  338. BUG();
  339. break;
  340. case sun4u:
  341. printk("SUN4U\n");
  342. BUG();
  343. break;
  344. default:
  345. printk("UNKNOWN!\n");
  346. BUG();
  347. break;
  348. };
  349. if (!ret) {
  350. cpu_set(cpu, smp_commenced_mask);
  351. while (!cpu_online(cpu))
  352. mb();
  353. }
  354. return ret;
  355. }
  356. void smp_bogo(struct seq_file *m)
  357. {
  358. int i;
  359. for_each_online_cpu(i) {
  360. seq_printf(m,
  361. "Cpu%dBogo\t: %lu.%02lu\n",
  362. i,
  363. cpu_data(i).udelay_val/(500000/HZ),
  364. (cpu_data(i).udelay_val/(5000/HZ))%100);
  365. }
  366. }
  367. void smp_info(struct seq_file *m)
  368. {
  369. int i;
  370. seq_printf(m, "State:\n");
  371. for_each_online_cpu(i)
  372. seq_printf(m, "CPU%d\t\t: online\n", i);
  373. }