init_64.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. *
  9. * Derived from "arch/i386/mm/init.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Dave Engebretsen <engebret@us.ibm.com>
  13. * Rework for PPC64 port.
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. */
  21. #undef DEBUG
  22. #include <linux/signal.h>
  23. #include <linux/sched.h>
  24. #include <linux/kernel.h>
  25. #include <linux/errno.h>
  26. #include <linux/string.h>
  27. #include <linux/types.h>
  28. #include <linux/mman.h>
  29. #include <linux/mm.h>
  30. #include <linux/swap.h>
  31. #include <linux/stddef.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/highmem.h>
  37. #include <linux/idr.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/module.h>
  40. #include <linux/poison.h>
  41. #include <linux/memblock.h>
  42. #include <linux/hugetlb.h>
  43. #include <linux/slab.h>
  44. #include <asm/pgalloc.h>
  45. #include <asm/page.h>
  46. #include <asm/prom.h>
  47. #include <asm/rtas.h>
  48. #include <asm/io.h>
  49. #include <asm/mmu_context.h>
  50. #include <asm/pgtable.h>
  51. #include <asm/mmu.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/smp.h>
  54. #include <asm/machdep.h>
  55. #include <asm/tlb.h>
  56. #include <asm/eeh.h>
  57. #include <asm/processor.h>
  58. #include <asm/mmzone.h>
  59. #include <asm/cputable.h>
  60. #include <asm/sections.h>
  61. #include <asm/system.h>
  62. #include <asm/iommu.h>
  63. #include <asm/abs_addr.h>
  64. #include <asm/vdso.h>
  65. #include "mmu_decl.h"
  66. #ifdef CONFIG_PPC_STD_MMU_64
  67. #if PGTABLE_RANGE > USER_VSID_RANGE
  68. #warning Limited user VSID range means pagetable space is wasted
  69. #endif
  70. #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
  71. #warning TASK_SIZE is smaller than it needs to be.
  72. #endif
  73. #endif /* CONFIG_PPC_STD_MMU_64 */
  74. phys_addr_t memstart_addr = ~0;
  75. EXPORT_SYMBOL_GPL(memstart_addr);
  76. phys_addr_t kernstart_addr;
  77. EXPORT_SYMBOL_GPL(kernstart_addr);
  78. void free_initmem(void)
  79. {
  80. unsigned long addr;
  81. addr = (unsigned long)__init_begin;
  82. for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
  83. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  84. ClearPageReserved(virt_to_page(addr));
  85. init_page_count(virt_to_page(addr));
  86. free_page(addr);
  87. totalram_pages++;
  88. }
  89. printk ("Freeing unused kernel memory: %luk freed\n",
  90. ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
  91. }
  92. #ifdef CONFIG_BLK_DEV_INITRD
  93. void free_initrd_mem(unsigned long start, unsigned long end)
  94. {
  95. if (start < end)
  96. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  97. for (; start < end; start += PAGE_SIZE) {
  98. ClearPageReserved(virt_to_page(start));
  99. init_page_count(virt_to_page(start));
  100. free_page(start);
  101. totalram_pages++;
  102. }
  103. }
  104. #endif
  105. static void pgd_ctor(void *addr)
  106. {
  107. memset(addr, 0, PGD_TABLE_SIZE);
  108. }
  109. static void pmd_ctor(void *addr)
  110. {
  111. memset(addr, 0, PMD_TABLE_SIZE);
  112. }
  113. struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
  114. /*
  115. * Create a kmem_cache() for pagetables. This is not used for PTE
  116. * pages - they're linked to struct page, come from the normal free
  117. * pages pool and have a different entry size (see real_pte_t) to
  118. * everything else. Caches created by this function are used for all
  119. * the higher level pagetables, and for hugepage pagetables.
  120. */
  121. void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
  122. {
  123. char *name;
  124. unsigned long table_size = sizeof(void *) << shift;
  125. unsigned long align = table_size;
  126. /* When batching pgtable pointers for RCU freeing, we store
  127. * the index size in the low bits. Table alignment must be
  128. * big enough to fit it.
  129. *
  130. * Likewise, hugeapge pagetable pointers contain a (different)
  131. * shift value in the low bits. All tables must be aligned so
  132. * as to leave enough 0 bits in the address to contain it. */
  133. unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
  134. HUGEPD_SHIFT_MASK + 1);
  135. struct kmem_cache *new;
  136. /* It would be nice if this was a BUILD_BUG_ON(), but at the
  137. * moment, gcc doesn't seem to recognize is_power_of_2 as a
  138. * constant expression, so so much for that. */
  139. BUG_ON(!is_power_of_2(minalign));
  140. BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
  141. if (PGT_CACHE(shift))
  142. return; /* Already have a cache of this size */
  143. align = max_t(unsigned long, align, minalign);
  144. name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
  145. new = kmem_cache_create(name, table_size, align, 0, ctor);
  146. PGT_CACHE(shift) = new;
  147. pr_debug("Allocated pgtable cache for order %d\n", shift);
  148. }
  149. void pgtable_cache_init(void)
  150. {
  151. pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
  152. pgtable_cache_add(PMD_INDEX_SIZE, pmd_ctor);
  153. if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_INDEX_SIZE))
  154. panic("Couldn't allocate pgtable caches");
  155. /* In all current configs, when the PUD index exists it's the
  156. * same size as either the pgd or pmd index. Verify that the
  157. * initialization above has also created a PUD cache. This
  158. * will need re-examiniation if we add new possibilities for
  159. * the pagetable layout. */
  160. BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
  161. }
  162. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  163. /*
  164. * Given an address within the vmemmap, determine the pfn of the page that
  165. * represents the start of the section it is within. Note that we have to
  166. * do this by hand as the proffered address may not be correctly aligned.
  167. * Subtraction of non-aligned pointers produces undefined results.
  168. */
  169. static unsigned long __meminit vmemmap_section_start(unsigned long page)
  170. {
  171. unsigned long offset = page - ((unsigned long)(vmemmap));
  172. /* Return the pfn of the start of the section. */
  173. return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  174. }
  175. /*
  176. * Check if this vmemmap page is already initialised. If any section
  177. * which overlaps this vmemmap page is initialised then this page is
  178. * initialised already.
  179. */
  180. static int __meminit vmemmap_populated(unsigned long start, int page_size)
  181. {
  182. unsigned long end = start + page_size;
  183. for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
  184. if (pfn_valid(vmemmap_section_start(start)))
  185. return 1;
  186. return 0;
  187. }
  188. /* On hash-based CPUs, the vmemmap is bolted in the hash table.
  189. *
  190. * On Book3E CPUs, the vmemmap is currently mapped in the top half of
  191. * the vmalloc space using normal page tables, though the size of
  192. * pages encoded in the PTEs can be different
  193. */
  194. #ifdef CONFIG_PPC_BOOK3E
  195. static void __meminit vmemmap_create_mapping(unsigned long start,
  196. unsigned long page_size,
  197. unsigned long phys)
  198. {
  199. /* Create a PTE encoding without page size */
  200. unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
  201. _PAGE_KERNEL_RW;
  202. /* PTEs only contain page size encodings up to 32M */
  203. BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
  204. /* Encode the size in the PTE */
  205. flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
  206. /* For each PTE for that area, map things. Note that we don't
  207. * increment phys because all PTEs are of the large size and
  208. * thus must have the low bits clear
  209. */
  210. for (i = 0; i < page_size; i += PAGE_SIZE)
  211. BUG_ON(map_kernel_page(start + i, phys, flags));
  212. }
  213. #else /* CONFIG_PPC_BOOK3E */
  214. static void __meminit vmemmap_create_mapping(unsigned long start,
  215. unsigned long page_size,
  216. unsigned long phys)
  217. {
  218. int mapped = htab_bolt_mapping(start, start + page_size, phys,
  219. PAGE_KERNEL, mmu_vmemmap_psize,
  220. mmu_kernel_ssize);
  221. BUG_ON(mapped < 0);
  222. }
  223. #endif /* CONFIG_PPC_BOOK3E */
  224. struct vmemmap_backing *vmemmap_list;
  225. static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
  226. {
  227. static struct vmemmap_backing *next;
  228. static int num_left;
  229. /* allocate a page when required and hand out chunks */
  230. if (!next || !num_left) {
  231. next = vmemmap_alloc_block(PAGE_SIZE, node);
  232. if (unlikely(!next)) {
  233. WARN_ON(1);
  234. return NULL;
  235. }
  236. num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
  237. }
  238. num_left--;
  239. return next++;
  240. }
  241. static __meminit void vmemmap_list_populate(unsigned long phys,
  242. unsigned long start,
  243. int node)
  244. {
  245. struct vmemmap_backing *vmem_back;
  246. vmem_back = vmemmap_list_alloc(node);
  247. if (unlikely(!vmem_back)) {
  248. WARN_ON(1);
  249. return;
  250. }
  251. vmem_back->phys = phys;
  252. vmem_back->virt_addr = start;
  253. vmem_back->list = vmemmap_list;
  254. vmemmap_list = vmem_back;
  255. }
  256. int __meminit vmemmap_populate(struct page *start_page,
  257. unsigned long nr_pages, int node)
  258. {
  259. unsigned long start = (unsigned long)start_page;
  260. unsigned long end = (unsigned long)(start_page + nr_pages);
  261. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  262. /* Align to the page size of the linear mapping. */
  263. start = _ALIGN_DOWN(start, page_size);
  264. pr_debug("vmemmap_populate page %p, %ld pages, node %d\n",
  265. start_page, nr_pages, node);
  266. pr_debug(" -> map %lx..%lx\n", start, end);
  267. for (; start < end; start += page_size) {
  268. void *p;
  269. if (vmemmap_populated(start, page_size))
  270. continue;
  271. p = vmemmap_alloc_block(page_size, node);
  272. if (!p)
  273. return -ENOMEM;
  274. vmemmap_list_populate(__pa(p), start, node);
  275. pr_debug(" * %016lx..%016lx allocated at %p\n",
  276. start, start + page_size, p);
  277. vmemmap_create_mapping(start, page_size, __pa(p));
  278. }
  279. return 0;
  280. }
  281. #endif /* CONFIG_SPARSEMEM_VMEMMAP */