dma-noncoherent.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /*
  2. * PowerPC version derived from arch/arm/mm/consistent.c
  3. * Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
  4. *
  5. * Copyright (C) 2000 Russell King
  6. *
  7. * Consistent memory allocators. Used for DMA devices that want to
  8. * share uncached memory with the processor core. The function return
  9. * is the virtual address and 'dma_handle' is the physical address.
  10. * Mostly stolen from the ARM port, with some changes for PowerPC.
  11. * -- Dan
  12. *
  13. * Reorganized to get rid of the arch-specific consistent_* functions
  14. * and provide non-coherent implementations for the DMA API. -Matt
  15. *
  16. * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
  17. * implementation. This is pulled straight from ARM and barely
  18. * modified. -Matt
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License version 2 as
  22. * published by the Free Software Foundation.
  23. */
  24. #include <linux/sched.h>
  25. #include <linux/slab.h>
  26. #include <linux/kernel.h>
  27. #include <linux/errno.h>
  28. #include <linux/string.h>
  29. #include <linux/types.h>
  30. #include <linux/highmem.h>
  31. #include <linux/dma-mapping.h>
  32. #include <asm/tlbflush.h>
  33. #include "mmu_decl.h"
  34. /*
  35. * This address range defaults to a value that is safe for all
  36. * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It
  37. * can be further configured for specific applications under
  38. * the "Advanced Setup" menu. -Matt
  39. */
  40. #define CONSISTENT_BASE (IOREMAP_TOP)
  41. #define CONSISTENT_END (CONSISTENT_BASE + CONFIG_CONSISTENT_SIZE)
  42. #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
  43. /*
  44. * This is the page table (2MB) covering uncached, DMA consistent allocations
  45. */
  46. static DEFINE_SPINLOCK(consistent_lock);
  47. /*
  48. * VM region handling support.
  49. *
  50. * This should become something generic, handling VM region allocations for
  51. * vmalloc and similar (ioremap, module space, etc).
  52. *
  53. * I envisage vmalloc()'s supporting vm_struct becoming:
  54. *
  55. * struct vm_struct {
  56. * struct vm_region region;
  57. * unsigned long flags;
  58. * struct page **pages;
  59. * unsigned int nr_pages;
  60. * unsigned long phys_addr;
  61. * };
  62. *
  63. * get_vm_area() would then call vm_region_alloc with an appropriate
  64. * struct vm_region head (eg):
  65. *
  66. * struct vm_region vmalloc_head = {
  67. * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
  68. * .vm_start = VMALLOC_START,
  69. * .vm_end = VMALLOC_END,
  70. * };
  71. *
  72. * However, vmalloc_head.vm_start is variable (typically, it is dependent on
  73. * the amount of RAM found at boot time.) I would imagine that get_vm_area()
  74. * would have to initialise this each time prior to calling vm_region_alloc().
  75. */
  76. struct ppc_vm_region {
  77. struct list_head vm_list;
  78. unsigned long vm_start;
  79. unsigned long vm_end;
  80. };
  81. static struct ppc_vm_region consistent_head = {
  82. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  83. .vm_start = CONSISTENT_BASE,
  84. .vm_end = CONSISTENT_END,
  85. };
  86. static struct ppc_vm_region *
  87. ppc_vm_region_alloc(struct ppc_vm_region *head, size_t size, gfp_t gfp)
  88. {
  89. unsigned long addr = head->vm_start, end = head->vm_end - size;
  90. unsigned long flags;
  91. struct ppc_vm_region *c, *new;
  92. new = kmalloc(sizeof(struct ppc_vm_region), gfp);
  93. if (!new)
  94. goto out;
  95. spin_lock_irqsave(&consistent_lock, flags);
  96. list_for_each_entry(c, &head->vm_list, vm_list) {
  97. if ((addr + size) < addr)
  98. goto nospc;
  99. if ((addr + size) <= c->vm_start)
  100. goto found;
  101. addr = c->vm_end;
  102. if (addr > end)
  103. goto nospc;
  104. }
  105. found:
  106. /*
  107. * Insert this entry _before_ the one we found.
  108. */
  109. list_add_tail(&new->vm_list, &c->vm_list);
  110. new->vm_start = addr;
  111. new->vm_end = addr + size;
  112. spin_unlock_irqrestore(&consistent_lock, flags);
  113. return new;
  114. nospc:
  115. spin_unlock_irqrestore(&consistent_lock, flags);
  116. kfree(new);
  117. out:
  118. return NULL;
  119. }
  120. static struct ppc_vm_region *ppc_vm_region_find(struct ppc_vm_region *head, unsigned long addr)
  121. {
  122. struct ppc_vm_region *c;
  123. list_for_each_entry(c, &head->vm_list, vm_list) {
  124. if (c->vm_start == addr)
  125. goto out;
  126. }
  127. c = NULL;
  128. out:
  129. return c;
  130. }
  131. /*
  132. * Allocate DMA-coherent memory space and return both the kernel remapped
  133. * virtual and bus address for that space.
  134. */
  135. void *
  136. __dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  137. {
  138. struct page *page;
  139. struct ppc_vm_region *c;
  140. unsigned long order;
  141. u64 mask = ISA_DMA_THRESHOLD, limit;
  142. if (dev) {
  143. mask = dev->coherent_dma_mask;
  144. /*
  145. * Sanity check the DMA mask - it must be non-zero, and
  146. * must be able to be satisfied by a DMA allocation.
  147. */
  148. if (mask == 0) {
  149. dev_warn(dev, "coherent DMA mask is unset\n");
  150. goto no_page;
  151. }
  152. if ((~mask) & ISA_DMA_THRESHOLD) {
  153. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  154. "than system GFP_DMA mask %#llx\n",
  155. mask, (unsigned long long)ISA_DMA_THRESHOLD);
  156. goto no_page;
  157. }
  158. }
  159. size = PAGE_ALIGN(size);
  160. limit = (mask + 1) & ~mask;
  161. if ((limit && size >= limit) ||
  162. size >= (CONSISTENT_END - CONSISTENT_BASE)) {
  163. printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n",
  164. size, mask);
  165. return NULL;
  166. }
  167. order = get_order(size);
  168. /* Might be useful if we ever have a real legacy DMA zone... */
  169. if (mask != 0xffffffff)
  170. gfp |= GFP_DMA;
  171. page = alloc_pages(gfp, order);
  172. if (!page)
  173. goto no_page;
  174. /*
  175. * Invalidate any data that might be lurking in the
  176. * kernel direct-mapped region for device DMA.
  177. */
  178. {
  179. unsigned long kaddr = (unsigned long)page_address(page);
  180. memset(page_address(page), 0, size);
  181. flush_dcache_range(kaddr, kaddr + size);
  182. }
  183. /*
  184. * Allocate a virtual address in the consistent mapping region.
  185. */
  186. c = ppc_vm_region_alloc(&consistent_head, size,
  187. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  188. if (c) {
  189. unsigned long vaddr = c->vm_start;
  190. struct page *end = page + (1 << order);
  191. split_page(page, order);
  192. /*
  193. * Set the "dma handle"
  194. */
  195. *handle = page_to_phys(page);
  196. do {
  197. SetPageReserved(page);
  198. map_page(vaddr, page_to_phys(page),
  199. pgprot_noncached(PAGE_KERNEL));
  200. page++;
  201. vaddr += PAGE_SIZE;
  202. } while (size -= PAGE_SIZE);
  203. /*
  204. * Free the otherwise unused pages.
  205. */
  206. while (page < end) {
  207. __free_page(page);
  208. page++;
  209. }
  210. return (void *)c->vm_start;
  211. }
  212. if (page)
  213. __free_pages(page, order);
  214. no_page:
  215. return NULL;
  216. }
  217. EXPORT_SYMBOL(__dma_alloc_coherent);
  218. /*
  219. * free a page as defined by the above mapping.
  220. */
  221. void __dma_free_coherent(size_t size, void *vaddr)
  222. {
  223. struct ppc_vm_region *c;
  224. unsigned long flags, addr;
  225. size = PAGE_ALIGN(size);
  226. spin_lock_irqsave(&consistent_lock, flags);
  227. c = ppc_vm_region_find(&consistent_head, (unsigned long)vaddr);
  228. if (!c)
  229. goto no_area;
  230. if ((c->vm_end - c->vm_start) != size) {
  231. printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
  232. __func__, c->vm_end - c->vm_start, size);
  233. dump_stack();
  234. size = c->vm_end - c->vm_start;
  235. }
  236. addr = c->vm_start;
  237. do {
  238. pte_t *ptep;
  239. unsigned long pfn;
  240. ptep = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(addr),
  241. addr),
  242. addr),
  243. addr);
  244. if (!pte_none(*ptep) && pte_present(*ptep)) {
  245. pfn = pte_pfn(*ptep);
  246. pte_clear(&init_mm, addr, ptep);
  247. if (pfn_valid(pfn)) {
  248. struct page *page = pfn_to_page(pfn);
  249. ClearPageReserved(page);
  250. __free_page(page);
  251. }
  252. }
  253. addr += PAGE_SIZE;
  254. } while (size -= PAGE_SIZE);
  255. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  256. list_del(&c->vm_list);
  257. spin_unlock_irqrestore(&consistent_lock, flags);
  258. kfree(c);
  259. return;
  260. no_area:
  261. spin_unlock_irqrestore(&consistent_lock, flags);
  262. printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
  263. __func__, vaddr);
  264. dump_stack();
  265. }
  266. EXPORT_SYMBOL(__dma_free_coherent);
  267. /*
  268. * make an area consistent.
  269. */
  270. void __dma_sync(void *vaddr, size_t size, int direction)
  271. {
  272. unsigned long start = (unsigned long)vaddr;
  273. unsigned long end = start + size;
  274. switch (direction) {
  275. case DMA_NONE:
  276. BUG();
  277. case DMA_FROM_DEVICE:
  278. /*
  279. * invalidate only when cache-line aligned otherwise there is
  280. * the potential for discarding uncommitted data from the cache
  281. */
  282. if ((start & (L1_CACHE_BYTES - 1)) || (size & (L1_CACHE_BYTES - 1)))
  283. flush_dcache_range(start, end);
  284. else
  285. invalidate_dcache_range(start, end);
  286. break;
  287. case DMA_TO_DEVICE: /* writeback only */
  288. clean_dcache_range(start, end);
  289. break;
  290. case DMA_BIDIRECTIONAL: /* writeback and invalidate */
  291. flush_dcache_range(start, end);
  292. break;
  293. }
  294. }
  295. EXPORT_SYMBOL(__dma_sync);
  296. #ifdef CONFIG_HIGHMEM
  297. /*
  298. * __dma_sync_page() implementation for systems using highmem.
  299. * In this case, each page of a buffer must be kmapped/kunmapped
  300. * in order to have a virtual address for __dma_sync(). This must
  301. * not sleep so kmap_atomic()/kunmap_atomic() are used.
  302. *
  303. * Note: yes, it is possible and correct to have a buffer extend
  304. * beyond the first page.
  305. */
  306. static inline void __dma_sync_page_highmem(struct page *page,
  307. unsigned long offset, size_t size, int direction)
  308. {
  309. size_t seg_size = min((size_t)(PAGE_SIZE - offset), size);
  310. size_t cur_size = seg_size;
  311. unsigned long flags, start, seg_offset = offset;
  312. int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE;
  313. int seg_nr = 0;
  314. local_irq_save(flags);
  315. do {
  316. start = (unsigned long)kmap_atomic(page + seg_nr,
  317. KM_PPC_SYNC_PAGE) + seg_offset;
  318. /* Sync this buffer segment */
  319. __dma_sync((void *)start, seg_size, direction);
  320. kunmap_atomic((void *)start, KM_PPC_SYNC_PAGE);
  321. seg_nr++;
  322. /* Calculate next buffer segment size */
  323. seg_size = min((size_t)PAGE_SIZE, size - cur_size);
  324. /* Add the segment size to our running total */
  325. cur_size += seg_size;
  326. seg_offset = 0;
  327. } while (seg_nr < nr_segs);
  328. local_irq_restore(flags);
  329. }
  330. #endif /* CONFIG_HIGHMEM */
  331. /*
  332. * __dma_sync_page makes memory consistent. identical to __dma_sync, but
  333. * takes a struct page instead of a virtual address
  334. */
  335. void __dma_sync_page(struct page *page, unsigned long offset,
  336. size_t size, int direction)
  337. {
  338. #ifdef CONFIG_HIGHMEM
  339. __dma_sync_page_highmem(page, offset, size, direction);
  340. #else
  341. unsigned long start = (unsigned long)page_address(page) + offset;
  342. __dma_sync((void *)start, size, direction);
  343. #endif
  344. }
  345. EXPORT_SYMBOL(__dma_sync_page);