time.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_event.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .shift = 22,
  85. .mult = 0, /* To be filled in */
  86. .read = rtc_read,
  87. };
  88. static cycle_t timebase_read(struct clocksource *);
  89. static struct clocksource clocksource_timebase = {
  90. .name = "timebase",
  91. .rating = 400,
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. .mask = CLOCKSOURCE_MASK(64),
  94. .shift = 22,
  95. .mult = 0, /* To be filled in */
  96. .read = timebase_read,
  97. };
  98. #define DECREMENTER_MAX 0x7fffffff
  99. static int decrementer_set_next_event(unsigned long evt,
  100. struct clock_event_device *dev);
  101. static void decrementer_set_mode(enum clock_event_mode mode,
  102. struct clock_event_device *dev);
  103. static struct clock_event_device decrementer_clockevent = {
  104. .name = "decrementer",
  105. .rating = 200,
  106. .shift = 0, /* To be filled in */
  107. .mult = 0, /* To be filled in */
  108. .irq = 0,
  109. .set_next_event = decrementer_set_next_event,
  110. .set_mode = decrementer_set_mode,
  111. .features = CLOCK_EVT_FEAT_ONESHOT,
  112. };
  113. struct decrementer_clock {
  114. struct clock_event_device event;
  115. u64 next_tb;
  116. };
  117. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  118. #ifdef CONFIG_PPC_ISERIES
  119. static unsigned long __initdata iSeries_recal_titan;
  120. static signed long __initdata iSeries_recal_tb;
  121. /* Forward declaration is only needed for iSereis compiles */
  122. static void __init clocksource_init(void);
  123. #endif
  124. #define XSEC_PER_SEC (1024*1024)
  125. #ifdef CONFIG_PPC64
  126. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  127. #else
  128. /* compute ((xsec << 12) * max) >> 32 */
  129. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  130. #endif
  131. unsigned long tb_ticks_per_jiffy;
  132. unsigned long tb_ticks_per_usec = 100; /* sane default */
  133. EXPORT_SYMBOL(tb_ticks_per_usec);
  134. unsigned long tb_ticks_per_sec;
  135. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  136. DEFINE_SPINLOCK(rtc_lock);
  137. EXPORT_SYMBOL_GPL(rtc_lock);
  138. static u64 tb_to_ns_scale __read_mostly;
  139. static unsigned tb_to_ns_shift __read_mostly;
  140. static unsigned long boot_tb __read_mostly;
  141. extern struct timezone sys_tz;
  142. static long timezone_offset;
  143. unsigned long ppc_proc_freq;
  144. EXPORT_SYMBOL(ppc_proc_freq);
  145. unsigned long ppc_tb_freq;
  146. static DEFINE_PER_CPU(u64, last_jiffy);
  147. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  148. /*
  149. * Factors for converting from cputime_t (timebase ticks) to
  150. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  151. * These are all stored as 0.64 fixed-point binary fractions.
  152. */
  153. u64 __cputime_jiffies_factor;
  154. EXPORT_SYMBOL(__cputime_jiffies_factor);
  155. u64 __cputime_msec_factor;
  156. EXPORT_SYMBOL(__cputime_msec_factor);
  157. u64 __cputime_sec_factor;
  158. EXPORT_SYMBOL(__cputime_sec_factor);
  159. u64 __cputime_clockt_factor;
  160. EXPORT_SYMBOL(__cputime_clockt_factor);
  161. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  162. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  163. cputime_t cputime_one_jiffy;
  164. static void calc_cputime_factors(void)
  165. {
  166. struct div_result res;
  167. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  168. __cputime_jiffies_factor = res.result_low;
  169. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  170. __cputime_msec_factor = res.result_low;
  171. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  172. __cputime_sec_factor = res.result_low;
  173. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  174. __cputime_clockt_factor = res.result_low;
  175. }
  176. /*
  177. * Read the PURR on systems that have it, otherwise the timebase.
  178. */
  179. static u64 read_purr(void)
  180. {
  181. if (cpu_has_feature(CPU_FTR_PURR))
  182. return mfspr(SPRN_PURR);
  183. return mftb();
  184. }
  185. /*
  186. * Read the SPURR on systems that have it, otherwise the purr
  187. */
  188. static u64 read_spurr(u64 purr)
  189. {
  190. /*
  191. * cpus without PURR won't have a SPURR
  192. * We already know the former when we use this, so tell gcc
  193. */
  194. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  195. return mfspr(SPRN_SPURR);
  196. return purr;
  197. }
  198. /*
  199. * Account time for a transition between system, hard irq
  200. * or soft irq state.
  201. */
  202. void account_system_vtime(struct task_struct *tsk)
  203. {
  204. u64 now, nowscaled, delta, deltascaled, sys_time;
  205. unsigned long flags;
  206. local_irq_save(flags);
  207. now = read_purr();
  208. nowscaled = read_spurr(now);
  209. delta = now - get_paca()->startpurr;
  210. deltascaled = nowscaled - get_paca()->startspurr;
  211. get_paca()->startpurr = now;
  212. get_paca()->startspurr = nowscaled;
  213. if (!in_interrupt()) {
  214. /* deltascaled includes both user and system time.
  215. * Hence scale it based on the purr ratio to estimate
  216. * the system time */
  217. sys_time = get_paca()->system_time;
  218. if (get_paca()->user_time)
  219. deltascaled = deltascaled * sys_time /
  220. (sys_time + get_paca()->user_time);
  221. delta += sys_time;
  222. get_paca()->system_time = 0;
  223. }
  224. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  225. account_system_time(tsk, 0, delta, deltascaled);
  226. else
  227. account_idle_time(delta);
  228. __get_cpu_var(cputime_last_delta) = delta;
  229. __get_cpu_var(cputime_scaled_last_delta) = deltascaled;
  230. local_irq_restore(flags);
  231. }
  232. EXPORT_SYMBOL_GPL(account_system_vtime);
  233. /*
  234. * Transfer the user and system times accumulated in the paca
  235. * by the exception entry and exit code to the generic process
  236. * user and system time records.
  237. * Must be called with interrupts disabled.
  238. */
  239. void account_process_tick(struct task_struct *tsk, int user_tick)
  240. {
  241. cputime_t utime, utimescaled;
  242. utime = get_paca()->user_time;
  243. get_paca()->user_time = 0;
  244. utimescaled = cputime_to_scaled(utime);
  245. account_user_time(tsk, utime, utimescaled);
  246. }
  247. /*
  248. * Stuff for accounting stolen time.
  249. */
  250. struct cpu_purr_data {
  251. int initialized; /* thread is running */
  252. u64 tb; /* last TB value read */
  253. u64 purr; /* last PURR value read */
  254. u64 spurr; /* last SPURR value read */
  255. };
  256. /*
  257. * Each entry in the cpu_purr_data array is manipulated only by its
  258. * "owner" cpu -- usually in the timer interrupt but also occasionally
  259. * in process context for cpu online. As long as cpus do not touch
  260. * each others' cpu_purr_data, disabling local interrupts is
  261. * sufficient to serialize accesses.
  262. */
  263. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  264. static void snapshot_tb_and_purr(void *data)
  265. {
  266. unsigned long flags;
  267. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  268. local_irq_save(flags);
  269. p->tb = get_tb_or_rtc();
  270. p->purr = mfspr(SPRN_PURR);
  271. wmb();
  272. p->initialized = 1;
  273. local_irq_restore(flags);
  274. }
  275. /*
  276. * Called during boot when all cpus have come up.
  277. */
  278. void snapshot_timebases(void)
  279. {
  280. if (!cpu_has_feature(CPU_FTR_PURR))
  281. return;
  282. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  283. }
  284. /*
  285. * Must be called with interrupts disabled.
  286. */
  287. void calculate_steal_time(void)
  288. {
  289. u64 tb, purr;
  290. s64 stolen;
  291. struct cpu_purr_data *pme;
  292. pme = &__get_cpu_var(cpu_purr_data);
  293. if (!pme->initialized)
  294. return; /* !CPU_FTR_PURR or early in early boot */
  295. tb = mftb();
  296. purr = mfspr(SPRN_PURR);
  297. stolen = (tb - pme->tb) - (purr - pme->purr);
  298. if (stolen > 0) {
  299. if (idle_task(smp_processor_id()) != current)
  300. account_steal_time(stolen);
  301. else
  302. account_idle_time(stolen);
  303. }
  304. pme->tb = tb;
  305. pme->purr = purr;
  306. }
  307. #ifdef CONFIG_PPC_SPLPAR
  308. /*
  309. * Must be called before the cpu is added to the online map when
  310. * a cpu is being brought up at runtime.
  311. */
  312. static void snapshot_purr(void)
  313. {
  314. struct cpu_purr_data *pme;
  315. unsigned long flags;
  316. if (!cpu_has_feature(CPU_FTR_PURR))
  317. return;
  318. local_irq_save(flags);
  319. pme = &__get_cpu_var(cpu_purr_data);
  320. pme->tb = mftb();
  321. pme->purr = mfspr(SPRN_PURR);
  322. pme->initialized = 1;
  323. local_irq_restore(flags);
  324. }
  325. #endif /* CONFIG_PPC_SPLPAR */
  326. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  327. #define calc_cputime_factors()
  328. #define calculate_steal_time() do { } while (0)
  329. #endif
  330. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  331. #define snapshot_purr() do { } while (0)
  332. #endif
  333. /*
  334. * Called when a cpu comes up after the system has finished booting,
  335. * i.e. as a result of a hotplug cpu action.
  336. */
  337. void snapshot_timebase(void)
  338. {
  339. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  340. snapshot_purr();
  341. }
  342. void __delay(unsigned long loops)
  343. {
  344. unsigned long start;
  345. int diff;
  346. if (__USE_RTC()) {
  347. start = get_rtcl();
  348. do {
  349. /* the RTCL register wraps at 1000000000 */
  350. diff = get_rtcl() - start;
  351. if (diff < 0)
  352. diff += 1000000000;
  353. } while (diff < loops);
  354. } else {
  355. start = get_tbl();
  356. while (get_tbl() - start < loops)
  357. HMT_low();
  358. HMT_medium();
  359. }
  360. }
  361. EXPORT_SYMBOL(__delay);
  362. void udelay(unsigned long usecs)
  363. {
  364. __delay(tb_ticks_per_usec * usecs);
  365. }
  366. EXPORT_SYMBOL(udelay);
  367. #ifdef CONFIG_SMP
  368. unsigned long profile_pc(struct pt_regs *regs)
  369. {
  370. unsigned long pc = instruction_pointer(regs);
  371. if (in_lock_functions(pc))
  372. return regs->link;
  373. return pc;
  374. }
  375. EXPORT_SYMBOL(profile_pc);
  376. #endif
  377. #ifdef CONFIG_PPC_ISERIES
  378. /*
  379. * This function recalibrates the timebase based on the 49-bit time-of-day
  380. * value in the Titan chip. The Titan is much more accurate than the value
  381. * returned by the service processor for the timebase frequency.
  382. */
  383. static int __init iSeries_tb_recal(void)
  384. {
  385. unsigned long titan, tb;
  386. /* Make sure we only run on iSeries */
  387. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  388. return -ENODEV;
  389. tb = get_tb();
  390. titan = HvCallXm_loadTod();
  391. if ( iSeries_recal_titan ) {
  392. unsigned long tb_ticks = tb - iSeries_recal_tb;
  393. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  394. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  395. unsigned long new_tb_ticks_per_jiffy =
  396. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  397. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  398. char sign = '+';
  399. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  400. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  401. if ( tick_diff < 0 ) {
  402. tick_diff = -tick_diff;
  403. sign = '-';
  404. }
  405. if ( tick_diff ) {
  406. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  407. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  408. new_tb_ticks_per_jiffy, sign, tick_diff );
  409. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  410. tb_ticks_per_sec = new_tb_ticks_per_sec;
  411. calc_cputime_factors();
  412. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  413. setup_cputime_one_jiffy();
  414. }
  415. else {
  416. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  417. " new tb_ticks_per_jiffy = %lu\n"
  418. " old tb_ticks_per_jiffy = %lu\n",
  419. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  420. }
  421. }
  422. }
  423. iSeries_recal_titan = titan;
  424. iSeries_recal_tb = tb;
  425. /* Called here as now we know accurate values for the timebase */
  426. clocksource_init();
  427. return 0;
  428. }
  429. late_initcall(iSeries_tb_recal);
  430. /* Called from platform early init */
  431. void __init iSeries_time_init_early(void)
  432. {
  433. iSeries_recal_tb = get_tb();
  434. iSeries_recal_titan = HvCallXm_loadTod();
  435. }
  436. #endif /* CONFIG_PPC_ISERIES */
  437. #ifdef CONFIG_PERF_EVENTS
  438. /*
  439. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  440. */
  441. #ifdef CONFIG_PPC64
  442. static inline unsigned long test_perf_event_pending(void)
  443. {
  444. unsigned long x;
  445. asm volatile("lbz %0,%1(13)"
  446. : "=r" (x)
  447. : "i" (offsetof(struct paca_struct, perf_event_pending)));
  448. return x;
  449. }
  450. static inline void set_perf_event_pending_flag(void)
  451. {
  452. asm volatile("stb %0,%1(13)" : :
  453. "r" (1),
  454. "i" (offsetof(struct paca_struct, perf_event_pending)));
  455. }
  456. static inline void clear_perf_event_pending(void)
  457. {
  458. asm volatile("stb %0,%1(13)" : :
  459. "r" (0),
  460. "i" (offsetof(struct paca_struct, perf_event_pending)));
  461. }
  462. #else /* 32-bit */
  463. DEFINE_PER_CPU(u8, perf_event_pending);
  464. #define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
  465. #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
  466. #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
  467. #endif /* 32 vs 64 bit */
  468. void set_perf_event_pending(void)
  469. {
  470. preempt_disable();
  471. set_perf_event_pending_flag();
  472. set_dec(1);
  473. preempt_enable();
  474. }
  475. #else /* CONFIG_PERF_EVENTS */
  476. #define test_perf_event_pending() 0
  477. #define clear_perf_event_pending()
  478. #endif /* CONFIG_PERF_EVENTS */
  479. /*
  480. * For iSeries shared processors, we have to let the hypervisor
  481. * set the hardware decrementer. We set a virtual decrementer
  482. * in the lppaca and call the hypervisor if the virtual
  483. * decrementer is less than the current value in the hardware
  484. * decrementer. (almost always the new decrementer value will
  485. * be greater than the current hardware decementer so the hypervisor
  486. * call will not be needed)
  487. */
  488. /*
  489. * timer_interrupt - gets called when the decrementer overflows,
  490. * with interrupts disabled.
  491. */
  492. void timer_interrupt(struct pt_regs * regs)
  493. {
  494. struct pt_regs *old_regs;
  495. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  496. struct clock_event_device *evt = &decrementer->event;
  497. u64 now;
  498. trace_timer_interrupt_entry(regs);
  499. __get_cpu_var(irq_stat).timer_irqs++;
  500. /* Ensure a positive value is written to the decrementer, or else
  501. * some CPUs will continuue to take decrementer exceptions */
  502. set_dec(DECREMENTER_MAX);
  503. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  504. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  505. do_IRQ(regs);
  506. #endif
  507. old_regs = set_irq_regs(regs);
  508. irq_enter();
  509. calculate_steal_time();
  510. if (test_perf_event_pending()) {
  511. clear_perf_event_pending();
  512. perf_event_do_pending();
  513. }
  514. #ifdef CONFIG_PPC_ISERIES
  515. if (firmware_has_feature(FW_FEATURE_ISERIES))
  516. get_lppaca()->int_dword.fields.decr_int = 0;
  517. #endif
  518. now = get_tb_or_rtc();
  519. if (now >= decrementer->next_tb) {
  520. decrementer->next_tb = ~(u64)0;
  521. if (evt->event_handler)
  522. evt->event_handler(evt);
  523. } else {
  524. now = decrementer->next_tb - now;
  525. if (now <= DECREMENTER_MAX)
  526. set_dec((int)now);
  527. }
  528. #ifdef CONFIG_PPC_ISERIES
  529. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  530. process_hvlpevents();
  531. #endif
  532. #ifdef CONFIG_PPC64
  533. /* collect purr register values often, for accurate calculations */
  534. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  535. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  536. cu->current_tb = mfspr(SPRN_PURR);
  537. }
  538. #endif
  539. irq_exit();
  540. set_irq_regs(old_regs);
  541. trace_timer_interrupt_exit(regs);
  542. }
  543. #ifdef CONFIG_SUSPEND
  544. static void generic_suspend_disable_irqs(void)
  545. {
  546. /* Disable the decrementer, so that it doesn't interfere
  547. * with suspending.
  548. */
  549. set_dec(0x7fffffff);
  550. local_irq_disable();
  551. set_dec(0x7fffffff);
  552. }
  553. static void generic_suspend_enable_irqs(void)
  554. {
  555. local_irq_enable();
  556. }
  557. /* Overrides the weak version in kernel/power/main.c */
  558. void arch_suspend_disable_irqs(void)
  559. {
  560. if (ppc_md.suspend_disable_irqs)
  561. ppc_md.suspend_disable_irqs();
  562. generic_suspend_disable_irqs();
  563. }
  564. /* Overrides the weak version in kernel/power/main.c */
  565. void arch_suspend_enable_irqs(void)
  566. {
  567. generic_suspend_enable_irqs();
  568. if (ppc_md.suspend_enable_irqs)
  569. ppc_md.suspend_enable_irqs();
  570. }
  571. #endif
  572. /*
  573. * Scheduler clock - returns current time in nanosec units.
  574. *
  575. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  576. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  577. * are 64-bit unsigned numbers.
  578. */
  579. unsigned long long sched_clock(void)
  580. {
  581. if (__USE_RTC())
  582. return get_rtc();
  583. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  584. }
  585. static int __init get_freq(char *name, int cells, unsigned long *val)
  586. {
  587. struct device_node *cpu;
  588. const unsigned int *fp;
  589. int found = 0;
  590. /* The cpu node should have timebase and clock frequency properties */
  591. cpu = of_find_node_by_type(NULL, "cpu");
  592. if (cpu) {
  593. fp = of_get_property(cpu, name, NULL);
  594. if (fp) {
  595. found = 1;
  596. *val = of_read_ulong(fp, cells);
  597. }
  598. of_node_put(cpu);
  599. }
  600. return found;
  601. }
  602. /* should become __cpuinit when secondary_cpu_time_init also is */
  603. void start_cpu_decrementer(void)
  604. {
  605. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  606. /* Clear any pending timer interrupts */
  607. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  608. /* Enable decrementer interrupt */
  609. mtspr(SPRN_TCR, TCR_DIE);
  610. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  611. }
  612. void __init generic_calibrate_decr(void)
  613. {
  614. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  615. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  616. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  617. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  618. "(not found)\n");
  619. }
  620. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  621. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  622. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  623. printk(KERN_ERR "WARNING: Estimating processor frequency "
  624. "(not found)\n");
  625. }
  626. }
  627. int update_persistent_clock(struct timespec now)
  628. {
  629. struct rtc_time tm;
  630. if (!ppc_md.set_rtc_time)
  631. return 0;
  632. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  633. tm.tm_year -= 1900;
  634. tm.tm_mon -= 1;
  635. return ppc_md.set_rtc_time(&tm);
  636. }
  637. static void __read_persistent_clock(struct timespec *ts)
  638. {
  639. struct rtc_time tm;
  640. static int first = 1;
  641. ts->tv_nsec = 0;
  642. /* XXX this is a litle fragile but will work okay in the short term */
  643. if (first) {
  644. first = 0;
  645. if (ppc_md.time_init)
  646. timezone_offset = ppc_md.time_init();
  647. /* get_boot_time() isn't guaranteed to be safe to call late */
  648. if (ppc_md.get_boot_time) {
  649. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  650. return;
  651. }
  652. }
  653. if (!ppc_md.get_rtc_time) {
  654. ts->tv_sec = 0;
  655. return;
  656. }
  657. ppc_md.get_rtc_time(&tm);
  658. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  659. tm.tm_hour, tm.tm_min, tm.tm_sec);
  660. }
  661. void read_persistent_clock(struct timespec *ts)
  662. {
  663. __read_persistent_clock(ts);
  664. /* Sanitize it in case real time clock is set below EPOCH */
  665. if (ts->tv_sec < 0) {
  666. ts->tv_sec = 0;
  667. ts->tv_nsec = 0;
  668. }
  669. }
  670. /* clocksource code */
  671. static cycle_t rtc_read(struct clocksource *cs)
  672. {
  673. return (cycle_t)get_rtc();
  674. }
  675. static cycle_t timebase_read(struct clocksource *cs)
  676. {
  677. return (cycle_t)get_tb();
  678. }
  679. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  680. struct clocksource *clock, u32 mult)
  681. {
  682. u64 new_tb_to_xs, new_stamp_xsec;
  683. u32 frac_sec;
  684. if (clock != &clocksource_timebase)
  685. return;
  686. /* Make userspace gettimeofday spin until we're done. */
  687. ++vdso_data->tb_update_count;
  688. smp_mb();
  689. /* XXX this assumes clock->shift == 22 */
  690. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  691. new_tb_to_xs = (u64) mult * 4611686018ULL;
  692. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  693. do_div(new_stamp_xsec, 1000000000);
  694. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  695. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  696. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  697. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  698. /*
  699. * tb_update_count is used to allow the userspace gettimeofday code
  700. * to assure itself that it sees a consistent view of the tb_to_xs and
  701. * stamp_xsec variables. It reads the tb_update_count, then reads
  702. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  703. * the two values of tb_update_count match and are even then the
  704. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  705. * loops back and reads them again until this criteria is met.
  706. * We expect the caller to have done the first increment of
  707. * vdso_data->tb_update_count already.
  708. */
  709. vdso_data->tb_orig_stamp = clock->cycle_last;
  710. vdso_data->stamp_xsec = new_stamp_xsec;
  711. vdso_data->tb_to_xs = new_tb_to_xs;
  712. vdso_data->wtom_clock_sec = wtm->tv_sec;
  713. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  714. vdso_data->stamp_xtime = *wall_time;
  715. vdso_data->stamp_sec_fraction = frac_sec;
  716. smp_wmb();
  717. ++(vdso_data->tb_update_count);
  718. }
  719. void update_vsyscall_tz(void)
  720. {
  721. /* Make userspace gettimeofday spin until we're done. */
  722. ++vdso_data->tb_update_count;
  723. smp_mb();
  724. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  725. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  726. smp_mb();
  727. ++vdso_data->tb_update_count;
  728. }
  729. static void __init clocksource_init(void)
  730. {
  731. struct clocksource *clock;
  732. if (__USE_RTC())
  733. clock = &clocksource_rtc;
  734. else
  735. clock = &clocksource_timebase;
  736. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  737. if (clocksource_register(clock)) {
  738. printk(KERN_ERR "clocksource: %s is already registered\n",
  739. clock->name);
  740. return;
  741. }
  742. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  743. clock->name, clock->mult, clock->shift);
  744. }
  745. static int decrementer_set_next_event(unsigned long evt,
  746. struct clock_event_device *dev)
  747. {
  748. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  749. set_dec(evt);
  750. return 0;
  751. }
  752. static void decrementer_set_mode(enum clock_event_mode mode,
  753. struct clock_event_device *dev)
  754. {
  755. if (mode != CLOCK_EVT_MODE_ONESHOT)
  756. decrementer_set_next_event(DECREMENTER_MAX, dev);
  757. }
  758. static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
  759. int shift)
  760. {
  761. uint64_t tmp = ((uint64_t)ticks) << shift;
  762. do_div(tmp, nsec);
  763. return tmp;
  764. }
  765. static void __init setup_clockevent_multiplier(unsigned long hz)
  766. {
  767. u64 mult, shift = 32;
  768. while (1) {
  769. mult = div_sc64(hz, NSEC_PER_SEC, shift);
  770. if (mult && (mult >> 32UL) == 0UL)
  771. break;
  772. shift--;
  773. }
  774. decrementer_clockevent.shift = shift;
  775. decrementer_clockevent.mult = mult;
  776. }
  777. static void register_decrementer_clockevent(int cpu)
  778. {
  779. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  780. *dec = decrementer_clockevent;
  781. dec->cpumask = cpumask_of(cpu);
  782. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  783. dec->name, dec->mult, dec->shift, cpu);
  784. clockevents_register_device(dec);
  785. }
  786. static void __init init_decrementer_clockevent(void)
  787. {
  788. int cpu = smp_processor_id();
  789. setup_clockevent_multiplier(ppc_tb_freq);
  790. decrementer_clockevent.max_delta_ns =
  791. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  792. decrementer_clockevent.min_delta_ns =
  793. clockevent_delta2ns(2, &decrementer_clockevent);
  794. register_decrementer_clockevent(cpu);
  795. }
  796. void secondary_cpu_time_init(void)
  797. {
  798. /* Start the decrementer on CPUs that have manual control
  799. * such as BookE
  800. */
  801. start_cpu_decrementer();
  802. /* FIME: Should make unrelatred change to move snapshot_timebase
  803. * call here ! */
  804. register_decrementer_clockevent(smp_processor_id());
  805. }
  806. /* This function is only called on the boot processor */
  807. void __init time_init(void)
  808. {
  809. struct div_result res;
  810. u64 scale;
  811. unsigned shift;
  812. if (__USE_RTC()) {
  813. /* 601 processor: dec counts down by 128 every 128ns */
  814. ppc_tb_freq = 1000000000;
  815. } else {
  816. /* Normal PowerPC with timebase register */
  817. ppc_md.calibrate_decr();
  818. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  819. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  820. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  821. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  822. }
  823. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  824. tb_ticks_per_sec = ppc_tb_freq;
  825. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  826. calc_cputime_factors();
  827. setup_cputime_one_jiffy();
  828. /*
  829. * Compute scale factor for sched_clock.
  830. * The calibrate_decr() function has set tb_ticks_per_sec,
  831. * which is the timebase frequency.
  832. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  833. * the 128-bit result as a 64.64 fixed-point number.
  834. * We then shift that number right until it is less than 1.0,
  835. * giving us the scale factor and shift count to use in
  836. * sched_clock().
  837. */
  838. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  839. scale = res.result_low;
  840. for (shift = 0; res.result_high != 0; ++shift) {
  841. scale = (scale >> 1) | (res.result_high << 63);
  842. res.result_high >>= 1;
  843. }
  844. tb_to_ns_scale = scale;
  845. tb_to_ns_shift = shift;
  846. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  847. boot_tb = get_tb_or_rtc();
  848. /* If platform provided a timezone (pmac), we correct the time */
  849. if (timezone_offset) {
  850. sys_tz.tz_minuteswest = -timezone_offset / 60;
  851. sys_tz.tz_dsttime = 0;
  852. }
  853. vdso_data->tb_update_count = 0;
  854. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  855. /* Start the decrementer on CPUs that have manual control
  856. * such as BookE
  857. */
  858. start_cpu_decrementer();
  859. /* Register the clocksource, if we're not running on iSeries */
  860. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  861. clocksource_init();
  862. init_decrementer_clockevent();
  863. }
  864. #define FEBRUARY 2
  865. #define STARTOFTIME 1970
  866. #define SECDAY 86400L
  867. #define SECYR (SECDAY * 365)
  868. #define leapyear(year) ((year) % 4 == 0 && \
  869. ((year) % 100 != 0 || (year) % 400 == 0))
  870. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  871. #define days_in_month(a) (month_days[(a) - 1])
  872. static int month_days[12] = {
  873. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  874. };
  875. /*
  876. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  877. */
  878. void GregorianDay(struct rtc_time * tm)
  879. {
  880. int leapsToDate;
  881. int lastYear;
  882. int day;
  883. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  884. lastYear = tm->tm_year - 1;
  885. /*
  886. * Number of leap corrections to apply up to end of last year
  887. */
  888. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  889. /*
  890. * This year is a leap year if it is divisible by 4 except when it is
  891. * divisible by 100 unless it is divisible by 400
  892. *
  893. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  894. */
  895. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  896. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  897. tm->tm_mday;
  898. tm->tm_wday = day % 7;
  899. }
  900. void to_tm(int tim, struct rtc_time * tm)
  901. {
  902. register int i;
  903. register long hms, day;
  904. day = tim / SECDAY;
  905. hms = tim % SECDAY;
  906. /* Hours, minutes, seconds are easy */
  907. tm->tm_hour = hms / 3600;
  908. tm->tm_min = (hms % 3600) / 60;
  909. tm->tm_sec = (hms % 3600) % 60;
  910. /* Number of years in days */
  911. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  912. day -= days_in_year(i);
  913. tm->tm_year = i;
  914. /* Number of months in days left */
  915. if (leapyear(tm->tm_year))
  916. days_in_month(FEBRUARY) = 29;
  917. for (i = 1; day >= days_in_month(i); i++)
  918. day -= days_in_month(i);
  919. days_in_month(FEBRUARY) = 28;
  920. tm->tm_mon = i;
  921. /* Days are what is left over (+1) from all that. */
  922. tm->tm_mday = day + 1;
  923. /*
  924. * Determine the day of week
  925. */
  926. GregorianDay(tm);
  927. }
  928. /*
  929. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  930. * result.
  931. */
  932. void div128_by_32(u64 dividend_high, u64 dividend_low,
  933. unsigned divisor, struct div_result *dr)
  934. {
  935. unsigned long a, b, c, d;
  936. unsigned long w, x, y, z;
  937. u64 ra, rb, rc;
  938. a = dividend_high >> 32;
  939. b = dividend_high & 0xffffffff;
  940. c = dividend_low >> 32;
  941. d = dividend_low & 0xffffffff;
  942. w = a / divisor;
  943. ra = ((u64)(a - (w * divisor)) << 32) + b;
  944. rb = ((u64) do_div(ra, divisor) << 32) + c;
  945. x = ra;
  946. rc = ((u64) do_div(rb, divisor) << 32) + d;
  947. y = rb;
  948. do_div(rc, divisor);
  949. z = rc;
  950. dr->result_high = ((u64)w << 32) + x;
  951. dr->result_low = ((u64)y << 32) + z;
  952. }
  953. /* We don't need to calibrate delay, we use the CPU timebase for that */
  954. void calibrate_delay(void)
  955. {
  956. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  957. * as the number of __delay(1) in a jiffy, so make it so
  958. */
  959. loops_per_jiffy = tb_ticks_per_jiffy;
  960. }
  961. static int __init rtc_init(void)
  962. {
  963. struct platform_device *pdev;
  964. if (!ppc_md.get_rtc_time)
  965. return -ENODEV;
  966. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  967. if (IS_ERR(pdev))
  968. return PTR_ERR(pdev);
  969. return 0;
  970. }
  971. module_init(rtc_init);