perf_callchain.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /*
  2. * Performance counter callchain support - powerpc architecture code
  3. *
  4. * Copyright © 2009 Paul Mackerras, IBM Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/sched.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/percpu.h>
  15. #include <linux/uaccess.h>
  16. #include <linux/mm.h>
  17. #include <asm/ptrace.h>
  18. #include <asm/pgtable.h>
  19. #include <asm/sigcontext.h>
  20. #include <asm/ucontext.h>
  21. #include <asm/vdso.h>
  22. #ifdef CONFIG_PPC64
  23. #include "ppc32.h"
  24. #endif
  25. /*
  26. * Store another value in a callchain_entry.
  27. */
  28. static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  29. {
  30. unsigned int nr = entry->nr;
  31. if (nr < PERF_MAX_STACK_DEPTH) {
  32. entry->ip[nr] = ip;
  33. entry->nr = nr + 1;
  34. }
  35. }
  36. /*
  37. * Is sp valid as the address of the next kernel stack frame after prev_sp?
  38. * The next frame may be in a different stack area but should not go
  39. * back down in the same stack area.
  40. */
  41. static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
  42. {
  43. if (sp & 0xf)
  44. return 0; /* must be 16-byte aligned */
  45. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  46. return 0;
  47. if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
  48. return 1;
  49. /*
  50. * sp could decrease when we jump off an interrupt stack
  51. * back to the regular process stack.
  52. */
  53. if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
  54. return 1;
  55. return 0;
  56. }
  57. static void perf_callchain_kernel(struct pt_regs *regs,
  58. struct perf_callchain_entry *entry)
  59. {
  60. unsigned long sp, next_sp;
  61. unsigned long next_ip;
  62. unsigned long lr;
  63. long level = 0;
  64. unsigned long *fp;
  65. lr = regs->link;
  66. sp = regs->gpr[1];
  67. callchain_store(entry, PERF_CONTEXT_KERNEL);
  68. callchain_store(entry, regs->nip);
  69. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  70. return;
  71. for (;;) {
  72. fp = (unsigned long *) sp;
  73. next_sp = fp[0];
  74. if (next_sp == sp + STACK_INT_FRAME_SIZE &&
  75. fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  76. /*
  77. * This looks like an interrupt frame for an
  78. * interrupt that occurred in the kernel
  79. */
  80. regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
  81. next_ip = regs->nip;
  82. lr = regs->link;
  83. level = 0;
  84. callchain_store(entry, PERF_CONTEXT_KERNEL);
  85. } else {
  86. if (level == 0)
  87. next_ip = lr;
  88. else
  89. next_ip = fp[STACK_FRAME_LR_SAVE];
  90. /*
  91. * We can't tell which of the first two addresses
  92. * we get are valid, but we can filter out the
  93. * obviously bogus ones here. We replace them
  94. * with 0 rather than removing them entirely so
  95. * that userspace can tell which is which.
  96. */
  97. if ((level == 1 && next_ip == lr) ||
  98. (level <= 1 && !kernel_text_address(next_ip)))
  99. next_ip = 0;
  100. ++level;
  101. }
  102. callchain_store(entry, next_ip);
  103. if (!valid_next_sp(next_sp, sp))
  104. return;
  105. sp = next_sp;
  106. }
  107. }
  108. #ifdef CONFIG_PPC64
  109. /*
  110. * On 64-bit we don't want to invoke hash_page on user addresses from
  111. * interrupt context, so if the access faults, we read the page tables
  112. * to find which page (if any) is mapped and access it directly.
  113. */
  114. static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
  115. {
  116. pgd_t *pgdir;
  117. pte_t *ptep, pte;
  118. unsigned shift;
  119. unsigned long addr = (unsigned long) ptr;
  120. unsigned long offset;
  121. unsigned long pfn;
  122. void *kaddr;
  123. pgdir = current->mm->pgd;
  124. if (!pgdir)
  125. return -EFAULT;
  126. ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
  127. if (!shift)
  128. shift = PAGE_SHIFT;
  129. /* align address to page boundary */
  130. offset = addr & ((1UL << shift) - 1);
  131. addr -= offset;
  132. if (ptep == NULL)
  133. return -EFAULT;
  134. pte = *ptep;
  135. if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
  136. return -EFAULT;
  137. pfn = pte_pfn(pte);
  138. if (!page_is_ram(pfn))
  139. return -EFAULT;
  140. /* no highmem to worry about here */
  141. kaddr = pfn_to_kaddr(pfn);
  142. memcpy(ret, kaddr + offset, nb);
  143. return 0;
  144. }
  145. static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
  146. {
  147. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
  148. ((unsigned long)ptr & 7))
  149. return -EFAULT;
  150. if (!__get_user_inatomic(*ret, ptr))
  151. return 0;
  152. return read_user_stack_slow(ptr, ret, 8);
  153. }
  154. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  155. {
  156. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  157. ((unsigned long)ptr & 3))
  158. return -EFAULT;
  159. if (!__get_user_inatomic(*ret, ptr))
  160. return 0;
  161. return read_user_stack_slow(ptr, ret, 4);
  162. }
  163. static inline int valid_user_sp(unsigned long sp, int is_64)
  164. {
  165. if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
  166. return 0;
  167. return 1;
  168. }
  169. /*
  170. * 64-bit user processes use the same stack frame for RT and non-RT signals.
  171. */
  172. struct signal_frame_64 {
  173. char dummy[__SIGNAL_FRAMESIZE];
  174. struct ucontext uc;
  175. unsigned long unused[2];
  176. unsigned int tramp[6];
  177. struct siginfo *pinfo;
  178. void *puc;
  179. struct siginfo info;
  180. char abigap[288];
  181. };
  182. static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
  183. {
  184. if (nip == fp + offsetof(struct signal_frame_64, tramp))
  185. return 1;
  186. if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
  187. nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
  188. return 1;
  189. return 0;
  190. }
  191. /*
  192. * Do some sanity checking on the signal frame pointed to by sp.
  193. * We check the pinfo and puc pointers in the frame.
  194. */
  195. static int sane_signal_64_frame(unsigned long sp)
  196. {
  197. struct signal_frame_64 __user *sf;
  198. unsigned long pinfo, puc;
  199. sf = (struct signal_frame_64 __user *) sp;
  200. if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
  201. read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
  202. return 0;
  203. return pinfo == (unsigned long) &sf->info &&
  204. puc == (unsigned long) &sf->uc;
  205. }
  206. static void perf_callchain_user_64(struct pt_regs *regs,
  207. struct perf_callchain_entry *entry)
  208. {
  209. unsigned long sp, next_sp;
  210. unsigned long next_ip;
  211. unsigned long lr;
  212. long level = 0;
  213. struct signal_frame_64 __user *sigframe;
  214. unsigned long __user *fp, *uregs;
  215. next_ip = regs->nip;
  216. lr = regs->link;
  217. sp = regs->gpr[1];
  218. callchain_store(entry, PERF_CONTEXT_USER);
  219. callchain_store(entry, next_ip);
  220. for (;;) {
  221. fp = (unsigned long __user *) sp;
  222. if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
  223. return;
  224. if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
  225. return;
  226. /*
  227. * Note: the next_sp - sp >= signal frame size check
  228. * is true when next_sp < sp, which can happen when
  229. * transitioning from an alternate signal stack to the
  230. * normal stack.
  231. */
  232. if (next_sp - sp >= sizeof(struct signal_frame_64) &&
  233. (is_sigreturn_64_address(next_ip, sp) ||
  234. (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
  235. sane_signal_64_frame(sp)) {
  236. /*
  237. * This looks like an signal frame
  238. */
  239. sigframe = (struct signal_frame_64 __user *) sp;
  240. uregs = sigframe->uc.uc_mcontext.gp_regs;
  241. if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
  242. read_user_stack_64(&uregs[PT_LNK], &lr) ||
  243. read_user_stack_64(&uregs[PT_R1], &sp))
  244. return;
  245. level = 0;
  246. callchain_store(entry, PERF_CONTEXT_USER);
  247. callchain_store(entry, next_ip);
  248. continue;
  249. }
  250. if (level == 0)
  251. next_ip = lr;
  252. callchain_store(entry, next_ip);
  253. ++level;
  254. sp = next_sp;
  255. }
  256. }
  257. static inline int current_is_64bit(void)
  258. {
  259. /*
  260. * We can't use test_thread_flag() here because we may be on an
  261. * interrupt stack, and the thread flags don't get copied over
  262. * from the thread_info on the main stack to the interrupt stack.
  263. */
  264. return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
  265. }
  266. #else /* CONFIG_PPC64 */
  267. /*
  268. * On 32-bit we just access the address and let hash_page create a
  269. * HPTE if necessary, so there is no need to fall back to reading
  270. * the page tables. Since this is called at interrupt level,
  271. * do_page_fault() won't treat a DSI as a page fault.
  272. */
  273. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  274. {
  275. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  276. ((unsigned long)ptr & 3))
  277. return -EFAULT;
  278. return __get_user_inatomic(*ret, ptr);
  279. }
  280. static inline void perf_callchain_user_64(struct pt_regs *regs,
  281. struct perf_callchain_entry *entry)
  282. {
  283. }
  284. static inline int current_is_64bit(void)
  285. {
  286. return 0;
  287. }
  288. static inline int valid_user_sp(unsigned long sp, int is_64)
  289. {
  290. if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
  291. return 0;
  292. return 1;
  293. }
  294. #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
  295. #define sigcontext32 sigcontext
  296. #define mcontext32 mcontext
  297. #define ucontext32 ucontext
  298. #define compat_siginfo_t struct siginfo
  299. #endif /* CONFIG_PPC64 */
  300. /*
  301. * Layout for non-RT signal frames
  302. */
  303. struct signal_frame_32 {
  304. char dummy[__SIGNAL_FRAMESIZE32];
  305. struct sigcontext32 sctx;
  306. struct mcontext32 mctx;
  307. int abigap[56];
  308. };
  309. /*
  310. * Layout for RT signal frames
  311. */
  312. struct rt_signal_frame_32 {
  313. char dummy[__SIGNAL_FRAMESIZE32 + 16];
  314. compat_siginfo_t info;
  315. struct ucontext32 uc;
  316. int abigap[56];
  317. };
  318. static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
  319. {
  320. if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
  321. return 1;
  322. if (vdso32_sigtramp && current->mm->context.vdso_base &&
  323. nip == current->mm->context.vdso_base + vdso32_sigtramp)
  324. return 1;
  325. return 0;
  326. }
  327. static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
  328. {
  329. if (nip == fp + offsetof(struct rt_signal_frame_32,
  330. uc.uc_mcontext.mc_pad))
  331. return 1;
  332. if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
  333. nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
  334. return 1;
  335. return 0;
  336. }
  337. static int sane_signal_32_frame(unsigned int sp)
  338. {
  339. struct signal_frame_32 __user *sf;
  340. unsigned int regs;
  341. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  342. if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
  343. return 0;
  344. return regs == (unsigned long) &sf->mctx;
  345. }
  346. static int sane_rt_signal_32_frame(unsigned int sp)
  347. {
  348. struct rt_signal_frame_32 __user *sf;
  349. unsigned int regs;
  350. sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  351. if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
  352. return 0;
  353. return regs == (unsigned long) &sf->uc.uc_mcontext;
  354. }
  355. static unsigned int __user *signal_frame_32_regs(unsigned int sp,
  356. unsigned int next_sp, unsigned int next_ip)
  357. {
  358. struct mcontext32 __user *mctx = NULL;
  359. struct signal_frame_32 __user *sf;
  360. struct rt_signal_frame_32 __user *rt_sf;
  361. /*
  362. * Note: the next_sp - sp >= signal frame size check
  363. * is true when next_sp < sp, for example, when
  364. * transitioning from an alternate signal stack to the
  365. * normal stack.
  366. */
  367. if (next_sp - sp >= sizeof(struct signal_frame_32) &&
  368. is_sigreturn_32_address(next_ip, sp) &&
  369. sane_signal_32_frame(sp)) {
  370. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  371. mctx = &sf->mctx;
  372. }
  373. if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
  374. is_rt_sigreturn_32_address(next_ip, sp) &&
  375. sane_rt_signal_32_frame(sp)) {
  376. rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  377. mctx = &rt_sf->uc.uc_mcontext;
  378. }
  379. if (!mctx)
  380. return NULL;
  381. return mctx->mc_gregs;
  382. }
  383. static void perf_callchain_user_32(struct pt_regs *regs,
  384. struct perf_callchain_entry *entry)
  385. {
  386. unsigned int sp, next_sp;
  387. unsigned int next_ip;
  388. unsigned int lr;
  389. long level = 0;
  390. unsigned int __user *fp, *uregs;
  391. next_ip = regs->nip;
  392. lr = regs->link;
  393. sp = regs->gpr[1];
  394. callchain_store(entry, PERF_CONTEXT_USER);
  395. callchain_store(entry, next_ip);
  396. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  397. fp = (unsigned int __user *) (unsigned long) sp;
  398. if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
  399. return;
  400. if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
  401. return;
  402. uregs = signal_frame_32_regs(sp, next_sp, next_ip);
  403. if (!uregs && level <= 1)
  404. uregs = signal_frame_32_regs(sp, next_sp, lr);
  405. if (uregs) {
  406. /*
  407. * This looks like an signal frame, so restart
  408. * the stack trace with the values in it.
  409. */
  410. if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
  411. read_user_stack_32(&uregs[PT_LNK], &lr) ||
  412. read_user_stack_32(&uregs[PT_R1], &sp))
  413. return;
  414. level = 0;
  415. callchain_store(entry, PERF_CONTEXT_USER);
  416. callchain_store(entry, next_ip);
  417. continue;
  418. }
  419. if (level == 0)
  420. next_ip = lr;
  421. callchain_store(entry, next_ip);
  422. ++level;
  423. sp = next_sp;
  424. }
  425. }
  426. /*
  427. * Since we can't get PMU interrupts inside a PMU interrupt handler,
  428. * we don't need separate irq and nmi entries here.
  429. */
  430. static DEFINE_PER_CPU(struct perf_callchain_entry, cpu_perf_callchain);
  431. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  432. {
  433. struct perf_callchain_entry *entry = &__get_cpu_var(cpu_perf_callchain);
  434. entry->nr = 0;
  435. if (!user_mode(regs)) {
  436. perf_callchain_kernel(regs, entry);
  437. if (current->mm)
  438. regs = task_pt_regs(current);
  439. else
  440. regs = NULL;
  441. }
  442. if (regs) {
  443. if (current_is_64bit())
  444. perf_callchain_user_64(regs, entry);
  445. else
  446. perf_callchain_user_32(regs, entry);
  447. }
  448. return entry;
  449. }