machine_kexec_64.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. /*
  2. * PPC64 code to handle Linux booting another kernel.
  3. *
  4. * Copyright (C) 2004-2005, IBM Corp.
  5. *
  6. * Created by: Milton D Miller II
  7. *
  8. * This source code is licensed under the GNU General Public License,
  9. * Version 2. See the file COPYING for more details.
  10. */
  11. #include <linux/kexec.h>
  12. #include <linux/smp.h>
  13. #include <linux/thread_info.h>
  14. #include <linux/init_task.h>
  15. #include <linux/errno.h>
  16. #include <linux/kernel.h>
  17. #include <linux/cpu.h>
  18. #include <asm/page.h>
  19. #include <asm/current.h>
  20. #include <asm/machdep.h>
  21. #include <asm/cacheflush.h>
  22. #include <asm/paca.h>
  23. #include <asm/mmu.h>
  24. #include <asm/sections.h> /* _end */
  25. #include <asm/prom.h>
  26. #include <asm/smp.h>
  27. #include <asm/hw_breakpoint.h>
  28. int default_machine_kexec_prepare(struct kimage *image)
  29. {
  30. int i;
  31. unsigned long begin, end; /* limits of segment */
  32. unsigned long low, high; /* limits of blocked memory range */
  33. struct device_node *node;
  34. const unsigned long *basep;
  35. const unsigned int *sizep;
  36. if (!ppc_md.hpte_clear_all)
  37. return -ENOENT;
  38. /*
  39. * Since we use the kernel fault handlers and paging code to
  40. * handle the virtual mode, we must make sure no destination
  41. * overlaps kernel static data or bss.
  42. */
  43. for (i = 0; i < image->nr_segments; i++)
  44. if (image->segment[i].mem < __pa(_end))
  45. return -ETXTBSY;
  46. /*
  47. * For non-LPAR, we absolutely can not overwrite the mmu hash
  48. * table, since we are still using the bolted entries in it to
  49. * do the copy. Check that here.
  50. *
  51. * It is safe if the end is below the start of the blocked
  52. * region (end <= low), or if the beginning is after the
  53. * end of the blocked region (begin >= high). Use the
  54. * boolean identity !(a || b) === (!a && !b).
  55. */
  56. if (htab_address) {
  57. low = __pa(htab_address);
  58. high = low + htab_size_bytes;
  59. for (i = 0; i < image->nr_segments; i++) {
  60. begin = image->segment[i].mem;
  61. end = begin + image->segment[i].memsz;
  62. if ((begin < high) && (end > low))
  63. return -ETXTBSY;
  64. }
  65. }
  66. /* We also should not overwrite the tce tables */
  67. for (node = of_find_node_by_type(NULL, "pci"); node != NULL;
  68. node = of_find_node_by_type(node, "pci")) {
  69. basep = of_get_property(node, "linux,tce-base", NULL);
  70. sizep = of_get_property(node, "linux,tce-size", NULL);
  71. if (basep == NULL || sizep == NULL)
  72. continue;
  73. low = *basep;
  74. high = low + (*sizep);
  75. for (i = 0; i < image->nr_segments; i++) {
  76. begin = image->segment[i].mem;
  77. end = begin + image->segment[i].memsz;
  78. if ((begin < high) && (end > low))
  79. return -ETXTBSY;
  80. }
  81. }
  82. return 0;
  83. }
  84. #define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE)
  85. static void copy_segments(unsigned long ind)
  86. {
  87. unsigned long entry;
  88. unsigned long *ptr;
  89. void *dest;
  90. void *addr;
  91. /*
  92. * We rely on kexec_load to create a lists that properly
  93. * initializes these pointers before they are used.
  94. * We will still crash if the list is wrong, but at least
  95. * the compiler will be quiet.
  96. */
  97. ptr = NULL;
  98. dest = NULL;
  99. for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
  100. addr = __va(entry & PAGE_MASK);
  101. switch (entry & IND_FLAGS) {
  102. case IND_DESTINATION:
  103. dest = addr;
  104. break;
  105. case IND_INDIRECTION:
  106. ptr = addr;
  107. break;
  108. case IND_SOURCE:
  109. copy_page(dest, addr);
  110. dest += PAGE_SIZE;
  111. }
  112. }
  113. }
  114. void kexec_copy_flush(struct kimage *image)
  115. {
  116. long i, nr_segments = image->nr_segments;
  117. struct kexec_segment ranges[KEXEC_SEGMENT_MAX];
  118. /* save the ranges on the stack to efficiently flush the icache */
  119. memcpy(ranges, image->segment, sizeof(ranges));
  120. /*
  121. * After this call we may not use anything allocated in dynamic
  122. * memory, including *image.
  123. *
  124. * Only globals and the stack are allowed.
  125. */
  126. copy_segments(image->head);
  127. /*
  128. * we need to clear the icache for all dest pages sometime,
  129. * including ones that were in place on the original copy
  130. */
  131. for (i = 0; i < nr_segments; i++)
  132. flush_icache_range((unsigned long)__va(ranges[i].mem),
  133. (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
  134. }
  135. #ifdef CONFIG_SMP
  136. static int kexec_all_irq_disabled = 0;
  137. static void kexec_smp_down(void *arg)
  138. {
  139. local_irq_disable();
  140. mb(); /* make sure our irqs are disabled before we say they are */
  141. get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
  142. while(kexec_all_irq_disabled == 0)
  143. cpu_relax();
  144. mb(); /* make sure all irqs are disabled before this */
  145. hw_breakpoint_disable();
  146. /*
  147. * Now every CPU has IRQs off, we can clear out any pending
  148. * IPIs and be sure that no more will come in after this.
  149. */
  150. if (ppc_md.kexec_cpu_down)
  151. ppc_md.kexec_cpu_down(0, 1);
  152. kexec_smp_wait();
  153. /* NOTREACHED */
  154. }
  155. static void kexec_prepare_cpus_wait(int wait_state)
  156. {
  157. int my_cpu, i, notified=-1;
  158. hw_breakpoint_disable();
  159. my_cpu = get_cpu();
  160. /* Make sure each CPU has at least made it to the state we need.
  161. *
  162. * FIXME: There is a (slim) chance of a problem if not all of the CPUs
  163. * are correctly onlined. If somehow we start a CPU on boot with RTAS
  164. * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
  165. * time, the boot CPU will timeout. If it does eventually execute
  166. * stuff, the secondary will start up (paca[].cpu_start was written) and
  167. * get into a peculiar state. If the platform supports
  168. * smp_ops->take_timebase(), the secondary CPU will probably be spinning
  169. * in there. If not (i.e. pseries), the secondary will continue on and
  170. * try to online itself/idle/etc. If it survives that, we need to find
  171. * these possible-but-not-online-but-should-be CPUs and chaperone them
  172. * into kexec_smp_wait().
  173. */
  174. for_each_online_cpu(i) {
  175. if (i == my_cpu)
  176. continue;
  177. while (paca[i].kexec_state < wait_state) {
  178. barrier();
  179. if (i != notified) {
  180. printk(KERN_INFO "kexec: waiting for cpu %d "
  181. "(physical %d) to enter %i state\n",
  182. i, paca[i].hw_cpu_id, wait_state);
  183. notified = i;
  184. }
  185. }
  186. }
  187. mb();
  188. }
  189. /*
  190. * We need to make sure each present CPU is online. The next kernel will scan
  191. * the device tree and assume primary threads are online and query secondary
  192. * threads via RTAS to online them if required. If we don't online primary
  193. * threads, they will be stuck. However, we also online secondary threads as we
  194. * may be using 'cede offline'. In this case RTAS doesn't see the secondary
  195. * threads as offline -- and again, these CPUs will be stuck.
  196. *
  197. * So, we online all CPUs that should be running, including secondary threads.
  198. */
  199. static void wake_offline_cpus(void)
  200. {
  201. int cpu = 0;
  202. for_each_present_cpu(cpu) {
  203. if (!cpu_online(cpu)) {
  204. printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
  205. cpu);
  206. cpu_up(cpu);
  207. }
  208. }
  209. }
  210. static void kexec_prepare_cpus(void)
  211. {
  212. wake_offline_cpus();
  213. smp_call_function(kexec_smp_down, NULL, /* wait */0);
  214. local_irq_disable();
  215. mb(); /* make sure IRQs are disabled before we say they are */
  216. get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
  217. kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
  218. /* we are sure every CPU has IRQs off at this point */
  219. kexec_all_irq_disabled = 1;
  220. /* after we tell the others to go down */
  221. if (ppc_md.kexec_cpu_down)
  222. ppc_md.kexec_cpu_down(0, 0);
  223. /*
  224. * Before removing MMU mappings make sure all CPUs have entered real
  225. * mode:
  226. */
  227. kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
  228. put_cpu();
  229. }
  230. #else /* ! SMP */
  231. static void kexec_prepare_cpus(void)
  232. {
  233. /*
  234. * move the secondarys to us so that we can copy
  235. * the new kernel 0-0x100 safely
  236. *
  237. * do this if kexec in setup.c ?
  238. *
  239. * We need to release the cpus if we are ever going from an
  240. * UP to an SMP kernel.
  241. */
  242. smp_release_cpus();
  243. if (ppc_md.kexec_cpu_down)
  244. ppc_md.kexec_cpu_down(0, 0);
  245. local_irq_disable();
  246. }
  247. #endif /* SMP */
  248. /*
  249. * kexec thread structure and stack.
  250. *
  251. * We need to make sure that this is 16384-byte aligned due to the
  252. * way process stacks are handled. It also must be statically allocated
  253. * or allocated as part of the kimage, because everything else may be
  254. * overwritten when we copy the kexec image. We piggyback on the
  255. * "init_task" linker section here to statically allocate a stack.
  256. *
  257. * We could use a smaller stack if we don't care about anything using
  258. * current, but that audit has not been performed.
  259. */
  260. static union thread_union kexec_stack __init_task_data =
  261. { };
  262. /*
  263. * For similar reasons to the stack above, the kexecing CPU needs to be on a
  264. * static PACA; we switch to kexec_paca.
  265. */
  266. struct paca_struct kexec_paca;
  267. /* Our assembly helper, in kexec_stub.S */
  268. extern NORET_TYPE void kexec_sequence(void *newstack, unsigned long start,
  269. void *image, void *control,
  270. void (*clear_all)(void)) ATTRIB_NORET;
  271. /* too late to fail here */
  272. void default_machine_kexec(struct kimage *image)
  273. {
  274. /* prepare control code if any */
  275. /*
  276. * If the kexec boot is the normal one, need to shutdown other cpus
  277. * into our wait loop and quiesce interrupts.
  278. * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
  279. * stopping other CPUs and collecting their pt_regs is done before
  280. * using debugger IPI.
  281. */
  282. if (crashing_cpu == -1)
  283. kexec_prepare_cpus();
  284. pr_debug("kexec: Starting switchover sequence.\n");
  285. /* switch to a staticly allocated stack. Based on irq stack code.
  286. * XXX: the task struct will likely be invalid once we do the copy!
  287. */
  288. kexec_stack.thread_info.task = current_thread_info()->task;
  289. kexec_stack.thread_info.flags = 0;
  290. /* We need a static PACA, too; copy this CPU's PACA over and switch to
  291. * it. Also poison per_cpu_offset to catch anyone using non-static
  292. * data.
  293. */
  294. memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
  295. kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
  296. paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
  297. kexec_paca.paca_index;
  298. setup_paca(&kexec_paca);
  299. /* XXX: If anyone does 'dynamic lppacas' this will also need to be
  300. * switched to a static version!
  301. */
  302. /* Some things are best done in assembly. Finding globals with
  303. * a toc is easier in C, so pass in what we can.
  304. */
  305. kexec_sequence(&kexec_stack, image->start, image,
  306. page_address(image->control_code_page),
  307. ppc_md.hpte_clear_all);
  308. /* NOTREACHED */
  309. }
  310. /* Values we need to export to the second kernel via the device tree. */
  311. static unsigned long htab_base;
  312. static struct property htab_base_prop = {
  313. .name = "linux,htab-base",
  314. .length = sizeof(unsigned long),
  315. .value = &htab_base,
  316. };
  317. static struct property htab_size_prop = {
  318. .name = "linux,htab-size",
  319. .length = sizeof(unsigned long),
  320. .value = &htab_size_bytes,
  321. };
  322. static int __init export_htab_values(void)
  323. {
  324. struct device_node *node;
  325. struct property *prop;
  326. /* On machines with no htab htab_address is NULL */
  327. if (!htab_address)
  328. return -ENODEV;
  329. node = of_find_node_by_path("/chosen");
  330. if (!node)
  331. return -ENODEV;
  332. /* remove any stale propertys so ours can be found */
  333. prop = of_find_property(node, htab_base_prop.name, NULL);
  334. if (prop)
  335. prom_remove_property(node, prop);
  336. prop = of_find_property(node, htab_size_prop.name, NULL);
  337. if (prop)
  338. prom_remove_property(node, prop);
  339. htab_base = __pa(htab_address);
  340. prom_add_property(node, &htab_base_prop);
  341. prom_add_property(node, &htab_size_prop);
  342. of_node_put(node);
  343. return 0;
  344. }
  345. late_initcall(export_htab_values);