setup.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. * Copyright (C) 1995 Waldorf Electronics
  8. * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
  9. * Copyright (C) 1996 Stoned Elipot
  10. * Copyright (C) 1999 Silicon Graphics, Inc.
  11. * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
  12. */
  13. #include <linux/init.h>
  14. #include <linux/ioport.h>
  15. #include <linux/module.h>
  16. #include <linux/screen_info.h>
  17. #include <linux/bootmem.h>
  18. #include <linux/initrd.h>
  19. #include <linux/root_dev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/console.h>
  22. #include <linux/pfn.h>
  23. #include <linux/debugfs.h>
  24. #include <asm/addrspace.h>
  25. #include <asm/bootinfo.h>
  26. #include <asm/bugs.h>
  27. #include <asm/cache.h>
  28. #include <asm/cpu.h>
  29. #include <asm/sections.h>
  30. #include <asm/setup.h>
  31. #include <asm/smp-ops.h>
  32. #include <asm/system.h>
  33. struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  34. EXPORT_SYMBOL(cpu_data);
  35. #ifdef CONFIG_VT
  36. struct screen_info screen_info;
  37. #endif
  38. /*
  39. * Despite it's name this variable is even if we don't have PCI
  40. */
  41. unsigned int PCI_DMA_BUS_IS_PHYS;
  42. EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  43. /*
  44. * Setup information
  45. *
  46. * These are initialized so they are in the .data section
  47. */
  48. unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  49. EXPORT_SYMBOL(mips_machtype);
  50. struct boot_mem_map boot_mem_map;
  51. static char __initdata command_line[COMMAND_LINE_SIZE];
  52. char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
  53. #ifdef CONFIG_CMDLINE_BOOL
  54. static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  55. #endif
  56. /*
  57. * mips_io_port_base is the begin of the address space to which x86 style
  58. * I/O ports are mapped.
  59. */
  60. const unsigned long mips_io_port_base __read_mostly = -1;
  61. EXPORT_SYMBOL(mips_io_port_base);
  62. static struct resource code_resource = { .name = "Kernel code", };
  63. static struct resource data_resource = { .name = "Kernel data", };
  64. void __init add_memory_region(phys_t start, phys_t size, long type)
  65. {
  66. int x = boot_mem_map.nr_map;
  67. struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
  68. /* Sanity check */
  69. if (start + size < start) {
  70. pr_warning("Trying to add an invalid memory region, skipped\n");
  71. return;
  72. }
  73. /*
  74. * Try to merge with previous entry if any. This is far less than
  75. * perfect but is sufficient for most real world cases.
  76. */
  77. if (x && prev->addr + prev->size == start && prev->type == type) {
  78. prev->size += size;
  79. return;
  80. }
  81. if (x == BOOT_MEM_MAP_MAX) {
  82. pr_err("Ooops! Too many entries in the memory map!\n");
  83. return;
  84. }
  85. boot_mem_map.map[x].addr = start;
  86. boot_mem_map.map[x].size = size;
  87. boot_mem_map.map[x].type = type;
  88. boot_mem_map.nr_map++;
  89. }
  90. static void __init print_memory_map(void)
  91. {
  92. int i;
  93. const int field = 2 * sizeof(unsigned long);
  94. for (i = 0; i < boot_mem_map.nr_map; i++) {
  95. printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
  96. field, (unsigned long long) boot_mem_map.map[i].size,
  97. field, (unsigned long long) boot_mem_map.map[i].addr);
  98. switch (boot_mem_map.map[i].type) {
  99. case BOOT_MEM_RAM:
  100. printk(KERN_CONT "(usable)\n");
  101. break;
  102. case BOOT_MEM_ROM_DATA:
  103. printk(KERN_CONT "(ROM data)\n");
  104. break;
  105. case BOOT_MEM_RESERVED:
  106. printk(KERN_CONT "(reserved)\n");
  107. break;
  108. default:
  109. printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
  110. break;
  111. }
  112. }
  113. }
  114. /*
  115. * Manage initrd
  116. */
  117. #ifdef CONFIG_BLK_DEV_INITRD
  118. static int __init rd_start_early(char *p)
  119. {
  120. unsigned long start = memparse(p, &p);
  121. #ifdef CONFIG_64BIT
  122. /* Guess if the sign extension was forgotten by bootloader */
  123. if (start < XKPHYS)
  124. start = (int)start;
  125. #endif
  126. initrd_start = start;
  127. initrd_end += start;
  128. return 0;
  129. }
  130. early_param("rd_start", rd_start_early);
  131. static int __init rd_size_early(char *p)
  132. {
  133. initrd_end += memparse(p, &p);
  134. return 0;
  135. }
  136. early_param("rd_size", rd_size_early);
  137. /* it returns the next free pfn after initrd */
  138. static unsigned long __init init_initrd(void)
  139. {
  140. unsigned long end;
  141. /*
  142. * Board specific code or command line parser should have
  143. * already set up initrd_start and initrd_end. In these cases
  144. * perfom sanity checks and use them if all looks good.
  145. */
  146. if (!initrd_start || initrd_end <= initrd_start)
  147. goto disable;
  148. if (initrd_start & ~PAGE_MASK) {
  149. pr_err("initrd start must be page aligned\n");
  150. goto disable;
  151. }
  152. if (initrd_start < PAGE_OFFSET) {
  153. pr_err("initrd start < PAGE_OFFSET\n");
  154. goto disable;
  155. }
  156. /*
  157. * Sanitize initrd addresses. For example firmware
  158. * can't guess if they need to pass them through
  159. * 64-bits values if the kernel has been built in pure
  160. * 32-bit. We need also to switch from KSEG0 to XKPHYS
  161. * addresses now, so the code can now safely use __pa().
  162. */
  163. end = __pa(initrd_end);
  164. initrd_end = (unsigned long)__va(end);
  165. initrd_start = (unsigned long)__va(__pa(initrd_start));
  166. ROOT_DEV = Root_RAM0;
  167. return PFN_UP(end);
  168. disable:
  169. initrd_start = 0;
  170. initrd_end = 0;
  171. return 0;
  172. }
  173. static void __init finalize_initrd(void)
  174. {
  175. unsigned long size = initrd_end - initrd_start;
  176. if (size == 0) {
  177. printk(KERN_INFO "Initrd not found or empty");
  178. goto disable;
  179. }
  180. if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
  181. printk(KERN_ERR "Initrd extends beyond end of memory");
  182. goto disable;
  183. }
  184. reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
  185. initrd_below_start_ok = 1;
  186. pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
  187. initrd_start, size);
  188. return;
  189. disable:
  190. printk(KERN_CONT " - disabling initrd\n");
  191. initrd_start = 0;
  192. initrd_end = 0;
  193. }
  194. #else /* !CONFIG_BLK_DEV_INITRD */
  195. static unsigned long __init init_initrd(void)
  196. {
  197. return 0;
  198. }
  199. #define finalize_initrd() do {} while (0)
  200. #endif
  201. /*
  202. * Initialize the bootmem allocator. It also setup initrd related data
  203. * if needed.
  204. */
  205. #ifdef CONFIG_SGI_IP27
  206. static void __init bootmem_init(void)
  207. {
  208. init_initrd();
  209. finalize_initrd();
  210. }
  211. #else /* !CONFIG_SGI_IP27 */
  212. static void __init bootmem_init(void)
  213. {
  214. unsigned long reserved_end;
  215. unsigned long mapstart = ~0UL;
  216. unsigned long bootmap_size;
  217. int i;
  218. /*
  219. * Init any data related to initrd. It's a nop if INITRD is
  220. * not selected. Once that done we can determine the low bound
  221. * of usable memory.
  222. */
  223. reserved_end = max(init_initrd(),
  224. (unsigned long) PFN_UP(__pa_symbol(&_end)));
  225. /*
  226. * max_low_pfn is not a number of pages. The number of pages
  227. * of the system is given by 'max_low_pfn - min_low_pfn'.
  228. */
  229. min_low_pfn = ~0UL;
  230. max_low_pfn = 0;
  231. /*
  232. * Find the highest page frame number we have available.
  233. */
  234. for (i = 0; i < boot_mem_map.nr_map; i++) {
  235. unsigned long start, end;
  236. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  237. continue;
  238. start = PFN_UP(boot_mem_map.map[i].addr);
  239. end = PFN_DOWN(boot_mem_map.map[i].addr
  240. + boot_mem_map.map[i].size);
  241. if (end > max_low_pfn)
  242. max_low_pfn = end;
  243. if (start < min_low_pfn)
  244. min_low_pfn = start;
  245. if (end <= reserved_end)
  246. continue;
  247. if (start >= mapstart)
  248. continue;
  249. mapstart = max(reserved_end, start);
  250. }
  251. if (min_low_pfn >= max_low_pfn)
  252. panic("Incorrect memory mapping !!!");
  253. if (min_low_pfn > ARCH_PFN_OFFSET) {
  254. pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
  255. (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
  256. min_low_pfn - ARCH_PFN_OFFSET);
  257. } else if (min_low_pfn < ARCH_PFN_OFFSET) {
  258. pr_info("%lu free pages won't be used\n",
  259. ARCH_PFN_OFFSET - min_low_pfn);
  260. }
  261. min_low_pfn = ARCH_PFN_OFFSET;
  262. /*
  263. * Determine low and high memory ranges
  264. */
  265. max_pfn = max_low_pfn;
  266. if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
  267. #ifdef CONFIG_HIGHMEM
  268. highstart_pfn = PFN_DOWN(HIGHMEM_START);
  269. highend_pfn = max_low_pfn;
  270. #endif
  271. max_low_pfn = PFN_DOWN(HIGHMEM_START);
  272. }
  273. /*
  274. * Initialize the boot-time allocator with low memory only.
  275. */
  276. bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
  277. min_low_pfn, max_low_pfn);
  278. for (i = 0; i < boot_mem_map.nr_map; i++) {
  279. unsigned long start, end;
  280. start = PFN_UP(boot_mem_map.map[i].addr);
  281. end = PFN_DOWN(boot_mem_map.map[i].addr
  282. + boot_mem_map.map[i].size);
  283. if (start <= min_low_pfn)
  284. start = min_low_pfn;
  285. if (start >= end)
  286. continue;
  287. #ifndef CONFIG_HIGHMEM
  288. if (end > max_low_pfn)
  289. end = max_low_pfn;
  290. /*
  291. * ... finally, is the area going away?
  292. */
  293. if (end <= start)
  294. continue;
  295. #endif
  296. add_active_range(0, start, end);
  297. }
  298. /*
  299. * Register fully available low RAM pages with the bootmem allocator.
  300. */
  301. for (i = 0; i < boot_mem_map.nr_map; i++) {
  302. unsigned long start, end, size;
  303. /*
  304. * Reserve usable memory.
  305. */
  306. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  307. continue;
  308. start = PFN_UP(boot_mem_map.map[i].addr);
  309. end = PFN_DOWN(boot_mem_map.map[i].addr
  310. + boot_mem_map.map[i].size);
  311. /*
  312. * We are rounding up the start address of usable memory
  313. * and at the end of the usable range downwards.
  314. */
  315. if (start >= max_low_pfn)
  316. continue;
  317. if (start < reserved_end)
  318. start = reserved_end;
  319. if (end > max_low_pfn)
  320. end = max_low_pfn;
  321. /*
  322. * ... finally, is the area going away?
  323. */
  324. if (end <= start)
  325. continue;
  326. size = end - start;
  327. /* Register lowmem ranges */
  328. free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
  329. memory_present(0, start, end);
  330. }
  331. /*
  332. * Reserve the bootmap memory.
  333. */
  334. reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
  335. /*
  336. * Reserve initrd memory if needed.
  337. */
  338. finalize_initrd();
  339. }
  340. #endif /* CONFIG_SGI_IP27 */
  341. /*
  342. * arch_mem_init - initialize memory management subsystem
  343. *
  344. * o plat_mem_setup() detects the memory configuration and will record detected
  345. * memory areas using add_memory_region.
  346. *
  347. * At this stage the memory configuration of the system is known to the
  348. * kernel but generic memory management system is still entirely uninitialized.
  349. *
  350. * o bootmem_init()
  351. * o sparse_init()
  352. * o paging_init()
  353. *
  354. * At this stage the bootmem allocator is ready to use.
  355. *
  356. * NOTE: historically plat_mem_setup did the entire platform initialization.
  357. * This was rather impractical because it meant plat_mem_setup had to
  358. * get away without any kind of memory allocator. To keep old code from
  359. * breaking plat_setup was just renamed to plat_setup and a second platform
  360. * initialization hook for anything else was introduced.
  361. */
  362. static int usermem __initdata;
  363. static int __init early_parse_mem(char *p)
  364. {
  365. unsigned long start, size;
  366. /*
  367. * If a user specifies memory size, we
  368. * blow away any automatically generated
  369. * size.
  370. */
  371. if (usermem == 0) {
  372. boot_mem_map.nr_map = 0;
  373. usermem = 1;
  374. }
  375. start = 0;
  376. size = memparse(p, &p);
  377. if (*p == '@')
  378. start = memparse(p + 1, &p);
  379. add_memory_region(start, size, BOOT_MEM_RAM);
  380. return 0;
  381. }
  382. early_param("mem", early_parse_mem);
  383. static void __init arch_mem_init(char **cmdline_p)
  384. {
  385. extern void plat_mem_setup(void);
  386. /* call board setup routine */
  387. plat_mem_setup();
  388. pr_info("Determined physical RAM map:\n");
  389. print_memory_map();
  390. #ifdef CONFIG_CMDLINE_BOOL
  391. #ifdef CONFIG_CMDLINE_OVERRIDE
  392. strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
  393. #else
  394. if (builtin_cmdline[0]) {
  395. strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
  396. strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
  397. }
  398. strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
  399. #endif
  400. #else
  401. strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
  402. #endif
  403. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  404. *cmdline_p = command_line;
  405. parse_early_param();
  406. if (usermem) {
  407. pr_info("User-defined physical RAM map:\n");
  408. print_memory_map();
  409. }
  410. bootmem_init();
  411. sparse_init();
  412. paging_init();
  413. }
  414. static void __init resource_init(void)
  415. {
  416. int i;
  417. if (UNCAC_BASE != IO_BASE)
  418. return;
  419. code_resource.start = __pa_symbol(&_text);
  420. code_resource.end = __pa_symbol(&_etext) - 1;
  421. data_resource.start = __pa_symbol(&_etext);
  422. data_resource.end = __pa_symbol(&_edata) - 1;
  423. /*
  424. * Request address space for all standard RAM.
  425. */
  426. for (i = 0; i < boot_mem_map.nr_map; i++) {
  427. struct resource *res;
  428. unsigned long start, end;
  429. start = boot_mem_map.map[i].addr;
  430. end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
  431. if (start >= HIGHMEM_START)
  432. continue;
  433. if (end >= HIGHMEM_START)
  434. end = HIGHMEM_START - 1;
  435. res = alloc_bootmem(sizeof(struct resource));
  436. switch (boot_mem_map.map[i].type) {
  437. case BOOT_MEM_RAM:
  438. case BOOT_MEM_ROM_DATA:
  439. res->name = "System RAM";
  440. break;
  441. case BOOT_MEM_RESERVED:
  442. default:
  443. res->name = "reserved";
  444. }
  445. res->start = start;
  446. res->end = end;
  447. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  448. request_resource(&iomem_resource, res);
  449. /*
  450. * We don't know which RAM region contains kernel data,
  451. * so we try it repeatedly and let the resource manager
  452. * test it.
  453. */
  454. request_resource(res, &code_resource);
  455. request_resource(res, &data_resource);
  456. }
  457. }
  458. void __init setup_arch(char **cmdline_p)
  459. {
  460. cpu_probe();
  461. prom_init();
  462. #ifdef CONFIG_EARLY_PRINTK
  463. setup_early_printk();
  464. #endif
  465. cpu_report();
  466. check_bugs_early();
  467. #if defined(CONFIG_VT)
  468. #if defined(CONFIG_VGA_CONSOLE)
  469. conswitchp = &vga_con;
  470. #elif defined(CONFIG_DUMMY_CONSOLE)
  471. conswitchp = &dummy_con;
  472. #endif
  473. #endif
  474. arch_mem_init(cmdline_p);
  475. resource_init();
  476. plat_smp_setup();
  477. }
  478. unsigned long kernelsp[NR_CPUS];
  479. unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
  480. #ifdef CONFIG_DEBUG_FS
  481. struct dentry *mips_debugfs_dir;
  482. static int __init debugfs_mips(void)
  483. {
  484. struct dentry *d;
  485. d = debugfs_create_dir("mips", NULL);
  486. if (!d)
  487. return -ENOMEM;
  488. mips_debugfs_dir = d;
  489. return 0;
  490. }
  491. arch_initcall(debugfs_mips);
  492. #endif