smpboot.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. /*
  2. * SMP boot-related support
  3. *
  4. * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Copyright (C) 2001, 2004-2005 Intel Corp
  7. * Rohit Seth <rohit.seth@intel.com>
  8. * Suresh Siddha <suresh.b.siddha@intel.com>
  9. * Gordon Jin <gordon.jin@intel.com>
  10. * Ashok Raj <ashok.raj@intel.com>
  11. *
  12. * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
  13. * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
  14. * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
  15. * smp_boot_cpus()/smp_commence() is replaced by
  16. * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
  17. * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  18. * 04/12/26 Jin Gordon <gordon.jin@intel.com>
  19. * 04/12/26 Rohit Seth <rohit.seth@intel.com>
  20. * Add multi-threading and multi-core detection
  21. * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
  22. * Setup cpu_sibling_map and cpu_core_map
  23. */
  24. #include <linux/module.h>
  25. #include <linux/acpi.h>
  26. #include <linux/bootmem.h>
  27. #include <linux/cpu.h>
  28. #include <linux/delay.h>
  29. #include <linux/init.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/irq.h>
  32. #include <linux/kernel.h>
  33. #include <linux/kernel_stat.h>
  34. #include <linux/mm.h>
  35. #include <linux/notifier.h>
  36. #include <linux/smp.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/efi.h>
  39. #include <linux/percpu.h>
  40. #include <linux/bitops.h>
  41. #include <asm/atomic.h>
  42. #include <asm/cache.h>
  43. #include <asm/current.h>
  44. #include <asm/delay.h>
  45. #include <asm/io.h>
  46. #include <asm/irq.h>
  47. #include <asm/machvec.h>
  48. #include <asm/mca.h>
  49. #include <asm/page.h>
  50. #include <asm/paravirt.h>
  51. #include <asm/pgalloc.h>
  52. #include <asm/pgtable.h>
  53. #include <asm/processor.h>
  54. #include <asm/ptrace.h>
  55. #include <asm/sal.h>
  56. #include <asm/system.h>
  57. #include <asm/tlbflush.h>
  58. #include <asm/unistd.h>
  59. #include <asm/sn/arch.h>
  60. #define SMP_DEBUG 0
  61. #if SMP_DEBUG
  62. #define Dprintk(x...) printk(x)
  63. #else
  64. #define Dprintk(x...)
  65. #endif
  66. #ifdef CONFIG_HOTPLUG_CPU
  67. #ifdef CONFIG_PERMIT_BSP_REMOVE
  68. #define bsp_remove_ok 1
  69. #else
  70. #define bsp_remove_ok 0
  71. #endif
  72. /*
  73. * Store all idle threads, this can be reused instead of creating
  74. * a new thread. Also avoids complicated thread destroy functionality
  75. * for idle threads.
  76. */
  77. struct task_struct *idle_thread_array[NR_CPUS];
  78. /*
  79. * Global array allocated for NR_CPUS at boot time
  80. */
  81. struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
  82. /*
  83. * start_ap in head.S uses this to store current booting cpu
  84. * info.
  85. */
  86. struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
  87. #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
  88. #define get_idle_for_cpu(x) (idle_thread_array[(x)])
  89. #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
  90. #else
  91. #define get_idle_for_cpu(x) (NULL)
  92. #define set_idle_for_cpu(x,p)
  93. #define set_brendez_area(x)
  94. #endif
  95. /*
  96. * ITC synchronization related stuff:
  97. */
  98. #define MASTER (0)
  99. #define SLAVE (SMP_CACHE_BYTES/8)
  100. #define NUM_ROUNDS 64 /* magic value */
  101. #define NUM_ITERS 5 /* likewise */
  102. static DEFINE_SPINLOCK(itc_sync_lock);
  103. static volatile unsigned long go[SLAVE + 1];
  104. #define DEBUG_ITC_SYNC 0
  105. extern void start_ap (void);
  106. extern unsigned long ia64_iobase;
  107. struct task_struct *task_for_booting_cpu;
  108. /*
  109. * State for each CPU
  110. */
  111. DEFINE_PER_CPU(int, cpu_state);
  112. cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
  113. EXPORT_SYMBOL(cpu_core_map);
  114. DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
  115. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  116. int smp_num_siblings = 1;
  117. /* which logical CPU number maps to which CPU (physical APIC ID) */
  118. volatile int ia64_cpu_to_sapicid[NR_CPUS];
  119. EXPORT_SYMBOL(ia64_cpu_to_sapicid);
  120. static volatile cpumask_t cpu_callin_map;
  121. struct smp_boot_data smp_boot_data __initdata;
  122. unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
  123. char __initdata no_int_routing;
  124. unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
  125. #ifdef CONFIG_FORCE_CPEI_RETARGET
  126. #define CPEI_OVERRIDE_DEFAULT (1)
  127. #else
  128. #define CPEI_OVERRIDE_DEFAULT (0)
  129. #endif
  130. unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
  131. static int __init
  132. cmdl_force_cpei(char *str)
  133. {
  134. int value=0;
  135. get_option (&str, &value);
  136. force_cpei_retarget = value;
  137. return 1;
  138. }
  139. __setup("force_cpei=", cmdl_force_cpei);
  140. static int __init
  141. nointroute (char *str)
  142. {
  143. no_int_routing = 1;
  144. printk ("no_int_routing on\n");
  145. return 1;
  146. }
  147. __setup("nointroute", nointroute);
  148. static void fix_b0_for_bsp(void)
  149. {
  150. #ifdef CONFIG_HOTPLUG_CPU
  151. int cpuid;
  152. static int fix_bsp_b0 = 1;
  153. cpuid = smp_processor_id();
  154. /*
  155. * Cache the b0 value on the first AP that comes up
  156. */
  157. if (!(fix_bsp_b0 && cpuid))
  158. return;
  159. sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
  160. printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
  161. fix_bsp_b0 = 0;
  162. #endif
  163. }
  164. void
  165. sync_master (void *arg)
  166. {
  167. unsigned long flags, i;
  168. go[MASTER] = 0;
  169. local_irq_save(flags);
  170. {
  171. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
  172. while (!go[MASTER])
  173. cpu_relax();
  174. go[MASTER] = 0;
  175. go[SLAVE] = ia64_get_itc();
  176. }
  177. }
  178. local_irq_restore(flags);
  179. }
  180. /*
  181. * Return the number of cycles by which our itc differs from the itc on the master
  182. * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
  183. * negative that it is behind.
  184. */
  185. static inline long
  186. get_delta (long *rt, long *master)
  187. {
  188. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  189. unsigned long tcenter, t0, t1, tm;
  190. long i;
  191. for (i = 0; i < NUM_ITERS; ++i) {
  192. t0 = ia64_get_itc();
  193. go[MASTER] = 1;
  194. while (!(tm = go[SLAVE]))
  195. cpu_relax();
  196. go[SLAVE] = 0;
  197. t1 = ia64_get_itc();
  198. if (t1 - t0 < best_t1 - best_t0)
  199. best_t0 = t0, best_t1 = t1, best_tm = tm;
  200. }
  201. *rt = best_t1 - best_t0;
  202. *master = best_tm - best_t0;
  203. /* average best_t0 and best_t1 without overflow: */
  204. tcenter = (best_t0/2 + best_t1/2);
  205. if (best_t0 % 2 + best_t1 % 2 == 2)
  206. ++tcenter;
  207. return tcenter - best_tm;
  208. }
  209. /*
  210. * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
  211. * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
  212. * unaccounted-for errors (such as getting a machine check in the middle of a calibration
  213. * step). The basic idea is for the slave to ask the master what itc value it has and to
  214. * read its own itc before and after the master responds. Each iteration gives us three
  215. * timestamps:
  216. *
  217. * slave master
  218. *
  219. * t0 ---\
  220. * ---\
  221. * --->
  222. * tm
  223. * /---
  224. * /---
  225. * t1 <---
  226. *
  227. *
  228. * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
  229. * and t1. If we achieve this, the clocks are synchronized provided the interconnect
  230. * between the slave and the master is symmetric. Even if the interconnect were
  231. * asymmetric, we would still know that the synchronization error is smaller than the
  232. * roundtrip latency (t0 - t1).
  233. *
  234. * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
  235. * within one or two cycles. However, we can only *guarantee* that the synchronization is
  236. * accurate to within a round-trip time, which is typically in the range of several
  237. * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
  238. * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
  239. * than half a micro second or so.
  240. */
  241. void
  242. ia64_sync_itc (unsigned int master)
  243. {
  244. long i, delta, adj, adjust_latency = 0, done = 0;
  245. unsigned long flags, rt, master_time_stamp, bound;
  246. #if DEBUG_ITC_SYNC
  247. struct {
  248. long rt; /* roundtrip time */
  249. long master; /* master's timestamp */
  250. long diff; /* difference between midpoint and master's timestamp */
  251. long lat; /* estimate of itc adjustment latency */
  252. } t[NUM_ROUNDS];
  253. #endif
  254. /*
  255. * Make sure local timer ticks are disabled while we sync. If
  256. * they were enabled, we'd have to worry about nasty issues
  257. * like setting the ITC ahead of (or a long time before) the
  258. * next scheduled tick.
  259. */
  260. BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
  261. go[MASTER] = 1;
  262. if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
  263. printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
  264. return;
  265. }
  266. while (go[MASTER])
  267. cpu_relax(); /* wait for master to be ready */
  268. spin_lock_irqsave(&itc_sync_lock, flags);
  269. {
  270. for (i = 0; i < NUM_ROUNDS; ++i) {
  271. delta = get_delta(&rt, &master_time_stamp);
  272. if (delta == 0) {
  273. done = 1; /* let's lock on to this... */
  274. bound = rt;
  275. }
  276. if (!done) {
  277. if (i > 0) {
  278. adjust_latency += -delta;
  279. adj = -delta + adjust_latency/4;
  280. } else
  281. adj = -delta;
  282. ia64_set_itc(ia64_get_itc() + adj);
  283. }
  284. #if DEBUG_ITC_SYNC
  285. t[i].rt = rt;
  286. t[i].master = master_time_stamp;
  287. t[i].diff = delta;
  288. t[i].lat = adjust_latency/4;
  289. #endif
  290. }
  291. }
  292. spin_unlock_irqrestore(&itc_sync_lock, flags);
  293. #if DEBUG_ITC_SYNC
  294. for (i = 0; i < NUM_ROUNDS; ++i)
  295. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  296. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  297. #endif
  298. printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
  299. "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
  300. }
  301. /*
  302. * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
  303. */
  304. static inline void __devinit
  305. smp_setup_percpu_timer (void)
  306. {
  307. }
  308. static void __cpuinit
  309. smp_callin (void)
  310. {
  311. int cpuid, phys_id, itc_master;
  312. struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
  313. extern void ia64_init_itm(void);
  314. extern volatile int time_keeper_id;
  315. #ifdef CONFIG_PERFMON
  316. extern void pfm_init_percpu(void);
  317. #endif
  318. cpuid = smp_processor_id();
  319. phys_id = hard_smp_processor_id();
  320. itc_master = time_keeper_id;
  321. if (cpu_online(cpuid)) {
  322. printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
  323. phys_id, cpuid);
  324. BUG();
  325. }
  326. fix_b0_for_bsp();
  327. /*
  328. * numa_node_id() works after this.
  329. */
  330. set_numa_node(cpu_to_node_map[cpuid]);
  331. set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
  332. ipi_call_lock_irq();
  333. spin_lock(&vector_lock);
  334. /* Setup the per cpu irq handling data structures */
  335. __setup_vector_irq(cpuid);
  336. notify_cpu_starting(cpuid);
  337. cpu_set(cpuid, cpu_online_map);
  338. per_cpu(cpu_state, cpuid) = CPU_ONLINE;
  339. spin_unlock(&vector_lock);
  340. ipi_call_unlock_irq();
  341. smp_setup_percpu_timer();
  342. ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
  343. #ifdef CONFIG_PERFMON
  344. pfm_init_percpu();
  345. #endif
  346. local_irq_enable();
  347. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  348. /*
  349. * Synchronize the ITC with the BP. Need to do this after irqs are
  350. * enabled because ia64_sync_itc() calls smp_call_function_single(), which
  351. * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
  352. * local_bh_enable(), which bugs out if irqs are not enabled...
  353. */
  354. Dprintk("Going to syncup ITC with ITC Master.\n");
  355. ia64_sync_itc(itc_master);
  356. }
  357. /*
  358. * Get our bogomips.
  359. */
  360. ia64_init_itm();
  361. /*
  362. * Delay calibration can be skipped if new processor is identical to the
  363. * previous processor.
  364. */
  365. last_cpuinfo = cpu_data(cpuid - 1);
  366. this_cpuinfo = local_cpu_data;
  367. if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
  368. last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
  369. last_cpuinfo->features != this_cpuinfo->features ||
  370. last_cpuinfo->revision != this_cpuinfo->revision ||
  371. last_cpuinfo->family != this_cpuinfo->family ||
  372. last_cpuinfo->archrev != this_cpuinfo->archrev ||
  373. last_cpuinfo->model != this_cpuinfo->model)
  374. calibrate_delay();
  375. local_cpu_data->loops_per_jiffy = loops_per_jiffy;
  376. /*
  377. * Allow the master to continue.
  378. */
  379. cpu_set(cpuid, cpu_callin_map);
  380. Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
  381. }
  382. /*
  383. * Activate a secondary processor. head.S calls this.
  384. */
  385. int __cpuinit
  386. start_secondary (void *unused)
  387. {
  388. /* Early console may use I/O ports */
  389. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  390. #ifndef CONFIG_PRINTK_TIME
  391. Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
  392. #endif
  393. efi_map_pal_code();
  394. cpu_init();
  395. preempt_disable();
  396. smp_callin();
  397. cpu_idle();
  398. return 0;
  399. }
  400. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  401. {
  402. return NULL;
  403. }
  404. struct create_idle {
  405. struct work_struct work;
  406. struct task_struct *idle;
  407. struct completion done;
  408. int cpu;
  409. };
  410. void __cpuinit
  411. do_fork_idle(struct work_struct *work)
  412. {
  413. struct create_idle *c_idle =
  414. container_of(work, struct create_idle, work);
  415. c_idle->idle = fork_idle(c_idle->cpu);
  416. complete(&c_idle->done);
  417. }
  418. static int __cpuinit
  419. do_boot_cpu (int sapicid, int cpu)
  420. {
  421. int timeout;
  422. struct create_idle c_idle = {
  423. .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
  424. .cpu = cpu,
  425. .done = COMPLETION_INITIALIZER(c_idle.done),
  426. };
  427. /*
  428. * We can't use kernel_thread since we must avoid to
  429. * reschedule the child.
  430. */
  431. c_idle.idle = get_idle_for_cpu(cpu);
  432. if (c_idle.idle) {
  433. init_idle(c_idle.idle, cpu);
  434. goto do_rest;
  435. }
  436. schedule_work(&c_idle.work);
  437. wait_for_completion(&c_idle.done);
  438. if (IS_ERR(c_idle.idle))
  439. panic("failed fork for CPU %d", cpu);
  440. set_idle_for_cpu(cpu, c_idle.idle);
  441. do_rest:
  442. task_for_booting_cpu = c_idle.idle;
  443. Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
  444. set_brendez_area(cpu);
  445. platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
  446. /*
  447. * Wait 10s total for the AP to start
  448. */
  449. Dprintk("Waiting on callin_map ...");
  450. for (timeout = 0; timeout < 100000; timeout++) {
  451. if (cpu_isset(cpu, cpu_callin_map))
  452. break; /* It has booted */
  453. udelay(100);
  454. }
  455. Dprintk("\n");
  456. if (!cpu_isset(cpu, cpu_callin_map)) {
  457. printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
  458. ia64_cpu_to_sapicid[cpu] = -1;
  459. cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
  460. return -EINVAL;
  461. }
  462. return 0;
  463. }
  464. static int __init
  465. decay (char *str)
  466. {
  467. int ticks;
  468. get_option (&str, &ticks);
  469. return 1;
  470. }
  471. __setup("decay=", decay);
  472. /*
  473. * Initialize the logical CPU number to SAPICID mapping
  474. */
  475. void __init
  476. smp_build_cpu_map (void)
  477. {
  478. int sapicid, cpu, i;
  479. int boot_cpu_id = hard_smp_processor_id();
  480. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  481. ia64_cpu_to_sapicid[cpu] = -1;
  482. }
  483. ia64_cpu_to_sapicid[0] = boot_cpu_id;
  484. cpus_clear(cpu_present_map);
  485. set_cpu_present(0, true);
  486. set_cpu_possible(0, true);
  487. for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
  488. sapicid = smp_boot_data.cpu_phys_id[i];
  489. if (sapicid == boot_cpu_id)
  490. continue;
  491. set_cpu_present(cpu, true);
  492. set_cpu_possible(cpu, true);
  493. ia64_cpu_to_sapicid[cpu] = sapicid;
  494. cpu++;
  495. }
  496. }
  497. /*
  498. * Cycle through the APs sending Wakeup IPIs to boot each.
  499. */
  500. void __init
  501. smp_prepare_cpus (unsigned int max_cpus)
  502. {
  503. int boot_cpu_id = hard_smp_processor_id();
  504. /*
  505. * Initialize the per-CPU profiling counter/multiplier
  506. */
  507. smp_setup_percpu_timer();
  508. /*
  509. * We have the boot CPU online for sure.
  510. */
  511. cpu_set(0, cpu_online_map);
  512. cpu_set(0, cpu_callin_map);
  513. local_cpu_data->loops_per_jiffy = loops_per_jiffy;
  514. ia64_cpu_to_sapicid[0] = boot_cpu_id;
  515. printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
  516. current_thread_info()->cpu = 0;
  517. /*
  518. * If SMP should be disabled, then really disable it!
  519. */
  520. if (!max_cpus) {
  521. printk(KERN_INFO "SMP mode deactivated.\n");
  522. init_cpu_online(cpumask_of(0));
  523. init_cpu_present(cpumask_of(0));
  524. init_cpu_possible(cpumask_of(0));
  525. return;
  526. }
  527. }
  528. void __devinit smp_prepare_boot_cpu(void)
  529. {
  530. cpu_set(smp_processor_id(), cpu_online_map);
  531. cpu_set(smp_processor_id(), cpu_callin_map);
  532. set_numa_node(cpu_to_node_map[smp_processor_id()]);
  533. per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
  534. paravirt_post_smp_prepare_boot_cpu();
  535. }
  536. #ifdef CONFIG_HOTPLUG_CPU
  537. static inline void
  538. clear_cpu_sibling_map(int cpu)
  539. {
  540. int i;
  541. for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
  542. cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
  543. for_each_cpu_mask(i, cpu_core_map[cpu])
  544. cpu_clear(cpu, cpu_core_map[i]);
  545. per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
  546. }
  547. static void
  548. remove_siblinginfo(int cpu)
  549. {
  550. int last = 0;
  551. if (cpu_data(cpu)->threads_per_core == 1 &&
  552. cpu_data(cpu)->cores_per_socket == 1) {
  553. cpu_clear(cpu, cpu_core_map[cpu]);
  554. cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
  555. return;
  556. }
  557. last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
  558. /* remove it from all sibling map's */
  559. clear_cpu_sibling_map(cpu);
  560. }
  561. extern void fixup_irqs(void);
  562. int migrate_platform_irqs(unsigned int cpu)
  563. {
  564. int new_cpei_cpu;
  565. struct irq_desc *desc = NULL;
  566. const struct cpumask *mask;
  567. int retval = 0;
  568. /*
  569. * dont permit CPEI target to removed.
  570. */
  571. if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
  572. printk ("CPU (%d) is CPEI Target\n", cpu);
  573. if (can_cpei_retarget()) {
  574. /*
  575. * Now re-target the CPEI to a different processor
  576. */
  577. new_cpei_cpu = any_online_cpu(cpu_online_map);
  578. mask = cpumask_of(new_cpei_cpu);
  579. set_cpei_target_cpu(new_cpei_cpu);
  580. desc = irq_desc + ia64_cpe_irq;
  581. /*
  582. * Switch for now, immediately, we need to do fake intr
  583. * as other interrupts, but need to study CPEI behaviour with
  584. * polling before making changes.
  585. */
  586. if (desc) {
  587. desc->chip->disable(ia64_cpe_irq);
  588. desc->chip->set_affinity(ia64_cpe_irq, mask);
  589. desc->chip->enable(ia64_cpe_irq);
  590. printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
  591. }
  592. }
  593. if (!desc) {
  594. printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
  595. retval = -EBUSY;
  596. }
  597. }
  598. return retval;
  599. }
  600. /* must be called with cpucontrol mutex held */
  601. int __cpu_disable(void)
  602. {
  603. int cpu = smp_processor_id();
  604. /*
  605. * dont permit boot processor for now
  606. */
  607. if (cpu == 0 && !bsp_remove_ok) {
  608. printk ("Your platform does not support removal of BSP\n");
  609. return (-EBUSY);
  610. }
  611. if (ia64_platform_is("sn2")) {
  612. if (!sn_cpu_disable_allowed(cpu))
  613. return -EBUSY;
  614. }
  615. cpu_clear(cpu, cpu_online_map);
  616. if (migrate_platform_irqs(cpu)) {
  617. cpu_set(cpu, cpu_online_map);
  618. return -EBUSY;
  619. }
  620. remove_siblinginfo(cpu);
  621. fixup_irqs();
  622. local_flush_tlb_all();
  623. cpu_clear(cpu, cpu_callin_map);
  624. return 0;
  625. }
  626. void __cpu_die(unsigned int cpu)
  627. {
  628. unsigned int i;
  629. for (i = 0; i < 100; i++) {
  630. /* They ack this in play_dead by setting CPU_DEAD */
  631. if (per_cpu(cpu_state, cpu) == CPU_DEAD)
  632. {
  633. printk ("CPU %d is now offline\n", cpu);
  634. return;
  635. }
  636. msleep(100);
  637. }
  638. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  639. }
  640. #endif /* CONFIG_HOTPLUG_CPU */
  641. void
  642. smp_cpus_done (unsigned int dummy)
  643. {
  644. int cpu;
  645. unsigned long bogosum = 0;
  646. /*
  647. * Allow the user to impress friends.
  648. */
  649. for_each_online_cpu(cpu) {
  650. bogosum += cpu_data(cpu)->loops_per_jiffy;
  651. }
  652. printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  653. (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
  654. }
  655. static inline void __devinit
  656. set_cpu_sibling_map(int cpu)
  657. {
  658. int i;
  659. for_each_online_cpu(i) {
  660. if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
  661. cpu_set(i, cpu_core_map[cpu]);
  662. cpu_set(cpu, cpu_core_map[i]);
  663. if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
  664. cpu_set(i, per_cpu(cpu_sibling_map, cpu));
  665. cpu_set(cpu, per_cpu(cpu_sibling_map, i));
  666. }
  667. }
  668. }
  669. }
  670. int __cpuinit
  671. __cpu_up (unsigned int cpu)
  672. {
  673. int ret;
  674. int sapicid;
  675. sapicid = ia64_cpu_to_sapicid[cpu];
  676. if (sapicid == -1)
  677. return -EINVAL;
  678. /*
  679. * Already booted cpu? not valid anymore since we dont
  680. * do idle loop tightspin anymore.
  681. */
  682. if (cpu_isset(cpu, cpu_callin_map))
  683. return -EINVAL;
  684. per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
  685. /* Processor goes to start_secondary(), sets online flag */
  686. ret = do_boot_cpu(sapicid, cpu);
  687. if (ret < 0)
  688. return ret;
  689. if (cpu_data(cpu)->threads_per_core == 1 &&
  690. cpu_data(cpu)->cores_per_socket == 1) {
  691. cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
  692. cpu_set(cpu, cpu_core_map[cpu]);
  693. return 0;
  694. }
  695. set_cpu_sibling_map(cpu);
  696. return 0;
  697. }
  698. /*
  699. * Assume that CPUs have been discovered by some platform-dependent interface. For
  700. * SoftSDV/Lion, that would be ACPI.
  701. *
  702. * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
  703. */
  704. void __init
  705. init_smp_config(void)
  706. {
  707. struct fptr {
  708. unsigned long fp;
  709. unsigned long gp;
  710. } *ap_startup;
  711. long sal_ret;
  712. /* Tell SAL where to drop the APs. */
  713. ap_startup = (struct fptr *) start_ap;
  714. sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
  715. ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
  716. if (sal_ret < 0)
  717. printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
  718. ia64_sal_strerror(sal_ret));
  719. }
  720. /*
  721. * identify_siblings(cpu) gets called from identify_cpu. This populates the
  722. * information related to logical execution units in per_cpu_data structure.
  723. */
  724. void __devinit
  725. identify_siblings(struct cpuinfo_ia64 *c)
  726. {
  727. long status;
  728. u16 pltid;
  729. pal_logical_to_physical_t info;
  730. status = ia64_pal_logical_to_phys(-1, &info);
  731. if (status != PAL_STATUS_SUCCESS) {
  732. if (status != PAL_STATUS_UNIMPLEMENTED) {
  733. printk(KERN_ERR
  734. "ia64_pal_logical_to_phys failed with %ld\n",
  735. status);
  736. return;
  737. }
  738. info.overview_ppid = 0;
  739. info.overview_cpp = 1;
  740. info.overview_tpc = 1;
  741. }
  742. status = ia64_sal_physical_id_info(&pltid);
  743. if (status != PAL_STATUS_SUCCESS) {
  744. if (status != PAL_STATUS_UNIMPLEMENTED)
  745. printk(KERN_ERR
  746. "ia64_sal_pltid failed with %ld\n",
  747. status);
  748. return;
  749. }
  750. c->socket_id = (pltid << 8) | info.overview_ppid;
  751. if (info.overview_cpp == 1 && info.overview_tpc == 1)
  752. return;
  753. c->cores_per_socket = info.overview_cpp;
  754. c->threads_per_core = info.overview_tpc;
  755. c->num_log = info.overview_num_log;
  756. c->core_id = info.log1_cid;
  757. c->thread_id = info.log1_tid;
  758. }
  759. /*
  760. * returns non zero, if multi-threading is enabled
  761. * on at least one physical package. Due to hotplug cpu
  762. * and (maxcpus=), all threads may not necessarily be enabled
  763. * even though the processor supports multi-threading.
  764. */
  765. int is_multithreading_enabled(void)
  766. {
  767. int i, j;
  768. for_each_present_cpu(i) {
  769. for_each_present_cpu(j) {
  770. if (j == i)
  771. continue;
  772. if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
  773. if (cpu_data(j)->core_id == cpu_data(i)->core_id)
  774. return 1;
  775. }
  776. }
  777. }
  778. return 0;
  779. }
  780. EXPORT_SYMBOL_GPL(is_multithreading_enabled);